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(Received April 20, 2005)

Abstract. Let T be an operator acting on a Banach space X, let σ(T ) and σBW (T )
be respectively the spectrum and the B-Weyl spectrum of T . We say that T satisfies the
generalized Weyl’s theorem if σBW (T ) = σ(T ) \E(T ), where E(T ) is the set of all isolated
eigenvalues of T . The first goal of this paper is to show that if T is an operator of topological
uniform descent and 0 is an accumulation point of the point spectrum of T, then T does not
have the single valued extension property at 0, extending an earlier result of J. K.Finch and
a recent result of Aiena and Monsalve. Our second goal is to give necessary and sufficient
conditions under which an operator having the single valued extension property satisfies
the generalized Weyl’s theorem.
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1. Introduction

For T in the Banach algebra L(X) of bounded linear operators acting on a Banach

space X, we will denote by N(T ) its kernel and by R(T ) its range. The operator

T is called a B-Fredholm operator [2], if there is an integer n such that the range

R(T n) is closed and such that the operator Tn : R(T n) → R(T n) defined by Tn(x) =

T (x) for x ∈ R(T n) is a Fredholm operator. From [4, Theorem 3.1] it follows

that T is a B-Fredholm operator if and only if there exists an integer n such that

cn(T ) < ∞ and c′n(T ) < ∞, where cn(T ) = dim(R(T n)/R(T n+1)) and c′n(T ) =

dim(N(T n+1)/N(T n)). In this case, it follows from [4, Theorem 3.1] that the range

R(T n) is closed. Then the index of T is defined by ind(T ) = c′n(T ) − cn(T ). From

The first two authors were supported by Protars D11/16 and Project P/201/03 (Morocco-
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[2, Proposition 2.1], the definition of the index is independent of the choice of the

integer n. Moreover, in the case of a Fredholm operator, we find the usual definition

of the index.

Recall that T is Drazin invertible if it has a finite ascent and descent (Defi-

nition 2.1); which is also equivalent to the fact that T = T0 ⊕ T1, where T0 is

an invertible operator and T1 is a nilpotent one. (See [14, Proposition 6], and

[12, Corollary 2.2].) If T ∈ L(X), then the Drazin spectrum of T is defined by

σD(T ) = {λ ∈
�

: T − λI is not Drazin invertible}. From [5, Corollary 2.4] we know

that the Drazin spectrum σD(T ) of a bounded linear operator T ∈ L(X) satisfies

the spectral mapping theorem.

In [4] B-Weyl operators and the B-Weyl spectrum were defined as follows:

Definition 1.1. Let T ∈ L(X). Then T is called a B-Weyl operator if it is a

B-Fredholm operator of index 0. The B-Weyl spectrum σBW (T ) of T is defined by

σBW (T ) = {λ ∈
�

: T − λI is not a B-Weyl operator}.

If we consider a normal operator T acting on a Hilbert space H , Berkani proved

in [4, Theorem 4.5] that σBW (T ) = σ(T )\E(T ), where E(T ) is the set of all isolated

eigenvalues of T , which gives a generalization of the classical Weyl’s Theorem. Recall

that the classical Weyl’s Theorem [16] asserts that if T is a normal operator acting

on a Hilbert space H , then the Weyl spectrum σW (T ) is exactly the set of all points

in σ(T ) except the isolated eigenvalues of finite multiplicity, that is σW (T ) = σ(T ) \

E0(T ). Here E0(T ) is the set of isolated eigenvalues of finite multiplicity, that is

E0(T ) = {λ ∈ isoσ(T ) : 0 < dim N(T − λI) < ∞} where isoσ(T ) is the set of

isolated points of the spectrum of T and σW (T ) is the Weyl spectrum of T , that is

σW (T ) = {λ ∈
�

: T − λI is not a Fredholm operator of index 0}.

