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Abstract. A new form of α-compactness is introduced in L-topological spaces by α-open
L-sets and their inequality where L is a complete de Morgan algebra. It doesn’t rely on
the structure of the basis lattice L. It can also be characterized by means of α-closed
L-sets and their inequality. When L is a completely distributive de Morgan algebra, its
many characterizations are presented and the relations between it and the other types of
compactness are discussed. Countable α-compactness and the α-Lindelöf property are also
researched.
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1. Introduction

The notion of α-open sets was introduced in [13]. The concept of α-compactness

for topological spaces was discussed in [12], and it was generalized to [0, 1]-topological

spaces by Thakur, Saraf and Jabalpur [18]. The definition in [18] is based on Chang’s

compactness which is not a good extension of ordinary compactness.

In [1], Aygün presented a new form of α-compactness which is based on Kudri’s

compactness [7] which is equivalent to strong compactness in [9], [19].

The concepts of SR-compactness and near SR-compactness were introduced by

S.G. Li, S. Z. Bai and N. Li in terms of strongly semiopen L-sets [4], [8]. In fact, a

strongly semiopen L-set is exactly an α-open set in the sense of [14]. Thus both SR-

compactness and near SR-compactness are extensions of α-compactness. Moreover,

the notion of SR-compactness was based on N-compactness and the notion of near
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SR-compactness was based on strong fuzzy compactness. This implies that near

SR-compactness is equivalent to α-compactness in [1] when the basis lattice L is a

complete distributive de Morgan algebra.

In [15], [16], a new definition of fuzzy compactness was presented in L-topological

spaces by means of open L-sets and their inequality where L is a complete de Morgan

algebra. This new definition doesn’t depend on the structure of L. When L is

completely distributive, it is equivalent to the notion of fuzzy compactness in [9],

[10], [19].

In this paper, following the lines of [15], [16], we will introduce a new form of

α-compactness in L-topological spaces by means of α-open L-sets and their inequal-

ity. This new form of α-compactness has many characterizations if L is completely

distributive. Moreover, we will compare our α-compactness with other types of α-

compactness.

2. Preliminaries

Throughout this paper (L,
∨

,
∧

,′ ) is a complete de Morgan algebra, X is a non-

empty set. LX is the set of all L-fuzzy sets (or L-sets for short) on X . The smallest

element and the largest element in LX are denoted by χ∅ and χX . We often don’t

distinguish a crisp subset A of X and its character function χA.

An element a in L is called a prime element if a > b ∧ c implies a > b or a > c.

An element a in L is called co-prime if a′ is prime [6]. The set of non-unit prime

elements in L is denoted by P (L). The set of non-zero co-prime elements in L is

denoted by M(L).

The binary relation ≺ in L is defined as follows: for a, b ∈ L, a ≺ b if and only if

for every subset D ⊆ L, the relation b 6 supD always implies the existence of d ∈ D

with a 6 d [5]. In a completely distributive de Morgan algebra L, each element b is

a sup of {a ∈ L ; a ≺ b}. A set {a ∈ L ; a ≺ b} is called the greatest minimal family

of b in the sense of [9], [19], denoted by β(b), and β∗(b) = β(b) ∩ M(L). Moreover,

for b ∈ L, we define α(b) = {a ∈ L ; a′ ≺ b′} and α∗(b) = α(b) ∩ P (L).

For a ∈ L and A ∈ LX we use the following notations from [17].

A[a] = {x ∈ X ; A(x) > a}, A(a) = {x ∈ X ; A(x) 66 a},

A(a) = {x ∈ X ; a ∈ β(A(x))}.

An L-topological space (or L-space for short) is a pair (X, T ), where T is a

subfamily of LX which contains χ∅, χX and is closed for any suprema and finite

infima. T is called an L-topology on X . Members of T are called open L-sets and

their complements are called closed L-sets.
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Definition 2.1 ([9], [19]). An L-space (X, T ) is called weakly induced if ∀a ∈ L,

∀A ∈ T , it follows that A(a) ∈ [T ], where [T ] denotes the topology formed by all

crisp sets in T .

