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ON THE ALGEBRA OF Ak-FUNCTIONS

Ulf Backlund, Anders Fällström, Ume̊a

(Received August 29, 2005)

Abstract. For a domain Ω ⊂
� n let H(Ω) be the holomorphic functions on Ω and for any

k ∈ � let Ak(Ω) = H(Ω) ∩ Ck(Ω). Denote by A
k
D(Ω) the set of functions f : Ω → [0,∞)

with the property that there exists a sequence of functions fj ∈ Ak(Ω) such that {|fj |}

is a nonincreasing sequence and such that f(z) = lim
j→∞

|fj(z)|. By A
k
I (Ω) denote the set

of functions f : Ω → (0,∞) with the property that there exists a sequence of functions
fj ∈ Ak(Ω) such that {|fj |} is a nondecreasing sequence and such that f(z) = lim

j→∞
|fj (z)|.

Let k ∈ � and let Ω1 and Ω2 be bounded Ak-domains of holomorphy in
� m1 and

� m2

respectively. Let g1 ∈ A
k
D(Ω1), g2 ∈ A

k
I (Ω1) and h ∈ A

k
D(Ω2)∩A

k
I (Ω2). We prove that the

domains Ω = {(z, w) ∈ Ω1 × Ω2 : g1(z) < h(w) < g2(z)} are Ak-domains of holomorphy if
intΩ = Ω. We also prove that under certain assumptions they have a Stein neighbourhood
basis and are convex with respect to the class of Ak-functions. If these domains in addition
have C1-boundary, then we prove that the Ak-corona problem can be solved. Furthermore
we prove two general theorems concerning the projection on

� n of the spectrum of the
algebra Ak.
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1. Introduction

For a domain Ω in � n let H(Ω) denote the holomorphic functions on Ω and for

any natural number k ∈ � = {0, 1, 2, . . .} let Ak(Ω) denote the set H(Ω) ∩ Ck(Ω).

According to the Cartan-Thullen theorem ([3]) a domain Ω in � n is a domain of

holomorphy if and only if it is convex with respect to the holomorphic functions on

Ω. This means that domains of holomorphy (which are defined using the ambient

The first author was supported by a grant from the Swedish Research Council (Veten-
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space � n ) can be characterized by an intrinsic property in terms of convexity condi-

tions with respect to H(Ω). Furthermore the solution of the Levi Problem ([8], [1],

[7]) shows that a domain in � n is a domain of holomorphy if and only if it is locally

a domain of holomorphy.

For Ak(Ω) the situation is different. It is not known whether a domain that is

locally an Ak-domain of holomorphy is an Ak-domain of holomorphy. This makes it

much more difficult to analyse the Ak-situation and few results have been obtained.

In general an Ak-domain of holomorphy does not have to be convex with respect to

the class of Ak-functions and there are also examples of Ak-convex domains which

are not Ak-domains of holomorphy. (See section 3.)

M. Jarnicki and P.Pflug ([6]) have shown that any bounded Reinhardt domain Ω

in � n such that int Ω = Ω is an Ak-domain of holomorphy for any k ∈ � . Moreover it
follows from work of D.Catlin ([2]) and M.Hakim and N. Sibony ([5]) that a bounded

pseudoconvex domain with C∞-boundary is an Ak-convex Ak-domain of holomorphy

for any 0 6 k 6 ∞.

In this paper we study the algebra of Ak-functions on domains in � n . First we

treat the notion of sequential Ak-convexity. We then introduce a class of domains

and we prove in Theorem 4.2, using properties of the spectrum of Ak, that these

domains are Ak-domains of holomorphy for every k ∈ � . In section 5 we prove two
general theorems (Theorem 5.1 and Theorem 5.3), which are of independent interest,

concerning the projection on � n of the spectrum of Ak. Under certain assumptions

we then prove, in Theorem 5.4, that the domains considered in the statement of

Theorem 4.2 have a Stein neighbourhood basis and if in addition they have C1-

boundary we use the results obtained to prove that the Ak-corona problem can be

solved. In the last section we prove that the domains considered in the statement of

Theorem 5.4 are Ak-convex.