In [6, Theorem 3.9], it is shown that if T satisfies the generalized Weyl’s theorem:

σBW (T ) = σ(T ) \ E(T ), then it satisfies Weyl’s theorem: σW (T ) = σ(T ) \ E0(T ),

and if it satisfies the generalized Browder’s theorem, σBW (T ) = σ(T ) \ Π(T ), then

it satisfies Browder’s theorem σW (T ) = σ(T ) \ Π0(T ), where Π(T ) is the set of all

the poles of the resolvent of T and Π0(T ) is the set of the poles of the resolvent of

T of finite rank, that’s Π0(T ) = {λ ∈ Π(T ) : 0 < dim N(T − λI) < ∞}. (See [6] for

more details about the concepts introduced here.)

Moreover, we have the following theorem [7, Corollary 2.6] which characterizes

operators satisfying the generalized Weyl’s theorem:

Theorem 1.2. Let T ∈ L(X). Then T satisfies the generalized Weyl’s theorem

if and only if σBW (T ) = σ(T ) \ Π(T ) and E(T ) = Π(T ).
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2. The single valued extension property

Definition 2.1. For any T ∈ L(X) we define sequences (cn(T )), (c′n(T )) and

(kn(T )) as follows:

(i) cn(T ) = dim(R(T n)/R(T n+1)).

(ii) c′n(T ) = dim(N(T n+1)/N(T n)).

(iii) kn(T ) = dim
[

(R(T n) ∩ N(T ))/(R(T n+1) ∩ N(T ))
]

.

The descent δ(T ) and ascent a(T ) of T are defined by

δ(T ) = inf{n : cn(T ) = 0} = inf{n : R(T n) = R(T n+1)},

a(T ) = inf{n : c′n(T ) = 0} = inf{n : N(T n) = N(T n+1)}.

We set formally inf ∅ = ∞.

Definition 2.2. (See [9].) Let T ∈ L(X) and let d ∈ � . Then T has a uniform

descent for n > d if R(T ) + N(T n) = R(T ) + N(T d) for all n > d (equivalently,

kn(T ) = 0 for all n > d)). If, in addition, R(T ) + N(T d) is closed, then T is said to

have a topological uniform descent for n > d.

Definition 2.3. We say that T ∈ L(X) has the single valued extension property

(SVEP) at λ0 ∈
�
, if for an arbitrary open neighborhood U of λ0, f = 0 is the only

analytic function f : U → X such that (T − λI)f(λ) = 0 for all λ ∈ U. We will say

that T has the SVEP if T has this property at every λ ∈
�
.

Lemma 2.4. Let (X, ‖ ·‖)be a Banach space, let T ∈ L(X) have SVEP at λ0 and

let E ⊂ X be a subspace of X invariant under T . If E equipped with a norm ‖ · ‖1

is a Banach space such the injection i : E → X is continuous, then T |E has SVEP

at λ0.

�������	�
. Let S = T |E, let Uλ0

be an open neighborhood of λ and let f : Uλ0
→ E

be an analytic function such that (S − µI)f(µ) = 0 for every µ ∈ Uλ. Define a

function F : Uλ → X by F (µ) = (i◦f)(µ). Then F is an analytic function such that

(T −µI)F (µ) = 0 for every µ ∈ Uλ0
. Since T has SVEP at λ0, it follows that F = 0.

Hence f = 0, and so S has SVEP at λ0. �

Recall that the point spectrum of T ∈ L(X) is defined by σp(T ) = {λ ∈
�

:

N(T − λI) 6= {0}}.
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Theorem 2.5. Let T ∈ L(X). If T is an operator of topological uniform descent

for n > d, then the following conditions are equivalent:

(i) T does not have the single valued extension property at 0.

(ii) 0 is an accumulation point of the point spectrum of T .

(iii) The ascent a(T ) of T is infinite.

�������	�
. (i) ⇒ (ii) Obvious.

(ii) ⇒ (iii) Assume that a(T ) = p < ∞, then c′n(T ) = 0 for all n > p. Since T is

an operator of topological uniform descent, then by virtue of [9, Theorem 4.7] there

exists an ε > 0 such that if 0 < |λ| < ε, we have c′m(T − λI) = 0 for all m. In

particular, α(T − λI) = c′0(T − λI) = 0. Therefore λ is not in the point spectrum of

T , and 0 is not an accumulation point of the point spectrum of T . This contradiction

shows that a(T ) = ∞.