Definition 2.2 ([9], [19]). For a topological space (X, τ), let ωL(τ) denote the

family of all lower semi-continuous maps from (X, τ) to L, i.e., ωL(τ) = {A ∈

LX ; A(a) ∈ τ, a ∈ L}. Then ωL(τ) is an L-topology on X ; in this case, (X, ωL(τ))

is called topologically generated by (X, τ). A topologically generated L-space is also

called an induced L-space.

It is obvious that (X, ωL(τ)) is weakly induced.

For a subfamily Φ ⊆ LX , 2(Φ) denotes the set of all finite subfamilies of Φ and 2[Φ]

denotes the set of all countable subfamilies of Φ.

Definition 2.3 ([15], [16]). Let (X, T ) be an L-space. G ∈ LX is called (count-

ably) compact if for every (countable) family U ⊆ T , it follows that

∧

x∈X

(

G′(x) ∨
∨

A∈U

A(x)

)

6
∨

V ∈2(U )

∧

x∈X

(

G′(x) ∨
∨

A∈V

A(x)

)

.

Definition 2.4 ([16]). Let (X, T ) be an L-space. G ∈ LX is said to have the

Lindelöf property if for every family U ⊆ T , it follows that

∧

x∈X

(

G′(x) ∨
∨

A∈U

A(x)

)

6
∨

V ∈2[U ]

∧

x∈X

(

G′(x) ∨
∨

A∈V

A(x)

)

.

Lemma 2.5 ([16]). Let L be a complete Heyting algebra, let f : X → Y be a

map and f→L : LX → LY the extension of f . Then for any family P ⊆ LY , we have

∨

y∈Y

(

f→L (G)(y) ∧
∧

B∈P

B(y)

)

=
∨

x∈X

(

G(x) ∧
∧

B∈P

f←L (B)(x)

)

,

where f→L : LX → LY and f←L : LY → LX are defined as follows:

f→L (G)(y) =
∨

x∈f−1(y)

G(x), f←L (B) = B ◦ f.

The notion of an α-open set was introduced by Nj̊astad in [13] and generalized

to [0, 1]-topological spaces by Shahana in [14]. Analogously we can generalize it to

L-fuzzy setting as follows:

Definition 2.6 ([14]). An L-set G in an L-space (X, T ) is called α-open if

G 6 int(cl(int(G)). G is called α-closed if G′ is α-open.
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Definition 2.7 ([18]). Let (X, T1) and (Y, T2) be two L-spaces. A map f :

(X, T1) → (Y, T2) is called α-continuous if f←L (G) is α-open in (X, T1) for every

open L-set G in (Y, T2).

It can be seen that an α-continuous map was also said to be strongly semi-

continuous in [14].

Definition 2.8 ([18]). Let (X, T1) and (Y, T2) be two L-spaces. A map f :

(X, T1) → (Y, T2) is called α-irresolute if f←L (G) is α-open in (X, T1) for every

α-open L-set G in (Y, T2).

3. Definition and characterizations of α-compactness

Definition 3.1. Let (X, T ) be an L-space. G ∈ LX is called (countably) α-

compact if for every (countable) family U of α-open L-sets, it follows that

∧

x∈X

(

G′(x) ∨
∨

A∈U

A(x)

)

6
∨

V ∈2(U )

∧

x∈X

(

G′(x) ∨
∨

A∈V

A(x)

)

.

Definition 3.2. Let (X, T ) be an L-space. G ∈ LX is said to have the α-

Lindelöf property (or be an α-Lindelöf L-set) if for every family U of α-open L-sets,

it follows that

∧

x∈X

(

G′(x) ∨
∨

A∈U

A(x)

)

6
∨

V ∈2[U ]

∧

x∈X

(

G′(x) ∨
∨

A∈V

A(x)

)

.

Obviously we have the following theorem.

Theorem 3.3. α-compactness implies countable α-compactness and the α-

Lindelöf property. Moreover, an L-set having the α-Lindelöf property is α-compact

if and only if it is countably α-compact.

Since an open L-set is α-open, we have the following theorem.

Theorem 3.4. α-compactness implies compactness, countable α-compactness

implies countable compactness, and the α-Lindelöf property implies the Lindelöf

property.