2. Preliminaries

We study properties of Ak-domains of holomorphy and Ak-convex domains for

k ∈ � . With the norm

‖f‖k,Ω =
∑

α∈ � n,|α|6k

sup
z∈Ω

|Dαf(z)|

Ak(Ω) = H(Ω)∩Ck(Ω) is a Banach algebra. The set of nonzero multiplicative com-

plex homomorphisms on Ak(Ω) is called the spectrum of Ak(Ω), when it is equipped

with the weak∗-topology. We denote the spectrum by M
Ak(Ω). For z ∈ Ω the point

evalutaion mz is defined by mz(f) = f(z) for every f ∈ Ak(Ω). The closure of the

domain Ω can then be embedded as a subset Ωe = {mz : z ∈ Ω} of MAk(Ω).
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Definition 2.1. A domain Ω ⊂ � n is said to be Ak-convex (or convex with

respect to the class of Ak-functions) if for every compact subset K of Ω the set

K̂Ak =
{
z ∈ Ω: |f(z)| 6 sup

ζ∈K

|f(ζ)| ∀f ∈ Ak(Ω)
}

is a compact subset of Ω. The set K̂Ak is called the Ak-convex hull of K in Ω.

Definition 2.2. A domain Ω ⊂ � n is said to be an Ak-domain of holomorphy

(or a domain of existence for Ak) if there do not exist nonempty open sets Ω1 and

Ω2 such that

(1) Ω1 ⊂ Ω2 ∩ Ω

(2) Ω2 is connected and not contained in Ω

(3) for every function u ∈ Ak(Ω) there is a function u2 holomorphic on Ω2 such

that u = u2 on Ω1.

For every domain Ω ⊂ � n there exists a unique Ak-envelope of holomorphy

(Ω, Π, � n ) which is a Riemann domain spread over � n ([11]).

It is easy to see that the interior of the intersection of any family of Ak-domains of

holomorphy is an Ak-domain of holomorphy and that the interior of the intersection

of any family of Ak-convex domains is an Ak-convex domain. A bounded pseudo-

convex domain with C∞-boundary is an Ak-convex Ak-domain of holomorphy. This

implies that the increasing union of Ak-domains of holomorphy (respectively, Ak-

convex domains) does not have to be an Ak-domain of holomorphy (respectively,

Ak-convex domain) since an arbitrary pseudoconvex domain can be exhausted by an

increasing sequence of bounded pseudoconvex domains with C∞-boundary.

The following proposition will be used later on:

Proposition 2.3. Let D1 and D2 be Ak-domains of holomorphy in � m1 and � m2

respectively. Then Ω = D1 × D2 ⊂ � m1+m2 is an Ak-domain of holomorphy.

���	�
���
. Suppose that Ω is not an Ak-domain of holomorphy. Then there exist

open sets Ω1 and Ω2 as in Definition 2.2 and since Ω2 intersects the boundary of Ω it

intersects either ∂D1 ×D2 or D1 × ∂D2. In either case there is a function in Ak(Ω)

which cannot be continued to Ω2. �
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3. Sequential Ak-convexity

One way of proving that a domain is Ak-convex or an Ak-domain of holomorphy is

to show that it is sequentially Ak-convex. We recall that a domain in � n is a domain

of holomorphy if and only if for every discrete sequence {pj}∞j=0 in Ω there exists a

function f ∈ H(Ω) such that sup
j∈ �

|f(pj)| = +∞. We will see that a corresponding

notion for Ak is a sufficient condition for a domain to be an Ak-domain of holomorphy

as well as an Ak-convex domain. It is however not a necessary condition.

Definition 3.1. A domain Ω ⊂ � n is said to be sequentially Ak-convex if for

every discrete sequence {pj}∞j=0 in Ω there exists a function f ∈ Ak(Ω), not identically

constant, such that sup
j∈ �

|f(pj)| = ‖f‖L∞(Ω).

Proposition 3.2. A sequentially Ak-convex domain Ω ⊂ � n is Ak-convex.

���	�
���
. Suppose Ω ⊂ � n is not Ak-convex. Then there exists a compact set K

in Ω such that K̂Ak is not a compact subset of Ω and hence we can find a discrete

sequence {pj}∞j=0 ⊂ K̂Ak such that |f(pj)| 6 ‖f‖L∞(K) for every f ∈ Ak(Ω). It

follows from the maximum principle for holomorphic functions that sup
j∈ �

|f(pj)| <

‖f‖L∞(Ω) for every non-constant function f ∈ Ak(Ω) and this means that Ω is not

sequentially Ak-convex. �

Proposition 3.3. A sequentially Ak-convex domain Ω ⊂ � n is an Ak-domain of

holomorphy.