(iii) ⇒ (i) Assume that a(T ) = ∞. Then c′n(T ) > 0 for all n > d. Let Y =
⋂

p>d

R(T p). Then equipped with the topology induced by the operator range topology

of R(T d), the space Y is closed in R(T d), invariant under T . Moreover, by [9,

Theorem 3.4], the restriction T |Y of T to Y is onto. Since T is an operator of

topological uniform descent, then by [9, Theorem 3.4] there exists an ε > 0 such

that if 0 < |λ| < ε, we have c′m(T − λI) > 0 for all m. In particular, α(T − λI) =

c′0(T −λI) > 0. Therefore λ is in the point spectrum of T |Y and also in the spectrum

of T |Y . As σ(T |Y ) is closed, we have 0 ∈ σ(T |Y ). Using [8, Theorem 2], it follows

that T|Y does not have the single valued extension property at 0. Since the injection

i : Y → X of the Banach space Y into X is continuous, Lemma 2.4 yields that T

does not have SVEP at 0. �

Theorem 2.5 extends [8, Theorem 9 and 10] which establishes that T has SVEP at

0 under the stronger assumption that σp(T ) contains a neighborhood of 0. It extends

also [1, Theorem 2.6] which establishes that T has SVEP at 0 under the stronger

assumption that T is a semi-Fredholm operator.

Corollary 2.6. Let T ∈ L(X) be an operator of topological uniform descent for

n > d. If c′d(T ) > cd(T ), then T does not have SVEP at 0.

�������	�
. Suppose that T is an operator of topological uniform descent for n > d

and that c′d(T ) > cd(T ). Therefore c′d(T ) > 0. If λ ∈
�
, λ 6= 0 and |λ| is small

enough, then from [9, Theorem 4.7] we have α(T − λI) > 0. Hence λ is in the

point spectrum of T and 0 is an accumulation point of the point spectrum of T .

Consequently T does not have the SVEP at 0. �

Let T ∈ L(X) be an operator of topological uniform descent for n > d such that

R(T d+1) is closed (such operators are called in [13] quasi-Fredholm operators). By
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[13, Lemma 12], for such operators R(T n) is closed for each integer n > d. Moreover,

in this case it is easily seen that T ∗ is also an operator of topological uniform descent

for n > d such that R((T ∗d+1) is closed.

Corollary 2.7. Let T ∈ L(X) be an operator of topological uniform descent for

n > d such that R(T d+1)is closed. Then the following conditions are equivalent:

(i) T ∗ does not have SVEP at 0;

(ii) The descent δ(T ) of T is infinite.

�������	�
. Assume that T ∗ does not have the SVEP at 0. If δ(T ) < ∞, then

R(T d) = R(T d+1). Since both R(T d) and R(T d+1) are closed, we have N(T ∗d) =

N(T ∗d+1), and so a(T ∗) < ∞. But this is a contradiction, since T ∗ is an operator of

topological uniform descent having the SVEP at 0. Hence δ(T ) = ∞.

Conversely, assume that δ(T ) = ∞. Then cd(T ) > 0. If λ ∈
�
, λ 6= 0 and |λ| is

small enough, then from [9, Theorem 4.7] we have β(T − λI) > 0. Hence (T − λI)d

is not a surjective operator, and so T ∗ − λI is not injective. Therefore λ is in the

point spectrum of T ∗ and 0 is an accumulation point of T ∗. Consequently, T ∗ does

not have the single valued extension property at 0. �

Corollary 2.8. Let T ∈ L(X) be an operator of topological uniform descent for

n > d such that R(T d+1) is closed. If cd(T ) > c′d(T ), then T ∗ does not have the

single valued extension property at 0.

�������	�
. Suppose that T is an operator of topological uniform descent for n > d

such that R(T d+1) is closed and cd(T ) > c′d(T ). Therefore cd(T ) > 0. Hence

δ(T ) = ∞. From the previous corollary it follows that T ∗ does not have the single

valued extension property at 0. �

Corollary 2.9. Let T ∈ L(X) be an operator of topological uniform descent for

n > d such that R(T d+1) is closed. Then T and T ∗ have the single valued extension

property at 0 if and only if T is Drazin invertible, in other words if and only if 0 is

a pole of the resolvent of T .

