A NEW FORM OF FUZZY α -COMPACTNESS

FU-GUI SHI, Beijing

(Received February 9, 2005)

Abstract. A new form of α -compactness is introduced in L-topological spaces by α -open L-sets and their inequality where L is a complete de Morgan algebra. It doesn't rely on the structure of the basis lattice L. It can also be characterized by means of α -closed L-sets and their inequality. When L is a completely distributive de Morgan algebra, its many characterizations are presented and the relations between it and the other types of compactness are discussed. Countable α -compactness and the α -Lindelöf property are also researched.

Keywords: L-topology, compactness, α -compactness, countable α -compactness, α -Lindelöf property, α -irresolute map, α -continuous map

MSC 2000: 54A40, 54D35

1. INTRODUCTION

The notion of α -open sets was introduced in [13]. The concept of α -compactness for topological spaces was discussed in [12], and it was generalized to [0, 1]-topological spaces by Thakur, Saraf and Jabalpur [18]. The definition in [18] is based on Chang's compactness which is not a good extension of ordinary compactness.

In [1], Aygün presented a new form of α -compactness which is based on Kudri's compactness [7] which is equivalent to strong compactness in [9], [19].

The concepts of SR-compactness and near SR-compactness were introduced by S. G. Li, S. Z. Bai and N. Li in terms of strongly semiopen *L*-sets [4], [8]. In fact, a strongly semiopen *L*-set is exactly an α -open set in the sense of [14]. Thus both SRcompactness and near SR-compactness are extensions of α -compactness. Moreover, the notion of SR-compactness was based on N-compactness and the notion of near

This work is supported by the National Natural Science Foundation of China (10371079) and the Basic Research Foundation of Beijing Institute of Technology.

SR-compactness was based on strong fuzzy compactness. This implies that near SR-compactness is equivalent to α -compactness in [1] when the basis lattice L is a complete distributive de Morgan algebra.

In [15], [16], a new definition of fuzzy compactness was presented in L-topological spaces by means of open L-sets and their inequality where L is a complete de Morgan algebra. This new definition doesn't depend on the structure of L. When L is completely distributive, it is equivalent to the notion of fuzzy compactness in [9], [10], [19].

In this paper, following the lines of [15], [16], we will introduce a new form of α -compactness in *L*-topological spaces by means of α -open *L*-sets and their inequality. This new form of α -compactness has many characterizations if *L* is completely distributive. Moreover, we will compare our α -compactness with other types of α -compactness.

2. Preliminaries

Throughout this paper $(L, \bigvee, \bigwedge, ')$ is a complete de Morgan algebra, X is a nonempty set. L^X is the set of all L-fuzzy sets (or L-sets for short) on X. The smallest element and the largest element in L^X are denoted by χ_{\emptyset} and χ_X . We often don't distinguish a crisp subset A of X and its character function χ_A .

An element a in L is called a prime element if $a \ge b \land c$ implies $a \ge b$ or $a \ge c$. An element a in L is called co-prime if a' is prime [6]. The set of non-unit prime elements in L is denoted by P(L). The set of non-zero co-prime elements in L is denoted by M(L).

The binary relation \prec in L is defined as follows: for $a, b \in L$, $a \prec b$ if and only if for every subset $D \subseteq L$, the relation $b \leq \sup D$ always implies the existence of $d \in D$ with $a \leq d$ [5]. In a completely distributive de Morgan algebra L, each element b is a sup of $\{a \in L; a \prec b\}$. A set $\{a \in L; a \prec b\}$ is called the greatest minimal family of b in the sense of [9], [19], denoted by $\beta(b)$, and $\beta^*(b) = \beta(b) \cap M(L)$. Moreover, for $b \in L$, we define $\alpha(b) = \{a \in L; a' \prec b'\}$ and $\alpha^*(b) = \alpha(b) \cap P(L)$.

For $a \in L$ and $A \in L^X$ we use the following notations from [17].

$$A_{[a]} = \{ x \in X ; \ A(x) \ge a \}, \quad A^{(a)} = \{ x \in X ; \ A(x) \le a \}, \\ A_{(a)} = \{ x \in X ; \ a \in \beta(A(x)) \}.$$

An *L*-topological space (or *L*-space for short) is a pair (X, \mathscr{T}) , where \mathscr{T} is a subfamily of L^X which contains χ_{\emptyset}, χ_X and is closed for any suprema and finite infima. \mathscr{T} is called an *L*-topology on *X*. Members of \mathscr{T} are called open *L*-sets and their complements are called closed *L*-sets.

Definition 2.1 ([9], [19]). An *L*-space (X, \mathscr{T}) is called weakly induced if $\forall a \in L$, $\forall A \in \mathscr{T}$, it follows that $A^{(a)} \in [\mathscr{T}]$, where $[\mathscr{T}]$ denotes the topology formed by all crisp sets in \mathscr{T} .

Definition 2.2 ([9], [19]). For a topological space (X, τ) , let $\omega_L(\tau)$ denote the family of all lower semi-continuous maps from (X, τ) to L, i.e., $\omega_L(\tau) = \{A \in L^X; A^{(a)} \in \tau, a \in L\}$. Then $\omega_L(\tau)$ is an L-topology on X; in this case, $(X, \omega_L(\tau))$ is called topologically generated by (X, τ) . A topologically generated L-space is also called an induced L-space.

It is obvious that $(X, \omega_L(\tau))$ is weakly induced.