���	�
���
. Suppose Ω is not an Ak-domain of holomorphy. Then there exist open

sets Ω1 and Ω2 as in Definition 2.2. In particular, Ω2 is not a subset of Ω, but

Ω∩Ω2 6= ∅. Let K be a compact set in Ω∪Ω2 such that K \Ω2 is a compact subset

in Ω. We choose a discrete sequence {pj}∞j=0 ⊂ Ω∩K. It follows from the maximum

principle for holomorphic functions and the fact that holomorphic functions cannot

increase in norm when extended, that sup
j∈ �

|f(pj)| < ‖f‖L∞(Ω) for every non-constant

function f in Ak(Ω). �

In [10] N. Sibony constructed a pseudoconvex Runge domain Ω contained in the

bidisk ∆2 ⊂ � 2 such that int Ω = Ω, ∆2\Ω 6= ∅ and so that all bounded holomorphic

functions on Ω can be holomorphically continued to∆2. Hence Ω is not anAk-domain

of holomorphy for any k ∈ � but since it is Runge, it follows that it is also convex
with respect to the class of Ak-functions. By Proposition 3.3 the domain Ω cannot be

sequentially Ak-convex. Moreover the Hartogs triangle {(z1, z2) ∈ � 2 : |z1| < |z2| <

1} is not a sequentially Ak-convex domain since it is not an Ak-convex domain for
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any k ∈ � . It is however an Ak-domain of holomorphy for every k ∈ � and therefore
the following corollary can be established.

Corollary 3.4. There exists a bounded domain D1 ⊂ � 2 with int D1 = D1 which

for every k ∈ � is an Ak-convex domain but not a sequentially Ak-convex domain.

There also exists a bounded domain D2 ⊂ � 2 with int D2 = D2 which for every

k ∈ � is an Ak-domain of holomorphy but not a sequentially Ak-convex domain.

We remark that as a consequence of Proposition 3.2 and Proposition 3.3 a domain

Ω for which every boundary point is a peak point for Ak(Ω) is an Ak-convex Ak-

domain of holomorphy.

4. Ak-domains of holomorphy

We now study domains of existence for the class of Ak-functions on domains in

� n . We first prove the following lemma.

Lemma 4.1. Let k ∈ � and let Ω be a bounded domain in � n . For every element

m in the spectrum M
Ak(Ω) of Ak(Ω) the following inequality holds:

|m(f)| 6 sup
z∈Ω

|f(z)|, f ∈ Ak(Ω).

���	�
���
. Suppose there is an element m ∈ M

Ak(Ω) and a function f ∈ Ak(Ω)

such that

m(f) = λ, where |λ| > sup
z∈Ω

|f(z)|.

Then the function

g(z) =
1

f(z) − λ

belongs to Ak(Ω) and m(g(f − λ)) = 1. On the other hand

m (g(f − λ)) = m(g) · m(f − λ)

= m(g) · (m(f) − λ) = 0.

This contradiction completes the proof of the lemma. �

Let Ω be a bounded domain in � n . Denote by A k
D(Ω) the set of functions f : Ω →

[0,∞) with the property that there exists a sequence of functions fj ∈ Ak(Ω) such

that {|fj |} is a nonincreasing sequence and such that

f(z) = lim
j→∞

|fj(z)|.
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Furthermore, denote by A k
I (Ω) the set of functions f : Ω → (0,∞) with the property

that there exists a sequence of nonvanishing functions fj ∈ Ak(Ω) such that {|fj |}

is an nondecreasing sequence and such that

f(z) = lim
j→∞

|fj(z)|.

It follows from the definitions that the functions in A k
D are nonnegative and plurisub-

harmonic and that the functions in A k
I are positive and plurisuperharmonic.