�������	�
. If T and T ∗ have the SVEP at 0, then from Theorem 2.5 and Corol-

lary 2.7 we have a(T ) < ∞ and δ(T ) < ∞. From [12, Theorem 1.2] it follows that

a(T ) = δ(T ) < ∞. Hence T is Drazin invertible.

Conversely, if T is Drazin invertible, then a(T ) = δ(T ) < ∞. From Theorem 2.5

and Corollary 2.7 it follows that T and T ∗ have SVEP at 0. �
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Corollary 2.10. Let T ∈ L(X) be an operator of topological uniform descent.

Then:

(i) If S is a bounded linear operator commuting with T , such that S − T is suffi-

ciently small and invertible, then T has SVEP at 0 if and only if S does.

(ii) If S is an operator of topological uniform descent for n > p, commuting with

T , such that S − T is compact, then T has SVEP at 0 if and only if S does.

�������	�
. (i) In this case it follows from [9, Theorem 4.7] that S is an operator of

topological uniform descent for n > 0 and T is of finite ascent if and only if S is.

(ii) From [9, Theorem 5.8] it follows that T is of finite ascent if and only if S is.

Therefore the corollary is a direct consequence of Theorem 2.5. �

From this corollary we obtain the following perturbation result for semi-Fredholm

operators having SVEP.

Corollary 2.11. Let T ∈ L(X) be a semi-Fredholm operator having SVEP at 0,

and let K ∈ L(X) be a compact operator commuting with T. Then T +K has SVEP

at 0.

�������	�
. As T is a semi-Fredholm operator, then T + K is also a semi-Fredholm

operator. Moreover, a semi-Fredholm operator is an operator of topological uniform

descent. �

Let A be an algebra with a unit e. In [11], Kordula and Müller defined the concept

of regularity by

Definition 2.12. A non-empty subset R ⊂ A is called a regularity if it satisfies

the following conditions:

(i) If a ∈ A and n > 1 is an integer then a ∈ R if and only if an ∈ R.

(ii) If a, b, c, d ∈ L(X) are mutually commuting elements satisfying ac + bd = e,

then ab ∈ R if and only if a, b ∈ R.

A regularity R defines in a natural way a spectrum by σR(a) = {λ ∈
�

: a−λI /∈

R} for every a ∈ A. Moreover, in the case of a Banach algebra A, the spectrum σR

satisfies the spectral mapping theorem.

Theorem 2.13. Let X be a Banach space. Then the set S = {T ∈ L(X) : T is

an operator of topological uniform descent and T has SVEP at 0} is a regularity in

the algebra L(X).

�������	�
. (i) Since every invertible element in L(X) is an operator of topological

uniform descent and has SVEP at 0, then S is a nonempty set. Let T ∈ L(X)

be an operator of topological uniform descent and let n > 1 be an integer. From
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[3, Theorem 4.3] we know that T is an operator of topological uniform descent if and

only if T n is. Moreover, it is clear that T is of finite ascent if and only if T n is.

Therefore T ∈ S if and only if T n ∈ S.

(ii) Let U , V , S, T be mutually commuting elements of L(X) such that US+V T =

I . From [3, Theorem 4.3] we know that S and T are operators of topological uniform

descent if and only if ST is an operator of topological uniform descent. Moreover,

from [[13], p. 137] it follows that a(ST ) is finite if and only if a(S) and a(T ) are finite.

Hence ST ∈ S if and only S and T does. Therefore S is a regularity. �

For T ∈ L(X), let σS(T ) = {λ ∈
�

: T −λI /∈ S} be the spectrum associated with

the regularity S. Using the properties of the regularities [11], we have immediately

the following corollary:

Corollary 2.14. Let T ∈ L(X) and let f be an analytic function in a neigh-

borhood of the usual spectrum σ(T ) of T which is non-constant on any connected

component of the spectrum σ(T ). Then f(σS(T )) = σS(f(T )).