For a subfamily $\Phi \subseteq L^X$, $2^{(\Phi)}$ denotes the set of all finite subfamilies of Φ and $2^{[\Phi]}$ denotes the set of all countable subfamilies of Φ .

Definition 2.3 ([15], [16]). Let (X, \mathscr{T}) be an *L*-space. $G \in L^X$ is called (countably) compact if for every (countable) family $\mathscr{U} \subseteq \mathscr{T}$, it follows that

$$\bigwedge_{x \in X} \left(G'(x) \lor \bigvee_{A \in \mathscr{U}} A(x) \right) \leqslant \bigvee_{\mathscr{V} \in 2^{(\mathscr{U})}} \bigwedge_{x \in X} \left(G'(x) \lor \bigvee_{A \in \mathscr{V}} A(x) \right).$$

Definition 2.4 ([16]). Let (X, \mathscr{T}) be an *L*-space. $G \in L^X$ is said to have the Lindelöf property if for every family $\mathscr{U} \subseteq \mathscr{T}$, it follows that

$$\bigwedge_{x \in X} \left(G'(x) \lor \bigvee_{A \in \mathscr{U}} A(x) \right) \leqslant \bigvee_{\mathscr{V} \in 2^{[\mathscr{U}]}} \bigwedge_{x \in X} \left(G'(x) \lor \bigvee_{A \in \mathscr{V}} A(x) \right).$$

Lemma 2.5 ([16]). Let L be a complete Heyting algebra, let $f: X \to Y$ be a map and $f_{L}^{\to}: L^{X} \to L^{Y}$ the extension of f. Then for any family $\mathscr{P} \subseteq L^{Y}$, we have

$$\bigvee_{y \in Y} \left(f_L^{\rightarrow}(G)(y) \land \bigwedge_{B \in \mathscr{P}} B(y) \right) = \bigvee_{x \in X} \left(G(x) \land \bigwedge_{B \in \mathscr{P}} f_L^{\leftarrow}(B)(x) \right),$$

where $f_L^{\rightarrow} \colon L^X \to L^Y$ and $f_L^{\leftarrow} \colon L^Y \to L^X$ are defined as follows:

$$f_L^{\rightarrow}(G)(y) = \bigvee_{x \in f^{-1}(y)} G(x), \quad f_L^{\leftarrow}(B) = B \circ f.$$

The notion of an α -open set was introduced by Njåstad in [13] and generalized to [0, 1]-topological spaces by Shahana in [14]. Analogously we can generalize it to *L*-fuzzy setting as follows:

Definition 2.6 ([14]). An *L*-set *G* in an *L*-space (X, \mathscr{T}) is called α -open if $G \leq \operatorname{int}(\operatorname{cl}(\operatorname{int}(G)))$. *G* is called α -closed if *G'* is α -open.

Definition 2.7 ([18]). Let (X, \mathscr{T}_1) and (Y, \mathscr{T}_2) be two *L*-spaces. A map $f: (X, \mathscr{T}_1) \to (Y, \mathscr{T}_2)$ is called α -continuous if $f_L^{\leftarrow}(G)$ is α -open in (X, \mathscr{T}_1) for every open *L*-set *G* in (Y, \mathscr{T}_2) .

It can be seen that an α -continuous map was also said to be strongly semicontinuous in [14].

Definition 2.8 ([18]). Let (X, \mathscr{T}_1) and (Y, \mathscr{T}_2) be two *L*-spaces. A map $f: (X, \mathscr{T}_1) \to (Y, \mathscr{T}_2)$ is called α -irresolute if $f_L^{-}(G)$ is α -open in (X, \mathscr{T}_1) for every α -open *L*-set *G* in (Y, \mathscr{T}_2) .

3. Definition and characterizations of α -compactness

Definition 3.1. Let (X, \mathscr{T}) be an *L*-space. $G \in L^X$ is called (countably) α compact if for every (countable) family \mathscr{U} of α -open *L*-sets, it follows that

$$\bigwedge_{x \in X} \left(G'(x) \lor \bigvee_{A \in \mathscr{U}} A(x) \right) \leqslant \bigvee_{\mathscr{V} \in 2^{(\mathscr{U})}} \bigwedge_{x \in X} \left(G'(x) \lor \bigvee_{A \in \mathscr{V}} A(x) \right).$$

Definition 3.2. Let (X, \mathscr{T}) be an *L*-space. $G \in L^X$ is said to have the α -Lindelöf property (or be an α -Lindelöf *L*-set) if for every family \mathscr{U} of α -open *L*-sets, it follows that

$$\bigwedge_{x \in X} \left(G'(x) \lor \bigvee_{A \in \mathscr{U}} A(x) \right) \leqslant \bigvee_{\mathscr{V} \in 2^{[\mathscr{U}]}} \bigwedge_{x \in X} \left(G'(x) \lor \bigvee_{A \in \mathscr{V}} A(x) \right).$$

Obviously we have the following theorem.

Theorem 3.3. α -compactness implies countable α -compactness and the α -Lindelöf property. Moreover, an L-set having the α -Lindelöf property is α -compact if and only if it is countably α -compact.

Since an open L-set is α -open, we have the following theorem.

Theorem 3.4. α -compactness implies compactness, countable α -compactness implies countable compactness, and the α -Lindelöf property implies the Lindelöf property.

From Definition 3.1 and Definition 3.2 we can obtain the following two theorems by simply using complements.

