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1. Introduction

The classical Riesz representation theorem is well known [5]. It states that a

continuous linear functional on the space C[a, b] of continuous functions on [a, b]

can be represented in terms of the Riemann-Stieltjes integral
∫ b

a
f dg for f ∈ C[a, b]

where g is a function of bounded variation on [a, b]. In other words, the Riesz

representation theorem showed that the dual of C[a, b] is the space BV of functions

of bounded variation or more precisely a subspace of BV. However we fail to say in

whatever sense that the space C[a, b] is the dual of BV .

In 1966, Hildebrandt [9] has characterized continuous linear functionals on the

space BV regarding BV as a two-norm space. By a two-norm space we mean that

the space is endorsed with two-norm topology or two-norm convergence. More pre-

cisely, a sequence is convergent in the two-norm sense if the sequence is bounded in

one given norm and convergent in another given norm. Further Hildebrandt used the

left Cauchy integral [8, p. 87] among others. It is not explicit how his representation
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theorem is connected with the Riesz theorem. In this paper, we reformulate Hilde-

brandt’s results in terms of the Henstock-Kurzweil-Stieltjes integral, and establish a

duality in which a part of it is the Riesz representation theorem. More precisely, let

BVN be the subspace of BV such that the condition f(x) = 1
2 [f(x+) + f(x−)] holds

for x ∈ (a, b) with f (a) = f (a+) and f (b) = f (b−) whenever f ∈ BVN . A regulated

function [2] on [a, b] is a function whose one-sided limits exist at every point of [a, b].

Let RF denote the space of regulated functions on [a, b] , and RFN the subspace of

RF satisfying the condition as in BVN . Regarding BVN as a two-norm space and

RFN a normed space, then the dual of BVN is RFN and vice versa. Note that C[a, b]

is a subspace of RFN and its dual is BVN . The fact that the dual of C [a, b] is BVN

can now embedded into the duality of RFN and BVN .

Let V (g; [a, b]) or V (g) denote the total variation of g on [a, b]. A function g is of

bounded variation on [a, b] or g ∈ BV if V (g) is finite. A sequence {gn} of functions

on [a, b] is said to be two-norm convergent to g in BV if V (gk) 6 M for all k and gk

is uniformly convergent to g on [a, b]. The space BV is now a two-norm space with

the two-norm structure provided by the two-norm convergence in BV . Further, RF

is a normed space with norm given by ‖f‖ = sup {|f (x)| : x ∈ [a, b]}.

2. The Henstock-Stieltjes integral

We define the Henstock-Kurzweil-Stieltjes integral [6], [7] and prove a convergence

theorem. A real-valued function f is said to be Henstock-Kurzweil-Stieltjes integrable

to A with respect to g on [a, b] or (f, g) Henstock-Kurzweil-Stieltjes integrable on

[a, b] , if for every ε > 0, there exists a function δ(ξ) > 0 for ξ ∈ [a, b] such that for

any division D of [a, b] given by a = x0 < x1 < . . . < xn = b, with ξ1, ξ2, . . . , ξn

satisfying ξi ∈ [xi−1, xi] ⊂ (ξi − δ (ξi) , ξi + δ (ξi)) for i = 1, 2, . . . , n, we have

∣

∣

∣

∣

n
∑

i=1

f(ξi)[g(xi) − g(xi−1)] − A

∣

∣

∣

∣

< ε.

For brevity, we write D = {(ξ, [u, v])} in which (ξ, [u, v]) denotes a typical point-

interval pair (ξi, [xi−1, xi]) in D, and also we write the Riemann sum in the form

(D)
∑

f(ξ)[g (v)− g (u)]. Here D is said to be δ-fine if the above condition holds [6],

[7]. That is, (f, g) is Henstock-Kurzweil-Stieltjes integrable to A on [a, b] if for every

ε > 0, there is a positive function δ such that for any δ-fine division D = {(ξ, [u, v])}

of [a, b] , we have

(∗) |s(f, g, D) − A| < ε
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where s (f, g, D) = (D)
∑

f (ξ) [g (v) − g (u)]. For simplicity, we write A =
∫ b

a f dg.

A division D1 is said to be finer than a division D2 if every interval of D1 is a

subinterval of some interval of D2. If g (x) = x, then the integral reduces to the

Henstock-Kurzweil integral. If δ is a constant, then it reduces to the Riemann-

Stieltjes integral. Moreover, if g(x) = x and δ is a constant, then it reduces to the

Riemann integral [10]. We remark that the Henstock-Kurzweil-Stieltjes integral of

(f, g) does allow both functions f and g to be discontinuous on the same side at a

point.