From Definition 3.1 and Definition 3.2 we can obtain the following two theorems

by simply using complements.
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Theorem 3.5. Let (X, T ) be an L-space. G ∈ LX is (countably) α-compact if

and only if for every (countable) family B of α-closed L-sets, it follows that

∨

x∈X

(

G(x) ∧
∧

B∈B

B(x)

)

>
∧

F∈2(B)

∨

x∈X

(

G(x) ∧
∧

B∈F

B(x)

)

.

Theorem 3.6. Let (X, T ) be an L-space. G ∈ LX has the α-Lindelöf property

if and only if for every family B of α-closed L-sets, it follows that

∨

x∈X

(

G(x) ∧
∧

B∈B

B(x)

)

>
∧

F∈2[B]

∨

x∈X

(

G(x) ∧
∧

B∈F

B(x)

)

.

In order to present characterizations of α-compactness, countable α-compactness

and the α-Lindelöf property, we generalize the notions of an a-shading and an a-R-

neighborhood family in [15], [16] as follows:

Definition 3.7. Let (X, T ) be an L-space, a ∈ L \ {1} and G ∈ LX . A family

A ⊆ LX is said to be

(1) an a-shading of G if for any x ∈ X ,
(

G′(x) ∨
∨

A∈U

A(x)
)

66 a.

(2) a strong a-shading of G if
∧

x∈X

(

G′(x) ∨
∨

A∈U

A(x)
)

66 a.

(3) an a-remote family of G if for any x ∈ X ,
(

G(x) ∧
∧

B∈P

B(x)
)

6> a.

(4) a strong a-remote family of G if
∨

x∈X

(

G(x) ∧
∧

B∈P

B(x)
)

6> a.

It is obvious that a strong a-shading of G is an a-shading of G, a strong a-remote

family of G is an a-remote family of G, andP is a strong a-remote family of G if and

only ifP ′ is a strong a′-shading of G. Moreover, a closed a-remote family is exactly

an a-remote neighborhood family and a closed strong a-remote family is exactly an

a−-remote neighborhood family in the sense of [19].

Definition 3.8. Let a ∈ L \ {0} and G ∈ LX . A subfamily A of LX is said

to have a weak a-nonempty intersection in G if
∨

x∈X

(

G(x) ∧
∧

A∈A

A(x)
)

> a. A is

said to have the finite (countable) weak a-intersection property in G if every finite

(countable) subfamily F of A has a weak a-nonempty intersection in G.

Definition 3.9. Let a ∈ L \ {0} and G ∈ LX . A subfamily A of LX is said to

be a weak a-filter relative to G if any finite intersection of members in A is weak

a-nonempty in G. A subfamily B of LX is said to be a weak a-filterbase relative to

G if

{A ∈ LX ; there exists B ∈ B such that B 6 A}

is a weak a-filter relative to G.
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From Definition 3.1, Definition 3.2, Theorem 3.5 and Theorem 3.6 we immediately

obtain the following two results.

Theorem 3.10. Let (X, T ) be an L-space and G ∈ LX . Then the following

conditions are equivalent:

(1) G is (countably) α-compact.

(2) For any a ∈ L \ {1}, each (countable) α-open strong a-shading U of G has a

finite subfamily which is a strong a-shading of G.

(3) For any a ∈ L \ {0}, each (countable) α-closed strong a-remote familyP of G

has a finite subfamily which is a strong a-remote family of G.

(4) For any a ∈ L \ {0}, each (countable) family of α-closed L-sets which has the

finite weak a-intersection property in G has a weak a-nonempty intersection in G.

(5) For each a ∈ L \ {0}, every α-closed (countable) weak a-filterbase relative to

G has a weak a-nonempty intersection in G.

Theorem 3.11. Let (X, T ) be an L-space and G ∈ LX . Then the following

conditions are equivalent:

(1) G has the α-Lindelöf property.

(2) For any a ∈ L \ {1}, each α-open strong a-shading U of G has a countable

subfamily which is a strong a-shading of G.

(3) For any a ∈ L \ {0}, each α-closed strong a-remote family P of G has a

countable subfamily which is a strong a-remote family of G.