Theorem 3.5. Let (X, \mathscr{T}) be an L-space. $G \in L^X$ is (countably) α -compact if and only if for every (countable) family \mathscr{B} of α -closed L-sets, it follows that

$$\bigvee_{x \in X} \left(G(x) \land \bigwedge_{B \in \mathscr{B}} B(x) \right) \geqslant \bigwedge_{\mathscr{F} \in 2^{(\mathscr{B})}} \bigvee_{x \in X} \left(G(x) \land \bigwedge_{B \in \mathscr{F}} B(x) \right).$$

Theorem 3.6. Let (X, \mathscr{T}) be an L-space. $G \in L^X$ has the α -Lindelöf property if and only if for every family \mathscr{B} of α -closed L-sets, it follows that

$$\bigvee_{x\in X} \Big(G(x)\wedge \bigwedge_{B\in\mathscr{B}} B(x)\Big) \geqslant \bigwedge_{\mathscr{F}\in 2^{[\mathscr{B}]}} \bigvee_{x\in X} \Big(G(x)\wedge \bigwedge_{B\in\mathscr{F}} B(x)\Big).$$

In order to present characterizations of α -compactness, countable α -compactness and the α -Lindelöf property, we generalize the notions of an *a*-shading and an *a*-Rneighborhood family in [15], [16] as follows:

Definition 3.7. Let (X, \mathscr{T}) be an *L*-space, $a \in L \setminus \{1\}$ and $G \in L^X$. A family $\mathscr{A} \subseteq L^X$ is said to be

- (1) an *a*-shading of *G* if for any $x \in X$, $\left(G'(x) \lor \bigvee_{A \in \mathscr{U}} A(x)\right) \not\leq a$.
- (2) a strong *a*-shading of G if $\bigwedge_{x \in X} \left(G'(x) \lor \bigvee_{A \in \mathscr{U}} A(x) \right) \not\leq a$.
- (3) an *a*-remote family of G if for any $x \in X$, $\left(G(x) \land \bigwedge_{B \in \mathscr{P}} B(x)\right) \not\ge a$.
- (4) a strong *a*-remote family of G if $\bigvee_{x \in X} \left(G(x) \land \bigwedge_{B \in \mathscr{P}} B(x) \right) \not\ge a$.

It is obvious that a strong *a*-shading of *G* is an *a*-shading of *G*, a strong *a*-remote family of *G* is an *a*-remote family of *G*, and \mathscr{P} is a strong *a*-remote family of *G* if and only if \mathscr{P}' is a strong *a'*-shading of *G*. Moreover, a closed *a*-remote family is exactly an *a*-remote neighborhood family and a closed strong *a*-remote family is exactly an a^- -remote neighborhood family in the sense of [19].

Definition 3.8. Let $a \in L \setminus \{0\}$ and $G \in L^X$. A subfamily \mathscr{A} of L^X is said to have a weak *a*-nonempty intersection in G if $\bigvee_{x \in X} \left(G(x) \land \bigwedge_{A \in \mathscr{A}} A(x) \right) \ge a$. \mathscr{A} is said to have the finite (countable) weak *a*-intersection property in G if every finite (countable) subfamily \mathscr{F} of \mathscr{A} has a weak *a*-nonempty intersection in G.

Definition 3.9. Let $a \in L \setminus \{0\}$ and $G \in L^X$. A subfamily \mathscr{A} of L^X is said to be a weak *a*-filter relative to G if any finite intersection of members in \mathscr{A} is weak *a*-nonempty in G. A subfamily \mathscr{B} of L^X is said to be a weak *a*-filterbase relative to G if

 $\{A\in L^X\,;\;\;\text{there exists }B\in\mathscr{B}\text{ such that }B\leqslant A\}$

is a weak a-filter relative to G.

From Definition 3.1, Definition 3.2, Theorem 3.5 and Theorem 3.6 we immediately obtain the following two results.

Theorem 3.10. Let (X, \mathscr{T}) be an L-space and $G \in L^X$. Then the following conditions are equivalent:

(1) G is (countably) α -compact.

(2) For any $a \in L \setminus \{1\}$, each (countable) α -open strong a-shading \mathscr{U} of G has a finite subfamily which is a strong a-shading of G.

(3) For any $a \in L \setminus \{0\}$, each (countable) α -closed strong a-remote family \mathscr{P} of G has a finite subfamily which is a strong a-remote family of G.

(4) For any $a \in L \setminus \{0\}$, each (countable) family of α -closed L-sets which has the finite weak a-intersection property in G has a weak a-nonempty intersection in G.

(5) For each $a \in L \setminus \{0\}$, every α -closed (countable) weak a-filterbase relative to G has a weak a-nonempty intersection in G.

Theorem 3.11. Let (X, \mathscr{T}) be an L-space and $G \in L^X$. Then the following conditions are equivalent:

(1) G has the α -Lindelöf property.

(2) For any $a \in L \setminus \{1\}$, each α -open strong *a*-shading \mathscr{U} of *G* has a countable subfamily which is a strong *a*-shading of *G*.

(3) For any $a \in L \setminus \{0\}$, each α -closed strong *a*-remote family \mathscr{P} of G has a countable subfamily which is a strong *a*-remote family of G.

(4) For any $a \in L \setminus \{0\}$, each family of α -closed L-sets which has the countable weak a-intersection property in G has a weak a-nonempty intersection in G.