3. Generalized Weyl’s theorem and SVEP

It is natural to ask whether an operator T having SVEP does satisfy the generalized

Weyl’s theorem. The following examples gives a negative answer to this question.

Moreover, the first example shows that an operator having SVEP could satisfy Weyl’s

theorem but not the generalized Weyl’s theorem.


 ����������
3.1 ([7], p. 602). Let Q ∈ L(X) be any quasi-nilpotent operator acting

on an infinite dimensional Banach space X such that R(Qn) is non-closed for all n.

Consider the operator S = 0⊕Q, defined on the Banach space X⊕X. Since R(Sn) =

R(Qn) is non-closed for all n, then S is not a B-Fredholm operator. Moreover,

σ(S) = {0}, E(S) = {0}, E0(S) = ∅, σW (S) = {0} and σBW (S) = {0}. Hence

Weyl’s theorem is satisfied by S, but the generalized Weyl’s Theorem does not holds

for S, while S as a quasinilpotent operator satisfies SVEP.


 ����������
3.2. Let T be defined on l2 by: T (x1, x2, x3, . . .) = (1/3x3, 1/4x4,

1/5x5, . . .). As T is quasinilpotent, T has the SVEP. As σ(T ) = σW (T ) = {0} and

E0(T ) = {0}, T does not satisfy Weyl’s theorem. From [6, Theorem 3.9], T does not

satisfy the generalized Weyl’s theorem.

Hence, it is natural to seek for necessary and sufficient conditions for an operator T

having SVEP to satisfy the generalized Weyl’s theorem. We begin with the following

result:
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Theorem 3.3. Let T ∈ L(X). If T has the single valued extension property, then

σD(T ) = σBW (T ).

�������	�
. Let λ ∈ σ(T ) \ σBW (T ). Then T − λI is a B-Fredholm operator of

index 0. Therefore for n large enough, we have cn(T −λI) = c′n(T −λI) < ∞. Since

a B-Fredholm operator is an operator of topological uniform descent and since T

has the SVEP, then a(T − λI) < ∞. As we have for n large enough cn(T − λI) =

c′n(T − λI) < ∞, then we have also δ(T − λI) < ∞. Therefore λ is a pole of the

resolvent of T , and λ /∈ σD(T ). Hence σD(T ) ⊂ σBW (T ). As σBW (T ) ⊂ σD(T )

always holds, we have σD(T ) = σBW (T ). �

Corollary 3.4. Let T ∈ B(X) and let H(σ(T )) denote the set of functions f

which are analytic on an open neighborhood of σ(T ). If T has the single valued

extension property, then σBW (f(T )) = f(σBW (T )) for every f ∈ H(σ(T )) which is

non-constant on any connected component of σ(T ).

�������	�
. Since T has the SVEP, also f(T ) has the SVEP. From the previ-

ous theorem we have σBW (f(T )) = σD(f(T )). From [5, Corollary 2.4] we have

σD(f(T )) = f(σD(T )). Therefore σBW (f(T )) = f(σD(T )) = f(σBW (T )). �

Let T ∈ L(X), let H0(T ) = {x ∈ X : ‖Txn‖1/n → 0}, and let K(T ) = {x ∈ X :

there exist c > 0 and a sequence (xn)n>1 ⊂ X such that Tx1 = x, Txn+1 = xn for

all n ∈ � and ‖xn‖ 6 cn‖x‖ for all n ∈ � }.
If λ is isolated in σ(T ), then it is known [15, Proposition 4] that H0(T − λI)

and K(T − λI) are closed subspaces of X , X = H0(T − λI) ⊕ K(T − λI), T0 =

(T − λI)|K0(T−λI) is an invertible operator and T1 = (T − λI)|H0(T−λI) is a quasi-

nilpotent operator. Here ⊕ means the topological direct sum.

Recall also that for T ∈ L(X) and a closed subset F of
�
, the spectral manifold

is χT (F ) = {x ∈ X : there exists an analytic X-valued function f :
�
\ F → X such

that (T − λI)f(λ) = x for all λ ∈
�
\ F}.