(4) For any a ∈ L \ {0}, each family of α-closed L-sets which has the countable

weak a-intersection property in G has a weak a-nonempty intersection in G.

4. Properties of (countable) α-compactness

Theorem 4.1. Let L be a complete Heyting algebra. If both G and H are

(countably) α-compact, then G ∨ H is (countably) α-compact.

���������
. For any (countable) family P of α-closed L-sets, we have by Theo-

rem 3.5 that

∨

x∈X

(

(G ∨ H)(x) ∧
∧

B∈P

B(x)

)

=

{

∨

x∈X

(

G(x) ∧
∧

B∈P

B(x)

)}

∨

{

∨

x∈X

(

H(x) ∧
∧

B∈P

B(x)

)}
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>

{

∧

F∈2(P)

∨

x∈X

(

G(x) ∧
∧

B∈F

B(x)

)}

∨

{

∧

F∈2(P)

∨

x∈X

(

H(x) ∧
∧

B∈F

B(x)

)}

=
∧

F∈2(P)

∨

x∈X

(

(G ∨ H)(x) ∧
∧

B∈F

B(x)

)

.

This shows that G ∨ H is (countably) α-compact. �

Analogously we have the following result.

Theorem 4.2. Let L be a complete Heyting algebra. If both G and H have the

α-Lindelöf property, then so does G ∨ H .

Theorem 4.3. If G is (countably) α-compact and H is α-closed, then G ∧ H is

(countably) α-compact.

���������
. For any (countable) family P of α-closed L-sets, we have by Theo-

rem 3.5 that

∨

x∈X

(

(G ∧ H)(x) ∧
∧

B∈P

B(x)

)

=
∨

x∈X

(

G(x) ∧
∧

B∈P∪{H}

B(x)

)

>
∧

F∈2(P∪{H})

∨

x∈X

(

G(x) ∧
∧

B∈F

B(x)

)

=

{

∧

F∈2(P)

∨

x∈X

(

G(x) ∧
∧

B∈F

B(x)

)}

∧

{

∧

F∈2(P)

∨

x∈X

(

G(x) ∧ H(x) ∧
∧

B∈F

B(x)

)}

=

{

∧

F∈2(P)

∨

x∈X

(

G(x) ∧ H(x) ∧
∧

B∈F

B(x)

)}

=
∧

F∈2(P)

∨

x∈X

(

(G ∧ H)(x) ∧
∧

B∈F

B(x)

)

.

This shows that G ∧ H is (countably) α-compact. �

Analogously we have the following result.

Theorem 4.4. If G has the α-Lindelöf property and H is α-closed, then G ∧ H

has the α-Lindelöf property.
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Theorem 4.5. Let L be a complete Heyting algebra and let f : (X, T1) → (Y, T2)

be an α-irresolute map. If G is an α-compact (or a countably α-compact, an α-

Lindelöf) L-set in (X, T1), then so is f→L (G) in (Y, T2).

���������
. We only prove that the theorem is true for α-compactness. Suppose that

P is a family of α-closed L-sets in (Y, T2). Then by Lemma 2.5 and α-compactness

of G we have that

∨

y∈Y

(

f→L (G)(y) ∧
∧

B∈P

B(y)

)

=
∨

x∈X

(

G(x) ∧
∧

B∈P

f←L (B)(x)

)

>
∧

F∈2(P)

∨

x∈X

(

G(x) ∧
∧

B∈F

f←L (B)(x)

)

=
∧

F∈2(P)

∨

y∈Y

(

f→L (G)(y) ∧
∧

B∈F

B(y)

)

.

Therefore f→L (G) is α-compact. �

Analogously we have the following result.

Theorem 4.6. Let L be a complete Heyting algebra and let f : (X, T1) → (Y, T2)

be an α-continuous map. If G is an α-compact (a countably α-compact, an α-

Lindelöf) L-set in (X, T1), then f→L (G) is a compact (countably compact, Lindelöf)

L-set in (Y, T2).

Definition 4.7. Let (X, T1) and (Y, T2) be two L-spaces. A map f : (X, T1) →

(Y, T2) is called strongly α-irresolute if f←L (G) is open in (X, T1) for every α-open

L-set G in (Y, T2).