4. Properties of (countable) α -compactness

Theorem 4.1. Let L be a complete Heyting algebra. If both G and H are (countably) α -compact, then $G \lor H$ is (countably) α -compact.

Proof. For any (countable) family ${\mathscr P}$ of $\alpha\text{-closed}$ L-sets, we have by Theorem 3.5 that

$$\bigvee_{x \in X} \left((G \lor H)(x) \land \bigwedge_{B \in \mathscr{P}} B(x) \right)$$
$$= \left\{ \bigvee_{x \in X} \left(G(x) \land \bigwedge_{B \in \mathscr{P}} B(x) \right) \right\} \lor \left\{ \bigvee_{x \in X} \left(H(x) \land \bigwedge_{B \in \mathscr{P}} B(x) \right) \right\}$$

$$\geqslant \left\{ \bigwedge_{\mathscr{F} \in 2^{(\mathscr{P})}} \bigvee_{x \in X} \left(G(x) \land \bigwedge_{B \in \mathscr{F}} B(x) \right) \right\} \lor \left\{ \bigwedge_{\mathscr{F} \in 2^{(\mathscr{P})}} \bigvee_{x \in X} \left(H(x) \land \bigwedge_{B \in \mathscr{F}} B(x) \right) \right\}$$
$$= \bigwedge_{\mathscr{F} \in 2^{(\mathscr{P})}} \bigvee_{x \in X} \left((G \lor H)(x) \land \bigwedge_{B \in \mathscr{F}} B(x) \right).$$

This shows that $G \vee H$ is (countably) α -compact.

Analogously we have the following result.

Theorem 4.2. Let *L* be a complete Heyting algebra. If both *G* and *H* have the α -Lindelöf property, then so does $G \vee H$.

Theorem 4.3. If G is (countably) α -compact and H is α -closed, then $G \wedge H$ is (countably) α -compact.

Proof. For any (countable) family ${\mathscr P}$ of $\alpha\text{-closed}$ L-sets, we have by Theorem 3.5 that

$$\begin{split} &\bigvee_{x\in X} \left((G \wedge H)(x) \wedge \bigwedge_{B \in \mathscr{P}} B(x) \right) \\ &= \bigvee_{x\in X} \left(G(x) \wedge \bigwedge_{B \in \mathscr{P} \cup \{H\}} B(x) \right) \geqslant \bigwedge_{\mathscr{F} \in 2^{(\mathscr{P} \cup \{H\})}} \bigvee_{x\in X} \left(G(x) \wedge \bigwedge_{B \in \mathscr{F}} B(x) \right) \\ &= \left\{ \bigwedge_{\mathscr{F} \in 2^{(\mathscr{P})}} \bigvee_{x\in X} \left(G(x) \wedge \bigwedge_{B \in \mathscr{F}} B(x) \right) \right\} \wedge \left\{ \bigwedge_{\mathscr{F} \in 2^{(\mathscr{P})}} \bigvee_{x\in X} \left(G(x) \wedge H(x) \wedge \bigwedge_{B \in \mathscr{F}} B(x) \right) \right\} \\ &= \left\{ \bigwedge_{\mathscr{F} \in 2^{(\mathscr{P})}} \bigvee_{x\in X} \left(G(x) \wedge H(x) \wedge \bigwedge_{B \in \mathscr{F}} B(x) \right) \right\} \\ &= \bigwedge_{\mathscr{F} \in 2^{(\mathscr{P})}} \bigvee_{x\in X} \left((G \wedge H)(x) \wedge \bigwedge_{B \in \mathscr{F}} B(x) \right). \end{split}$$

This shows that $G \wedge H$ is (countably) α -compact.

Analogously we have the following result.

Theorem 4.4. If G has the α -Lindelöf property and H is α -closed, then $G \wedge H$ has the α -Lindelöf property.

Theorem 4.5. Let L be a complete Heyting algebra and let $f: (X, \mathscr{T}_1) \to (Y, \mathscr{T}_2)$ be an α -irresolute map. If G is an α -compact (or a countably α -compact, an α -Lindelöf) L-set in (X, \mathscr{T}_1) , then so is $f_L^{\to}(G)$ in (Y, \mathscr{T}_2) .

Proof. We only prove that the theorem is true for α -compactness. Suppose that \mathscr{P} is a family of α -closed *L*-sets in (Y, \mathscr{T}_2) . Then by Lemma 2.5 and α -compactness of *G* we have that

$$\bigvee_{y \in Y} \left(f_L^{\rightarrow}(G)(y) \wedge \bigwedge_{B \in \mathscr{P}} B(y) \right) = \bigvee_{x \in X} \left(G(x) \wedge \bigwedge_{B \in \mathscr{P}} f_L^{\leftarrow}(B)(x) \right)$$
$$\geqslant \bigwedge_{\mathscr{F} \in 2^{(\mathscr{P})}} \bigvee_{x \in X} \left(G(x) \wedge \bigwedge_{B \in \mathscr{F}} f_L^{\leftarrow}(B)(x) \right) = \bigwedge_{\mathscr{F} \in 2^{(\mathscr{P})}} \bigvee_{y \in Y} \left(f_L^{\rightarrow}(G)(y) \wedge \bigwedge_{B \in \mathscr{F}} B(y) \right).$$

Therefore $f_L^{\rightarrow}(G)$ is α -compact.

Analogously we have the following result.