We now introduce a class of domains defined by functions in A k
D and A k

I and we

prove the following theorem:

Theorem 4.2. Let k ∈ � and let Ω1 and Ω2 be bounded Ak-domains of holo-

morphy in � m1 and � m2 respectively. Let g1 ∈ A k
D(Ω1), g2 ∈ A k

I (Ω1) and h ∈

A k
D(Ω2) ∩ A k

I (Ω2). If the domain Ω defined by

Ω = {(z, w) ∈ Ω1 × Ω2 : g1(z) < h(w) < g2(z)}

fulfills int Ω = Ω, then Ω is an Ak-domain of holomorphy.

���	�
���
. Suppose that g1(z) = lim

j→∞
|g1,j(z)| and that g2(z) = lim

j→∞
|g2,j(z)|

where {|g1,j |} is a nonincreasing sequence and
{
|g2,j|

}
a nondecreasing sequence of

nonvanishing functions where g1,j and g2,j belong to Ak(Ω1). Suppose also that

h(z) = lim
j→∞

|h1,j(z)| = lim
j→∞

|h2,j(z)| where {|h1,j |} is an nonincreasing sequence

and {|h2,j |} a nondecreasing sequence of nonvanishing functions where h1,j and h2,j

belong to Ak(Ω2).

Suppose that Ω is not an Ak-domain of holomorphy. Since int Ω = Ω the Ak-

envelope of holomorphy, (Ω̃, Π, � m1+m2), of Ω contains a point z̃ such that Π(z̃) =

(z0, w0) /∈ Ω. We will see that this leads to a contradiction.

There exists a complex homomorphism m0 in M
Ak(Ω) such that

(4.1) m0(f) = f̃(z0, w0) for every f ∈ Ak(Ω)

where f̃ denotes the holomorphic continuation of f to (Ω̃, Π, � m1+m2). Since Ω1 and

Ω2 are Ak-domains of holomorphy, it follows from Proposition 2.3 that z0 ∈ Ω1 and

w0 ∈ Ω2.

Define for every n ∈ � the functions

γn,1,i(z, w) =

{
0 if g1,i ≡ 0,

g
k+n
1,i

(z)

‖g1,i‖k
L∞(Ω1)

hn
1,i

(w)
otherwise
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and

γn,2,i(z, w) =
h2,i(w)k+n

‖g2,i‖k
L∞(Ω1)g

n
2,i(z)

.

For i large enough we have |g1,i(z)| < |h1,i(w)| and |h2,i(w)| < |g2,i(z)| when

(z, w) ∈ Ω and therefore γn,1,i and γn,2,i belong to Ak(Ω). Furthermore we have

‖γn,1,i‖L∞(Ω) 6 1 and ‖γn,2,i‖L∞(Ω) 6 1. For i large enough we get, using Lemma 4.1,

that

|m0(γn,1,i)| =
|m0(g1,i)|k+n

‖g1,i‖k
L∞(Ω1)|m

0(h1,i)|n
=

|g1,i(z
0)|k+n

‖g1,i‖k
L∞(Ω1)|h1,i(w0)|n

6 1

and

|m0(γn,2,i)| =
|m0(h2,i)|k+n

‖g2,i‖k
L∞(Ω1)|m

0(g2,i)|n
=

|h2,i(w
0)|n

‖g2,i‖k
L∞(Ω1)

|g2,i(z0)|n
6 1

which implies that

|g1,i(z
0)|k+n 6 ‖g1,i‖

k
L∞(Ω1)|h1,i(w

0)|n

and

|h2,i(w
0)|k+n

6 ‖g2,i‖
k
L∞(Ω1)|g2,i(z

0)|n

for all n ∈ � . Hence

|g1,i(z
0)| 6 |h1,i(w

0)| and |h2,i(w
0)| 6 |g2,i(z

0)|.

This holds for every i large enough, so we conclude that

g1(z
0) 6 h(w0) 6 g2(z

0)

which means that (z0, w0) belongs to Ω. This contradiction concludes the proof of

the theorem. �

A comparison with the class A∞(Ω) = C∞(Ω) ∩ H(Ω) gives that the domains

considered in the statement of Theorem 4.2 do not have to be A∞-domains of holo-

morphy. (See Remark 1 on page 60.)