It is obvious that a strongly α-irresolute map is α-irresolute and continuous.

Analogously we have the following result.

Theorem 4.8. Let L be a complete Heyting algebra and let f : (X, T1) → (Y, T2)

be a strongly α-irresolute map. If G is a compact (countably compact, Lindelöf) L-

set in (X, T1), then f→L (G) is an α-compact (a countably α-compact, an α-Lindelöf)

L-set in (Y, T2).

5. Further characterizations of α-compactness and goodness

In this section we assume that L is a completely distributive de Morgan algebra.

Now we generalize the notions of a βa-open cover and a Qa-open cover [16] as

follows:
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Definition 5.1. Let (X, T ) be an L-space, a ∈ L \ {0} and G ∈ LX . A family

U ⊆ LX is called a βa-cover of G if for any x ∈ X , it follows that a ∈ β(G′(x) ∨
∨

A∈U

A(x)). U is called a strong βa-cover of G if a ∈ β
(

∧

x∈X

(

G′(x) ∨
∨

A∈U

A(x)
))

.

Definition 5.2. Let (X, T ) be an L-space, a ∈ L \ {0} and G ∈ LX . A

family U ⊆ LX is called a Qa-cover of G if for any x ∈ X , it follows that

G′(x) ∨
∨

A∈U

A(x) > a.

It is obvious that a strong βa-cover of G is a βa-cover of G, and a βa-cover of G

is a Qa-cover of G.

Analogously to the proof of Theorem 2.9 in [16] we can obtain the following the-

orem.

Theorem 5.3. Let (X, T ) be an L-space and G ∈ LX . Then the following

conditions are equivalent.

(1) G is α-compact.

(2) For any a ∈ L \ {0} (or a ∈ M(L)), each α-closed strong a-remote family of G

has a finite subfamily which is an a-remote (a strong a-remote) family of G.

(3) For any a ∈ L \ {0} (or a ∈ M(L)) and any α-closed strong a-remote family

P of G, there exist a finite subfamily F ofP and b ∈ β(a) (or b ∈ β∗(a)) such that

F is a (strong) b-remote family of G.

(4) For any a ∈ L \ {1} (or a ∈ P (L)), each α-open strong a-shading of G has a

finite subfamily which is an a-shading (a strong a-shading) of G.

(5) For any a ∈ L \ {1} (or a ∈ P (L)) and any α-open strong a-shading U of G,

there exist a finite subfamily V of U and b ∈ α(a) (or b ∈ α∗(a)) such that V is a

(strong) b-shading of G.

(6) For any a ∈ L \ {0} (or a ∈ M(L)), each α-open strong βa-cover of G has a

finite subfamily which is a (strong) βa-cover of G.

(7) For any a ∈ L \ {0} (or a ∈ M(L)) and any α-open strong βa-cover U of G,

there exist a finite subfamily V of U and b ∈ L (or b ∈ M(L)) with a ∈ β(b) such

that V is a (strong) βb-cover of G.

(8) For any a ∈ L \ {0} (or a ∈ M(L)) and any b ∈ β(a) \ {0}, each α-open

Qa-cover of G has a finite subfamily which is a Qb-cover of G.

(9) For any a ∈ L \ {0} (or a ∈ M(L)) and any b ∈ β(a) \ {0} (or b ∈ β∗(a)), each

α-open Qa-cover of G has a finite subfamily which is a (strong) βb-cover of G.

Analogously we also can present characterizations of countable α-compactness and

the α-Lindelöf property.

Now we consider the goodness of α-compactness.
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For a ∈ L and a crisp subset D ⊂ X , we define a ∧ D and a ∨ D as follows:

(a ∧ D)(x) =

{

a, x ∈ D;

0, x 6∈ D.
(a ∨ D)(x) =

{

1, x ∈ D;

a, x 6∈ D.

Theorem 5.4 ([17]). For an L-set A ∈ LX , the following facts are true.

(1) A =
∨

a∈L

(a ∧ A(a)) =
∨

a∈L

(a ∧ A[a]).

(2) A =
∧

a∈L

(a ∨ A(a)) =
∧

a∈L

(a ∨ A[a]).