Theorem 4.6. Let L be a complete Heyting algebra and let $f: (X, \mathscr{T}_1) \to (Y, \mathscr{T}_2)$ be an α -continuous map. If G is an α -compact (a countably α -compact, an α -Lindelöf) L-set in (X, \mathscr{T}_1) , then $f_L^{\rightarrow}(G)$ is a compact (countably compact, Lindelöf) L-set in (Y, \mathscr{T}_2) .

Definition 4.7. Let (X, \mathscr{T}_1) and (Y, \mathscr{T}_2) be two *L*-spaces. A map $f: (X, \mathscr{T}_1) \to (Y, \mathscr{T}_2)$ is called strongly α -irresolute if $f_L^{\leftarrow}(G)$ is open in (X, \mathscr{T}_1) for every α -open *L*-set *G* in (Y, \mathscr{T}_2) .

It is obvious that a strongly α -irresolute map is α -irresolute and continuous. Analogously we have the following result.

Theorem 4.8. Let L be a complete Heyting algebra and let $f: (X, \mathscr{T}_1) \to (Y, \mathscr{T}_2)$ be a strongly α -irresolute map. If G is a compact (countably compact, Lindelöf) Lset in (X, \mathscr{T}_1) , then $f_L^{\rightarrow}(G)$ is an α -compact (a countably α -compact, an α -Lindelöf) L-set in (Y, \mathscr{T}_2) .

5. Further characterizations of α -compactness and goodness

In this section we assume that L is a completely distributive de Morgan algebra. Now we generalize the notions of a β_a -open cover and a Q_a -open cover [16] as follows:

Definition 5.1. Let (X, \mathscr{T}) be an *L*-space, $a \in L \setminus \{0\}$ and $G \in L^X$. A family $\mathscr{U} \subseteq L^X$ is called a β_a -cover of *G* if for any $x \in X$, it follows that $a \in \beta(G'(x) \lor \bigvee_{A \in \mathscr{U}} A(x))$. \mathscr{U} is called a strong β_a -cover of *G* if $a \in \beta\Big(\bigwedge_{x \in X} \Big(G'(x) \lor \bigvee_{A \in \mathscr{U}} A(x)\Big)\Big)$.

Definition 5.2. Let (X, \mathscr{T}) be an *L*-space, $a \in L \setminus \{0\}$ and $G \in L^X$. A family $\mathscr{U} \subseteq L^X$ is called a Q_a -cover of G if for any $x \in X$, it follows that $G'(x) \vee \bigvee_{A \in \mathscr{U}} A(x) \ge a$.

It is obvious that a strong β_a -cover of G is a β_a -cover of G, and a β_a -cover of G is a Q_a -cover of G.

Analogously to the proof of Theorem 2.9 in [16] we can obtain the following theorem.

Theorem 5.3. Let (X, \mathcal{T}) be an L-space and $G \in L^X$. Then the following conditions are equivalent.

(1) G is α -compact.

(2) For any $a \in L \setminus \{0\}$ (or $a \in M(L)$), each α -closed strong a-remote family of G has a finite subfamily which is an a-remote (a strong a-remote) family of G.

(3) For any $a \in L \setminus \{0\}$ (or $a \in M(L)$) and any α -closed strong *a*-remote family \mathscr{P} of *G*, there exist a finite subfamily \mathscr{F} of \mathscr{P} and $b \in \beta(a)$ (or $b \in \beta^*(a)$) such that \mathscr{F} is a (strong) b-remote family of *G*.

(4) For any $a \in L \setminus \{1\}$ (or $a \in P(L)$), each α -open strong *a*-shading of *G* has a finite subfamily which is an *a*-shading (a strong *a*-shading) of *G*.

(5) For any $a \in L \setminus \{1\}$ (or $a \in P(L)$) and any α -open strong a-shading \mathscr{U} of G, there exist a finite subfamily \mathscr{V} of \mathscr{U} and $b \in \alpha(a)$ (or $b \in \alpha^*(a)$) such that \mathscr{V} is a (strong) b-shading of G.

(6) For any $a \in L \setminus \{0\}$ (or $a \in M(L)$), each α -open strong β_a -cover of G has a finite subfamily which is a (strong) β_a -cover of G.

(7) For any $a \in L \setminus \{0\}$ (or $a \in M(L)$) and any α -open strong β_a -cover \mathscr{U} of G, there exist a finite subfamily \mathscr{V} of \mathscr{U} and $b \in L$ (or $b \in M(L)$) with $a \in \beta(b)$ such that \mathscr{V} is a (strong) β_b -cover of G.

(8) For any $a \in L \setminus \{0\}$ (or $a \in M(L)$) and any $b \in \beta(a) \setminus \{0\}$, each α -open Q_a -cover of G has a finite subfamily which is a Q_b -cover of G.

(9) For any $a \in L \setminus \{0\}$ (or $a \in M(L)$) and any $b \in \beta(a) \setminus \{0\}$ (or $b \in \beta^*(a)$), each α -open Q_a -cover of G has a finite subfamily which is a (strong) β_b -cover of G.

Analogously we also can present characterizations of countable α -compactness and the α -Lindelöf property.

Now we consider the goodness of α -compactness.