Let f be a real-valued function defined on [a, b] . A family F of Henstock-Kurzweil-

Stieltjes integrable functions (f, gk) , k = 1, 2, . . ., is said to be equi-integrable on [a, b],

if the above inequality (∗) holds with g and A replaced by gk and the integral Ak of

gk, and δ being independent of k [7, p. 104]. It is clear that if f ∈ RF and g ∈ BV,

then
∫ b

a
f dg exists, for reference see [3].

Lemma 1. Suppose f ∈ RF . If gk ∈ BV and V (gk) 6 M for every k, then

{(f, gk) : k = 1, 2, . . .} is equi-integrable on [a, b].

���������
. Since f ∈ RF, it is known [1] that for every ε > 0, there exists

a division D0 : a = x0 < x1 < . . . < xn = b such that |f (ξ) − f (η)| < ε for

ξ, η ∈ (xi−1, xi) , i = 1, 2, . . . , n. Fix i and put g∗

k (x) = gk (x) for every x ∈ (xi−1, xi)

and g∗k (xi−1) = gk (xi−1+) , g∗k (xi) = gk (xi−). Then we have

∫ xi

xi−1

f dgk =

∫ xi

xi−1

f dg∗k + f (xi−1) [gk (xi−1+) − gk (xi−1)]

+ f (xi) [gk (xi) − gk (xi−)].

Define a function δ (ξ) > 0 for every ξ ∈ [a, b] such that every δ-fine division D =

{(ξ, [u, v])} of [a, b] is finer than D0. Take any δ-fine division D. Then we can write

D = D1 ∪ D2 ∪ . . . ∪ Dn where Di is a δ-fine division of [xi−1, xi]. Thus we have

∣

∣

∣

∣

s (f, gk, Di) −

∫ xi

xi−1

f dgk

∣

∣

∣

∣

=

∣

∣

∣

∣

s (f, g∗k, Di) −

∫ xi

xi−1

f dg∗k

∣

∣

∣

∣

6 εV (gk; [xi−1, xi]).

Hence for every δ-fine division D = {(ξ, [u, v])} of [a, b] ,

∣

∣

∣

∣

s (f, gk, D) −

∫ b

a

f dgk

∣

∣

∣

∣

6

n
∑

i=1

∣

∣

∣

∣

s (f, g, Di) −

∫ xi

xi−1

f dgk

∣

∣

∣

∣

6 εV (gk; [a, b]) 6 εM

for every k. That is, {(f, gk) : k = 1, 2, . . .} is equi-integrable on [a, b]. �
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Theorem 1. Suppose gn ∈ BV for n = 1, 2, . . . , and f ∈ RF . If gn is two-norm

convergent to g in BV, then
∫ b

a f dg exists and lim
n→∞

∫ b

a f dgn =
∫ b

a f dg.

���������
. It is clear that g ∈ BV and

∫ b

a
f dg exists. Further, by Lemma 1,

{(f, gn) : n = 1, 2, . . .} is equi-integrable on [a, b]. Then for every ε > 0, there exists

a function δ (ξ) for ξ ∈ [a, b] such that for every δ-fine divisionD = {(ξ, [u, v])} of [a, b]

and for every n, we have |s (f, g, D) −
∫ b

a f dg| < ε and |s (f, gn, D) −
∫ b

a f dgn| < ε.

Since gn is uniformly convergent to g on [a, b] , we can prove that there exists D0

such that |s (f, gn, D0) − s (f, g, D0)| < ε for large n. Therefore we have

∣

∣

∣

∣

∫ b

a

f dgn −

∫ b

a

f dg

∣

∣

∣

∣

6

∣

∣

∣

∣

∫ b

a

f dgn − s (f, gn, D0)

∣

∣

∣

∣

+ |s (f, gn, D0) − s (f, g, D0)|

+

∣

∣

∣

∣

∫ b

a

f dg − s (f, g, D0)

∣

∣

∣

∣

< 3ε

for large n. �

3. Two-norm continuous linear functionals

A functional F defined on BV or RF is linear if F (αf + βg) = αF (f) + βF (g)

for f, g ∈ BV or RF, and real α, β. A functional F defined on BV is said to be two-

norm continuous if F (gn) → F (g) as n → ∞ whenever gn is two-norm convergent

to g in BV . Theorem 1 shows that if f ∈ RF, then F (g) =
∫ b

a f dg is two-norm

continuous in BV . A functional F defined on RF is continuous if F (fn) → F (f) as

n → ∞ whenever ‖fn − f‖ → 0 as n → ∞. In this section, we characterize the dual

or the two-norm dual of the space BV, that is, the space of all two-norm continuous

linear functionals on BV, in terms of the Henstock-Kurzweil-Stieltjes integral. We

define characteristic functions γt and δt for a fixed t ∈ [a, b]. When t ∈ (a, b) , define

γt (x) = 0 for every x ∈ [a, t), 1
2 when x = t and 1 for every x ∈ (t, b]. When t = a,

define γa (x) = 0 when x = a and 1 for every x ∈ (a, b].When t = b, define γb (x) = 0

for every x ∈ [a, b) and 1 when x = b. We also define δt(x) = 1 when x = t and

0 otherwise. We now give a series of lemmas leading to the main theorem of this

paper.