Theorem 5.5 [17]. Let (X, ωL(τ)) be the L-space topologically generated by

(X, τ) and A ∈ LX . Then the following facts hold.

(1) cl(A) =
∨

a∈L

(a ∧ (A(a))
−) =

∨

a∈L

(a ∧ (A[a])
−);

(2) cl(A)(a) ⊂ (A(a))
− ⊂ (A[a])

− ⊂ cl(A)[a];

(3) cl(A) =
∧

a∈L

(a ∨ (A(a))−) =
∧

a∈L

(a ∨ (A[a])−);

(4) cl(A)(a) ⊂ (A(a))− ⊂ (A[a])− ⊂ cl(A)[a];

(5) int(A) =
∨

a∈L

(a ∧ (A(a))
◦) =

∨

a∈L

(a ∧ (A[a])
◦);

(6) int(A)(a) ⊂ (A(a))
◦ ⊂ (A[a])

◦ ⊂ int(A)[a];

(7) int(A) =
∧

a∈L

(a ∨ (A(a))◦) =
∧

a∈L

(a ∨ (A[a])◦);

(8) int(A)(a) ⊂ (A(a))◦ ⊂ (A[a])◦ ⊂ int(A)[a], where (A(a))
− and (A(a))

◦ denote

respectively the closure and the interior of A(a) in (X, τ) and so on, cl(A) and int(A)

denote respectively the closure and the interior of A in (X, ωL(τ)).

Lemma 5.6. Let (X, ωL(τ)) be generated topologically by (X, τ). If A is an

α-open set in (X, τ), then χA is an α-open L-set in (X, ωL(τ)). If B is an α-open

L-set in (X, ωL(τ)), then B(a) is an α-open set in (X, τ) for every a ∈ L.
���������

. If A is an α-open set in (X, τ), then A ⊆ ((A◦)−)◦. Thus we have

χA 6 χ((A◦)−)◦ = int(χ(A◦)−) = int(cl(χA◦)) = int(cl(int(χA))).

This shows that χA is α-open in (X, ωL(τ)).

If B is an α-open L-set in (X, ωL(τ)), then B 6 int(cl(int(B))). From Theorem 5.5

we have

B(a) ⊆ int(cl(int(B)))(a) ⊆ (cl(int(B))(a))
◦ ⊆ ((int(B)(a))

−)◦ ⊆ (((B(a))
◦)−)◦.

This shows that B(a) is an α-open set in (X, τ). �

The next two theorems show that α-compactness, countable α-compactness and

the α-Lindelöf property are good extensions.

24



Theorem 5.7. Let (X, ωL(τ)) be generated topologically by (X, τ). Then

(X, ωL(τ)) is (countably) α-compact if and only if (X, τ) is (countably) α-compact.

���������
. (Necessity) Let A be an α-open cover (a countable α-open cover)

of (X, τ). Then {χA ; A ∈ A } is a family of α-open L-sets in (X, ωL(τ)) with
∧

x∈X

(

∨

A∈U

χA(x)
)

= 1. From (countable) α-compactness of (X, ωL(τ)) we know

that

1 >
∨

V ∈2(U )

∧

x∈X

(

∨

A∈V

χA(x)

)

>
∧

x∈X

(

∨

A∈U

χA(x)

)

= 1.

This implies that there exists V ∈ 2(U ) such that
∧

x∈X

(
∨

A∈V

χA(x)) = 1. Hence V is

a cover of (X, τ). Therefore (X, τ) is (countably) α-compact.

(Sufficiency) Let U be a (countable) family of α-open L-sets in (X, ωL(τ)) and

let
∧

x∈X

(
∨

B∈U

B(x)) = a. If a = 0, then we obviously have

∧

x∈X

(

∨

B∈U

B(x)

)

6
∨

V ∈2(U )

∧

x∈X

(

∨

A∈V

B(x)

)

.

Now we suppose that a 6= 0. In this case, for any b ∈ β(a) \ {0} we have

b ∈ β

(

∧

x∈X

(

∨

B∈U

B(x)

))

⊆
⋂

x∈X

β

(

∨

B∈U

B(x)

)

=
⋂

x∈X

⋃

B∈U

β (B(x)) .