For $a \in L$ and a crisp subset $D \subset X$, we define $a \wedge D$ and $a \vee D$ as follows:

$$(a \wedge D)(x) = \begin{cases} a, & x \in D; \\ 0, & x \notin D. \end{cases} \quad (a \vee D)(x) = \begin{cases} 1, & x \in D; \\ a, & x \notin D. \end{cases}$$

Theorem 5.4 ([17]). For an *L*-set $A \in L^X$, the following facts are true. (1) $A = \bigvee_{a \in L} (a \land A_{(a)}) = \bigvee_{a \in L} (a \land A_{[a]}).$ (2) $A = \bigwedge_{a \in L} (a \lor A^{(a)}) = \bigwedge_{a \in L} (a \lor A^{[a]}).$

Theorem 5.5 [17]. Let $(X, \omega_L(\tau))$ be the L-space topologically generated by (X, τ) and $A \in L^X$. Then the following facts hold.

 $(1) \operatorname{cl}(A) = \bigvee_{a \in L} (a \wedge (A_{(a)})^{-}) = \bigvee_{a \in L} (a \wedge (A_{[a]})^{-});$ $(2) \operatorname{cl}(A)_{(a)} \subset (A_{(a)})^{-} \subset (A_{[a]})^{-} \subset \operatorname{cl}(A)_{[a]};$ $(3) \operatorname{cl}(A) = \bigwedge_{a \in L} (a \vee (A^{(a)})^{-}) = \bigwedge_{a \in L} (a \vee (A^{[a]})^{-});$ $(4) \operatorname{cl}(A)^{(a)} \subset (A^{(a)})^{-} \subset (A^{[a]})^{-} \subset \operatorname{cl}(A)^{[a]};$ $(5) \operatorname{int}(A) = \bigvee_{a \in L} (a \wedge (A_{(a)})^{\circ}) = \bigvee_{a \in L} (a \wedge (A_{[a]})^{\circ});$ $(6) \operatorname{int}(A)_{(a)} \subset (A_{(a)})^{\circ} \subset (A_{[a]})^{\circ} \subset \operatorname{int}(A)_{[a]};$ $(7) \operatorname{int}(A) = \bigwedge_{a \in L} (a \vee (A^{(a)})^{\circ}) = \bigwedge_{a \in L} (a \vee (A^{[a]})^{\circ});$ $(8) \operatorname{int}(A)^{(a)} \subset (A^{(a)})^{\circ} \subset (A^{[a]})^{\circ} \subset \operatorname{int}(A)^{[a]}, \text{ when } (A^{(a)})^{\circ} = A^{(a)} (A^{(a)})^{\circ} = A^{(a)} (A^{(a)})^{\circ}$

(8) $\operatorname{int}(A)^{(a)} \subset (A^{(a)})^{\circ} \subset (A^{[a]})^{\circ} \subset \operatorname{int}(A)^{[a]}$, where $(A_{(a)})^{-}$ and $(A_{(a)})^{\circ}$ denote respectively the closure and the interior of $A_{(a)}$ in (X, τ) and so on, $\operatorname{cl}(A)$ and $\operatorname{int}(A)$ denote respectively the closure and the interior of A in $(X, \omega_L(\tau))$.

Lemma 5.6. Let $(X, \omega_L(\tau))$ be generated topologically by (X, τ) . If A is an α -open set in (X, τ) , then χ_A is an α -open L-set in $(X, \omega_L(\tau))$. If B is an α -open L-set in $(X, \omega_L(\tau))$, then $B_{(a)}$ is an α -open set in (X, τ) for every $a \in L$.

Proof. If A is an α -open set in (X, τ) , then $A \subseteq ((A^{\circ})^{-})^{\circ}$. Thus we have

$$\chi_A \leqslant \chi_{((A^\circ)^-)^\circ} = \operatorname{int}(\chi_{(A^\circ)^-}) = \operatorname{int}(\operatorname{cl}(\chi_{A^\circ})) = \operatorname{int}(\operatorname{cl}(\operatorname{int}(\chi_A))).$$

This shows that χ_A is α -open in $(X, \omega_L(\tau))$.

If B is an α -open L-set in $(X, \omega_L(\tau))$, then $B \leq \operatorname{int}(\operatorname{cl}(\operatorname{int}(B)))$. From Theorem 5.5 we have

$$B_{(a)} \subseteq \operatorname{int}(\operatorname{cl}(\operatorname{int}(B)))_{(a)} \subseteq (\operatorname{cl}(\operatorname{int}(B))_{(a)})^{\circ} \subseteq ((\operatorname{int}(B)_{(a)})^{\circ})^{\circ} \subseteq (((B_{(a)})^{\circ})^{\circ})^{\circ}.$$

This shows that $B_{(a)}$ is an α -open set in (X, τ) .

The next two theorems show that α -compactness, countable α -compactness and the α -Lindelöf property are good extensions.

Theorem 5.7. Let $(X, \omega_L(\tau))$ be generated topologically by (X, τ) . Then $(X, \omega_L(\tau))$ is (countably) α -compact if and only if (X, τ) is (countably) α -compact.