Theorem 3.5. If T ∈ L(X) has SVEP, then the following properties are equiva-

lent:

(i) T satisfies the generalized Weyl’s theorem.

(ii) σBW (T ) ∩ E(T ) = ∅.

(iii) E(T ) = Π(T ).

(iv) For every λ ∈ E(T ) there exist an integer n such that χT (λ) = N((T − λI)n).

(v) For each λ ∈ E(T ), T − λI is an operator of topological uniform descent.

�������	�
. (i) ⇒ (ii) If T satisfies the generalized Weyl’s theorem, then σBW (T ) =

σ(T ) \ E(T ). Therefore σBW (T ) ∩ E(T ) = ∅.
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(ii) ⇒ (iii) Assume that σBW (T )∩E(T ) = ∅. As T has the single valued extension

property, it follows from Theorem 3.3 that σD(T ) = σBW (T ). Let λ ∈ E(T ). Then

λ /∈ σBW (T ). Therefore λ /∈ σD(T ), and so λ ∈ Π(T ). As always Π(T ) ⊂ E(T ), we

have E(T ) = Π(T ).

(iii) ⇒ (iv) Let λ ∈ E(T ) = Π(T ). Then λ is a pole of the resolvent of T , and

by [15, Theorem 5] there exists an integer n such that H0(T − λI) = N((T − λI)n).

Hence we have χT (λ) = H0(T − λI) = N((T − λI)n).

(iv) ⇒ (v) Let λ ∈ E(T ). Then there exists an integer n such that χT (λ) =

N((T − λI)n). Then we have H0(T − λI) = χT (λ) = N((T − λI)n) and X =

N((T − λI)n)⊕K(T − λ). Therefore λ ∈ Π(T ), and T − λI is Drazin invertible. So

it is an operator of topological uniform descent.

(v) ⇒ (i) Let λ ∈ E(T ). Then T−λI is an operator of topological uniform descent.

From [9, Theorem 4.7] it follows that for n large enough we have cn(T − λI) = 0

and c′n(T − λI) = 0. Therefore λ is a pole of T . From Theorem 3.3 we have already

σD(T − λI) = σBW (T − λI). Then it follows from Theorem 1.2 that T satisfies the

generalized Weyl’s theorem. �

Let T ∈ L(X). We say that T satisfies the growth condition Gm if there exists an

integer m such that

sup
λ/∈σ(T )

‖(T − λI)−1‖ dist(λ, σ(T ))m < ∞.

Lemma 3.6. If T ∈ B(X) satisfies the growth condition Gm, then E(T ) = Π(T ).

�������	�
. Let α ∈ E(T ), then α is isolated in σ(T ). Then we have X = X0 ⊕X1,

where X0, X1 are closed subspaces of X , T0 = (T − αI)|X0
is an invertible operator

and T1 = (T − αI)|X1
is a quasi-nilpotent operator.

Without loss of generality we can assume that α = 0. Let 0 < ε < 1
3d(0, σ(T )\{0}).

Then we have T m
1 = 1

2 � i
∫

|z|=ε zm(T − zI)−1 dz. Since

sup
λ/∈σ(T )

‖(T − λI)−1‖ dist(λ, σ(T ))m < ∞,

it is easily seen that T m
1 = 0. Therefore 0 is a pole of T and so 0 ∈ Π(T ). As it is

always true that Π(T ) ⊂ E(T ), we have E(T ) = Π(T ). �

Corollary 3.7. If T ∈ B(X) has SVEP and satisfies the growth condition Gm,

G-Weyl’s theorem holds for T .

�������	�
. This is a direct consequence of Lemma 3.6 and Theorem 3.5 �
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Since an operator satisfying the generalized Weyl’s theorem satisfies also Weyl’s

theorem, and an operator having the Dunford property (C) has SVEP, from the

previous corollary we obtain the result of Jeon [10, Theorem 1].

The authors would like to thank the referee for his interesting remark concerning

Example 3.1.
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