By Lemma 5.6 this implies that {B(b) ; B ∈ U } is an α-open cover of (X, τ). From

(countable) α-compactness of (X, τ) we know that there exists V ∈ 2(U ) such that

{B(b) ; B ∈ V } is a cover of (X, τ). Hence b 6
∧

x∈X

(

∨

B∈V

B(x)
)

. Further we have

b 6
∧

x∈X

(

∨

B∈V

B(x)

)

6
∨

V ∈2(U )

∧

x∈X

(

∨

B∈V

B(x)

)

.

This implies that

∧

x∈X

(

∨

B∈U

B(x)

)

= a =
∨

{b ; b ∈ β(a)} 6
∨

V ∈2(U )

∧

x∈X

(

∨

B∈V

B(x)

)

.

Therefore (X, ωL(τ)) is (countably) α-compact. �

Analogously we have the following result.
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Theorem 5.8. Let (X, ωL(τ)) be generated topologically by (X, τ). Then

(X, ωL(τ)) has the α-Lindelöf property if and only if (X, τ) has the α-Lindelöf

property.

6. The relations of α-compactness and other types of compactness

In this section we assume that L is again completely distributive.

Based on Kudri’s compactness in [7], Aygün presented a definition of α-com-

pactness in [1]. Since Kudri’s compactness is equivalent to strong compactness in

[9], [19], we shall also refer to Aygün’s α-compactness as α-strong compactness. The

following is its equivalent form.

Definition 6.1. Let (X, T ) be an L-space. G ∈ LX is said to be α-strongly

compact if for any a ∈ P (L), each α-open a-shading of G has a finite subfamily

which is an a-shading of G.

In [4], [8], Bai and Li et al. introduced the notions of SR-compactness and near

SR-compactness by means of strongly semiopen L-sets. In fact, a strongly semiopen

L-set is equivalent to an α-open L-set. This implies that both SR-compactness and

near SR-compactness are extensions of α-compactness in general topology. Their

equivalent forms can be stated as follows:

Definition 6.2 ([4]). Let (X, T ) be an L-space. G ∈ LX is said to be SR-

compact (we shall call it α-N-compact) if for each a ∈ M(L), every α-closed a-remote

family of G has a finite subfamily which is a strong a-remote family of G.

Definition 6.3 ([8]). Let (X, T ) be an L-space. G ∈ LX is said to be near

SR-compact if for each a ∈ M(L), every α-closed a-remote family of G has a finite

subfamily which is an a-remote family of G.

It is obvious that Definition 6.3 is equivalent to Definition 6.1.

From Theorem 5.3 we easily obtain the following result.

Theorem 6.4. For an L-set G in an L-space, the following implications hold.

α-N-compactness ⇒ α-strong compactness ⇒ α-compactness

⇓ ⇓ ⇓

N-compactness ⇒ strong compactness ⇒ compactness

Notice that none of the above implications is invertible. We only present a coun-

terexample which is α-compact but not α-strongly compact. The other examples

can be found in [8], [9], [19] and in general topology.
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6.5. Take Y = � . For all n ∈ Y , define Bn ∈ [0, 1]Y as follows:

Bn(y) =

{

(n + 1)−1, y = n;

0, y 6= n.

Let T be the [0, 1]-topology generated by the subbaseB = {Bn ; n ∈ Y }. Obviously

{Bn ; n ∈ Y } is an open 0-shading of χY , but {Bn ; n ∈ Y } has no finite subfamily

which is an open 0-shading of χY . Therefore (Y, T ) is not strongly compact, of

course it is not α-strongly compact either.

Now we prove that (Y, T ) is α-compact. It is easy to check that if A is an α-open

L-set in (Y, T ) and A 6= χY , then A 6
∨

n∈Y

Bn.

For each a ∈ [0, 1), suppose that U is an α-open strong a-shading of χY . If χY ∈

U , then {χY } is a strong a-shading of χY . Now we suppose that χY 6∈ U . Then U

is not a strong a-shading of χY since
∧

y∈Y

(

∨

A∈U

A(y)
)

6
∧

y∈Y

(

∨

n∈Y

Bn(y)
)

= 0.

This shows that (Y, T ) is α-compact.
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