Proof. (Necessity) Let \mathscr{A} be an α -open cover (a countable α -open cover) of (X, τ) . Then $\{\chi_A; A \in \mathscr{A}\}$ is a family of α -open *L*-sets in $(X, \omega_L(\tau))$ with $\bigwedge_{x \in \mathscr{X}} \left(\bigvee_{A \in \mathscr{X}} \chi_A(x)\right) = 1$. From (countable) α -compactness of $(X, \omega_L(\tau))$ we know that

$$1 \ge \bigvee_{\mathscr{V} \in 2^{(\mathscr{U})}} \bigwedge_{x \in X} \left(\bigvee_{A \in \mathscr{V}} \chi_A(x) \right) \ge \bigwedge_{x \in X} \left(\bigvee_{A \in \mathscr{U}} \chi_A(x) \right) = 1.$$

This implies that there exists $\mathscr{V} \in 2^{(\mathscr{U})}$ such that $\bigwedge_{x \in X} (\bigvee_{A \in \mathscr{V}} \chi_A(x)) = 1$. Hence \mathscr{V} is a cover of (X, τ) . Therefore (X, τ) is (countably) α -compact.

(Sufficiency) Let \mathscr{U} be a (countable) family of α -open *L*-sets in $(X, \omega_L(\tau))$ and let $\bigwedge_{x \in X} (\bigvee_{B \in \mathscr{U}} B(x)) = a$. If a = 0, then we obviously have

$$\bigwedge_{x\in X}\bigg(\bigvee_{B\in\mathscr{U}}B(x)\bigg)\leqslant\bigvee_{\mathscr{V}\in 2^{(\mathscr{U})}}\bigwedge_{x\in X}\bigg(\bigvee_{A\in\mathscr{V}}B(x)\bigg).$$

Now we suppose that $a \neq 0$. In this case, for any $b \in \beta(a) \setminus \{0\}$ we have

$$b \in \beta \bigg(\bigwedge_{x \in X} \bigg(\bigvee_{B \in \mathscr{U}} B(x) \bigg) \bigg) \subseteq \bigcap_{x \in X} \beta \bigg(\bigvee_{B \in \mathscr{U}} B(x) \bigg) = \bigcap_{x \in X} \bigcup_{B \in \mathscr{U}} \beta (B(x))$$

By Lemma 5.6 this implies that $\{B_{(b)}; B \in \mathscr{U}\}$ is an α -open cover of (X, τ) . From (countable) α -compactness of (X, τ) we know that there exists $\mathscr{V} \in 2^{(\mathscr{U})}$ such that $\{B_{(b)}; B \in \mathscr{V}\}$ is a cover of (X, τ) . Hence $b \leq \bigwedge_{x \in X} \left(\bigvee_{B \in \mathscr{V}} B(x)\right)$. Further we have

$$b \leqslant \bigwedge_{x \in X} \bigg(\bigvee_{B \in \mathscr{V}} B(x)\bigg) \leqslant \bigvee_{\mathscr{V} \in 2^{(\mathscr{U})}} \bigwedge_{x \in X} \bigg(\bigvee_{B \in \mathscr{V}} B(x)\bigg).$$

This implies that

$$\bigwedge_{x \in X} \left(\bigvee_{B \in \mathscr{U}} B(x)\right) = a = \bigvee \{b; \ b \in \beta(a)\} \leqslant \bigvee_{\mathscr{V} \in 2^{(\mathscr{U})}} \bigwedge_{x \in X} \left(\bigvee_{B \in \mathscr{V}} B(x)\right).$$

Therefore $(X, \omega_L(\tau))$ is (countably) α -compact.

Analogously we have the following result.

25

Theorem 5.8. Let $(X, \omega_L(\tau))$ be generated topologically by (X, τ) . Then $(X, \omega_L(\tau))$ has the α -Lindelöf property if and only if (X, τ) has the α -Lindelöf property.

6. The relations of α -compactness and other types of compactness

In this section we assume that L is again completely distributive.

Based on Kudri's compactness in [7], Aygün presented a definition of α -compactness in [1]. Since Kudri's compactness is equivalent to strong compactness in [9], [19], we shall also refer to Aygün's α -compactness as α -strong compactness. The following is its equivalent form.

Definition 6.1. Let (X, \mathscr{T}) be an *L*-space. $G \in L^X$ is said to be α -strongly compact if for any $a \in P(L)$, each α -open *a*-shading of *G* has a finite subfamily which is an *a*-shading of *G*.

In [4], [8], Bai and Li et al. introduced the notions of SR-compactness and near SR-compactness by means of strongly semiopen *L*-sets. In fact, a strongly semiopen *L*-set is equivalent to an α -open *L*-set. This implies that both SR-compactness and near SR-compactness are extensions of α -compactness in general topology. Their equivalent forms can be stated as follows:

Definition 6.2 ([4]). Let (X, \mathscr{T}) be an *L*-space. $G \in L^X$ is said to be SRcompact (we shall call it α -N-compact) if for each $a \in M(L)$, every α -closed *a*-remote family of *G* has a finite subfamily which is a strong *a*-remote family of *G*.

Definition 6.3 ([8]). Let (X, \mathscr{T}) be an *L*-space. $G \in L^X$ is said to be near SR-compact if for each $a \in M(L)$, every α -closed *a*-remote family of *G* has a finite subfamily which is an *a*-remote family of *G*.

It is obvious that Definition 6.3 is equivalent to Definition 6.1. From Theorem 5.3 we easily obtain the following result.

Theorem 6.4. For an *L*-set *G* in an *L*-space, the following implications hold.

 $\begin{array}{ccc} \alpha \text{-}N\text{-}compactness \ \Rightarrow \ \alpha \text{-}strong \ compactness \ \Rightarrow \ \alpha \text{-}compactness} \\ & \Downarrow & \qquad \Downarrow & \qquad \Downarrow & \qquad \Downarrow & \qquad \\ & N\text{-}compactness \ \Rightarrow \ strong \ compactness \ \Rightarrow \ compactness} \end{array}$

Notice that none of the above implications is invertible. We only present a counterexample which is α -compact but not α -strongly compact. The other examples can be found in [8], [9], [19] and in general topology.