Lemma 2. If F is a two-norm continuous linear functional defined on BV, then

f ∈ RFN where f (t) = F (γt) for every t ∈ [a, b].

���������
. Suppose f /∈ RF . Then there exists a point x such that f(x+) or f(x−)

does not exist. Suppose f(x+) does not exist. Then there exist η > 0 and a sequence

of pairwise disjoint intervals [x′

j , x′′

j ] on the same right side of x and approaching
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x such that |f(x′′

j ) − f(x′

j)| > η for every j. Define gn = 1
n

n
∑

j=1

εj(γx′′

j
− γx′

j
) where

εj = sgn(f(x′′

j )− f(x′

j)). It is clearly seen that gn is uniformly convergent to zero on

[a, b] and V (gn) 6 2 but

F (gn) =
1

n

n
∑

j=1

εj(F (γx′′

j
) − F (γx′

j
)) =

1

n

n
∑

j=1

|f(x′′

j ) − f(x′

j)| > η,

for every n. That is, F is not a two-norm continuous linear functional on BV . There-

fore f(x+) and f(x−) must exist for every x. Hence f is a regulated function. In

view of the definition of γt, indeed f ∈ RFN . �

Lemma 3. Suppose F is a two-norm continuous linear functional defined on BV.

If f(t) = F (γt) for every t ∈ [a, b] , then f ∈ RFN, the integral
∫ b

a
f dg exists and

F (g) =
∫ b

a f dg for g ∈ BVN .

���������
. By Lemma 2, f ∈ RFN and consequently

∫ b

a f dg exists. In view of

Theorem 1, it is sufficient to prove Lemma 3 for the case when g is a step function

in BVN . Let ti, i = 1, . . . , n − 1, be the discontinuity points of g. Consider the case

when a = t0 < t1 < . . . < tn = b. Then

∫ b

a

f dg =

n−1
∑

i=1

f(ti) [g (ti+) − g (ti−)] = F

( n−1
∑

i=1

γti
· [g (ti+) − g (ti−)]

)

.

Here we note that
n−1
∑

i=1

γti
· [g (ti+) − g (ti−)] = g

and hence
∫ b

a
f dg = F (g) for the step function g ∈ BVN and consequently for any

g ∈ BVN . �

The linear space c0 [a, b] [5] is the space of all functions f defined on [a, b] such

that the set {t ∈ [a, b] : |f(t)| > ε} is finite for every ε > 0.

Lemma 4. If F is a two-norm continuous linear functional defined on BV, then

f ∈ c0 [a, b] where f (t) = F (δt) for every t ∈ [a, b].
���������

. Suppose f /∈ c0 [a, b]. Then there exists ε > 0 such that |f(ti)| > ε for

a sequence {ti}i>1 ⊂ [a, b]. Define gn = 1
n

n
∑

i=1

εiδti
, where εi = sgn f (ti). Then we

obtain V (gn) 6 2 and gn is uniformly convergent to 0 on [a, b] but

F (gn) =
1

n

n
∑

i=1

εiF (δti
) =

1

n

n
∑

i=1

|f(ti)| > ε for every n.
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That is, F is not a two-norm continuous linear functional on BV . Therefore f ∈

c0 [a, b]. �

We define the normalized function g∗ of g on [a, b] to be g∗(x) = 1
2 [g(x+)+g(x−)]

for x ∈ (a, b) , and g∗ (a) = g (a+) , g∗ (b) = g (b−). If g ∈ BV, then g∗ ∈ BVN .

The main result of this paper is the following theorem.

Theorem 2. A functional F defined on BV is linear and two-norm continuous if

and only if there exist functions f1 ∈ RFN and f2 ∈ c0 [a, b] such that

F (g) =

∫ b

a

f1 dg∗ +

∞
∑

i=1

[g (ti) − g∗ (ti)] f2(ti)

for every g ∈ BV, where ti, i = 1, 2, . . . , are the discontinuity points of g, and g∗ the

normalized function of g.

���������
. ⇒: Put f1(t) = F (γt) for every t ∈ [a, b]. By Lemma 2, f1 ∈ RFN . Let

g ∈ BV and g∗ the normalized function of g. Then

F (g) = F (g∗) + F (g − g∗).