E x a m p l e 6.5. Take $Y = \mathbb{N}$. For all $n \in Y$, define $B_n \in [0, 1]^Y$ as follows:

$$B_n(y) = \begin{cases} (n+1)^{-1}, & y = n; \\ 0, & y \neq n. \end{cases}$$

Let \mathscr{T} be the [0,1]-topology generated by the subbase $\mathscr{B} = \{B_n; n \in Y\}$. Obviously $\{B_n; n \in Y\}$ is an open 0-shading of χ_Y , but $\{B_n; n \in Y\}$ has no finite subfamily which is an open 0-shading of χ_Y . Therefore (Y, \mathscr{T}) is not strongly compact, of course it is not α -strongly compact either.

Now we prove that (Y, \mathscr{T}) is α -compact. It is easy to check that if A is an α -open L-set in (Y, \mathscr{T}) and $A \neq \chi_Y$, then $A \leq \bigvee_{n \in Y} B_n$.

For each $a \in [0, 1)$, suppose that \mathscr{U} is an α -open strong *a*-shading of χ_Y . If $\chi_Y \in \mathscr{U}$, then $\{\chi_Y\}$ is a strong *a*-shading of χ_Y . Now we suppose that $\chi_Y \notin \mathscr{U}$. Then \mathscr{U} is not a strong *a*-shading of χ_Y since $\bigwedge_{y \in Y} \left(\bigvee_{A \in \mathscr{U}} A(y)\right) \leq \bigwedge_{y \in Y} \left(\bigvee_{n \in Y} B_n(y)\right) = 0$.

This shows that (Y, \mathscr{T}) is α -compact.

References

- [1] *H. Aygün:* α -compactness in *L*-fuzzy topological spaces. Fuzzy Sets Syst. 116 (2000), 317–324. Zbl 0990.54009
- K. K. Azad: On fuzzy semicontinuity, fuzzy almost continuity and fuzzy weak continuity. J. Math. Anal. Appl. 82 (1981), 14–32.
 Zbl 0511.54006
- [3] S. Z. Bai: Fuzzy strongly semiopen sets and fuzzy strong semicontinuity. Fuzzy Sets Syst. 52 (1992), 345–351.
 Zbl 0795.54009
- [4] S. Z. Bai: The SR-compactness in L-fuzzy topological spaces. Fuzzy Sets Syst. 87 (1997), 219–225. Zbl 0912.54009
- [5] P. Dwinger: Characterization of the complete homomorphic images of a completely distributive complete lattice. I. Indagationes Mathematicae (Proceedings) 85 (1982), 403–414.
 Zbl 0503.06012
- [6] G. Gierz, et al.: A Compendium of Continuous Lattices. Springer, Berlin, 1980. Zbl 0452.06001
- [7] S. R. T. Kudri: Compactness in L-fuzzy topological spaces. Fuzzy Sets Syst. 67 (1994), 329–336. Zbl 0842.54011
- [8] S. G. Li, S. Z. Bai, N. Li: The near SR-compactness axiom in L-topological spaces. Fuzzy Sets Syst. 147 (2004), 307–316.
 Zbl pre02118382
- [9] Y. M. Liu, M. K. Luo: Fuzzy Topology. World Scientific, Singapore, 1997.
 Zbl 0906.54006
- [10] R. Lowen: A comparison of different compactness notions in fuzzy topological spaces. J. Math. Anal. Appl. 64 (1978), 446–454. Zbl 0381.54004
- [11] S. N. Maheshwari, S. S. Thakur: On α -irresolute mappings. Tamkang J. Math. 11 (1981), 209–214. Zbl 0485.54009
- [12] S. N. Maheshwari, S. S. Thakur: On α -compact spaces. Bull. Inst. Math. Acad. Sinica 13 (1985), 341–347. Zbl 0591.54015
- [13] O. Njåstad: On some classes of nearly open sets. Pacific J. Math. 15 (1965), 961–970. Zbl 0137.41903

- [14] A. S. B. Shahana: On fuzzy strong semicontinuity and fuzzy precontinuity. Fuzzy Sets Syst. 44 (1991), 303–308.
 Zbl 0753.54001
- [15] F.-G. Shi: Fuzzy compactness in L-topological spaces. Fuzzy Sets Syst., submitted.
 [16] F.-G. Shi: Countable compactness and the Lindelöf property of L-fuzzy sets. Iran. J.
- Fuzzy Syst. 1 (2004), 79–88. [17] F.-G. Shi: Theory of L_{β} -nested sets and L_{α} -nested and their applications. Fuzzy Systems
- and Mathematics 4 (1995), 65–72. (In Chinese.)
- $[18] S. S. Thakur, R. K. Saraf: \alpha\mbox{-compact fuzzy topological spaces. Math. Bohem. 120 (1995), 299-303. Zbl 0841.54005$
- [19] G. J. Wang: Theory of L-fuzzy Topological Spaces. Shanxi Normal University Press, Xian, 1988. (In Chinese.)

Author's address: Fu-Gui Shi, Beijing Institute of Technology, Department of Mathematics, Beijing 100081, P.R. China, e-mail: fuguishi@bit.edu.cn or f.g.shi@263.net.