Next, put f2(t) = F (δt) for every t ∈ [a, b]. By Lemma 4, f2 ∈ c0 [a, b]. Let ti,

i = 1, 2, . . . , be the discontinuity points of g. Then for any n

F (g − g∗) = F

( ∞
∑

i=1

[g (ti) − g∗ (ti)] δti

)

=

n
∑

i=1

[g (ti) − g∗ (ti)] f2(ti) + F

( ∞
∑

i=n+1

[g (ti) − g∗ (ti)] δti

)

.

Since {f2 (ti)} is a null sequence, that is, a sequence converging to 0, and
∞
∑

i=1

[g(ti)−

g∗(ti)] absolutely convergent, the series
∞
∑

i=1

[g (ti) − g∗ (ti)] f2(ti) converges.

Further,
∞
∑

i=n+1

[g (ti) − g∗ (ti)] δti
is two-norm convergent to zero in BV as n → ∞.

Then, by the two-norm continuity of F, we have

lim
n→∞

F

( ∞
∑

i=n+1

[g (ti) − g∗ (ti)]δti

)

= 0.

Together with Lemma 3, we obtain the representation of F.
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⇐: Let

F1 (g) =

∫ b

a

f1 dg∗.

Take gn ∈ BV such that gn is two-norm convergent to g in BV . So does g∗

n. Since f1 ∈

RFN, by applying Lemma 1 and Theorem 1, {(f, gk) : k = 1, 2, . . .} is equi-integrable

on [a, b] ,
∫ b

a
f1 dg∗ exists and lim

n→∞

∫ b

a
f1 dg∗n =

∫ b

a
f1 dg∗. Hence lim

n→∞

F1(gn) = F1(g).

That is, F1(g) defines a two-norm continuous linear functional on BV .

Let

F2 (g) =

∞
∑

i=1

[g (ti) − g∗ (ti)]f2(ti).

Since f2 ∈ c0 [a, b] , for every ε > 0, the set X = {x ∈ [a, b] : |f2(x)| > ε} is finite.

Consequently, we have |f2(x)| < ε for every x /∈ X. Since gn is two-norm convergent

to g in BV, for every ε > 0, there exists N such that for every n > N and for every

ξ ∈ [a, b] , we have

|gn(ξ) − g(ξ)| <
ε

n (X)

where n (X) denotes the number of the points in X. We may assume that |f2(x)| 6

M1 for every x ∈ [a, b] and also we have V (gn) 6 M2 for every n and V (g) 6 M2.

Therefore for every n > N, we have

∑

t∈X

(|gn(t) − g(t)| + |g∗

n(t) − g∗(t)|)|f2(t)| 6
∑

t∈X

2
ε

n(X)
M1

and

∑

t/∈X

(|gn(t) − g∗n(t)| + |g(t) − g∗(t)|)|f2(t)| 6 ε[V (gn; [a, b]) + V (g; [a, b])].

Therefore

∣

∣

∣

∣

∑

t∈(a,b)

([gn(t) − g∗n(t)] − [g(t) − g∗(t)])f2(t)

∣

∣

∣

∣

6 2εM1 + ε(2M2)

and hence lim
n→∞

F2(gn) = F2(g). That is, F2(g) defines a two-norm continuous linear

functional on BV . Put F (g) = F1(g) + F2(g). Hence the proof is complete. �

As a special case, we obtain the following corollary.
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Corollary 1. A functional F defined on BVN is linear and two-norm continuous

if and only if there exists a function f ∈ RFN such that

F (g) =

∫ b

a

f dg for g ∈ BVN .

That is, the dual of the space BVN is the space RFN . Conversely, the dual of RFN

is BVN . This has been proved in [4] and is stated below. The proof is similar to that

of the Riesz theorem. A functional F on RFN is continuous if it is continuous with

respect to the norm in RFN .

Theorem 3 [4]. A functional F defined on RFN is linear and continuous if and

only if there exist a function g ∈ BV and a real number d such that

F (f) = df(a) +

∫ b

a

g df for f ∈ RFN .

Therefore the spaces BVN and RFN are the duals of each other. A representation

theorem for continuous linear functionals on RF of the form like Theorem 2 is also

available [3], [12]. We shall not elaborate here.

Finally, the following Riesz representation theorem is a consequence of Theorem 3,

integration by parts, and the Hahn-Banach theorem, since C [a, b] is a closed subspace

of RFN .

Corollary 2 (Riesz representation theorem). A functional F defined on C [a, b]

is linear and continuous if and only if there exists a function g ∈ BVN such that

F (f) =

∫ b

a

f dg for f ∈ C [a, b] .

Representation theorem for continuous linear functionals on RF was first given by

Schwabik [13]. For another relevant reference, see [14].
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