It is not difficult to see that the proof of Theorem 4.2 can be modified to give the

following proposition.
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Proposition 4.3. Let k ∈ � and let Ω1 be a bounded Ak-domain of holomorphy

in � n . Let g ∈ A k
I (Ω1). Then the Hartogs domain Ω defined by

Ω = {(z, w) ∈ Ω1 × � : |w| < g(z)}

is an Ak-domain of holomorphy if int Ω = Ω.

5. Spectrum properties

Recall that Ωe denotes the embedding of the point evaluations on Ω in the spec-

trum M Ak(Ω) (see Section 2). In this section we show that if Ω is a pseudoconvex

domain with C1-boundary in � n which has the property that the projection of the

spectrum of Ak(Ω) on � n equals Ω, then the spectrum in fact equals Ωe. We then

show that if a domain Ω has a Stein neigbourhood basis, then the projection of the

spectrum of Ak(Ω) equals the closure of Ω. We also show that the domains studied in

Section 4 have, under certain conditions, a Stein neighbourhood basis. We conclude

that if Ω is such a domain with C1-boundary, then the Ak-corona problem can be

solved.

For a domain Ω ⊂ � n we will denote by π the projection of the spectrum of Ak(Ω)

on � n defined by

π(m) = (m(z1), . . . , m(zn)), m ∈ M
Ak(Ω).

Observe that the closure of Ω is always a subset of π(M Ak(Ω)). The following

proposition gives a sufficient condition for the equality Ωe = M Ak(Ω) to hold:

Theorem 5.1. Let k ∈ � and let Ω be a bounded pseudoconvex domain in � n

with C1-boundary. If the projection π(M Ak(Ω)) of the spectrum of Ak(Ω) equals Ω,

then M Ak(Ω) = Ωe.

���	�
���
. Let f be an arbitrary function in Ak(Ω) and define the continuous

function F : M Ak(Ω) → � as F (m) = f ◦ π(m). Since π(M Ak(Ω)) = Ω, the function

is well-defined. By B we denote the uniform algebra generated by F and Ak(Ω).

Clearly the Shilov boundary δAk(Ω) of Ak(Ω) is a subset of the Shilov boundary δB

of B.

Since Ω is a bounded pseudoconvex domain with C1-boundary, it follows from a

result by M.Hakim and N. Sibony ([5], Lemma 3), that for every m ∈ M Ak(Ω) there

exists a neighbourhood U of m such that F can be uniformly approximated on U by

functions in Ak(Ω). From this it follows (Lemma 9.1, p. 93, [4]) that δB ⊂ δAk(Ω)
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and hence δB = δAk(Ω). Furthermore the Shilov boundary of Ak(Ω) is contained in

the topological boundary ∂Ω of Ω.

We have that f̂ = F on ∂Ω and hence on δB. Thus f̂ = f ◦ π on M Ak(Ω). This

proves that π is injective and the result follows. �

We remind the reader of the definition of a Stein neighbourhood basis.

Definition 5.2. A domain Ω ⊂ � n is said to have a Stein neighbourhood basis

if for every open neighbourhood U of Ω there exists a domain of holomorphy Ω′ such

that Ω ⊂ Ω′ ⊂ U .

Theorem 5.3. Let k ∈ � and let Ω ⊂ � n be a bounded domain that has a Stein

neighbourhood basis. Then the projection on � n of the spectrum M Ak(Ω) of Ak(Ω)

equals Ω.

���	�
���
. Suppose there is an element m0 in the spectrum M Ak(Ω) such that

π(m0) = (m0(z1), . . . , m0(zn)) /∈ Ω. Let U be a bounded open neighbourhood of Ω

such that π(m0) /∈ U and denote by Ω̃ a pseudoconvex domain with C∞-boundary

such that Ω ⊂ Ω̃ ⊂ U . It follows from [5] that the spectrum M Ak( 
Ω) equals Ω̃e. We

have that the restrictions to Ω of the functions in Ak(Ω̃) is a subset of Ak(Ω). It fol-

lows that there exists an element m̃0 inM Ak( 
Ω) defined by m̃0(f) = m0(f |Ω). Hence

π(m̃0) = (m̃0(z1), . . . , m̃0(zn)) = (m0(z1), . . . , m0(zn)) = π(m0) /∈ U . This however

contradicts the fact that M Ak( 
Ω) = Ω̃e. Thus we obtain that π(M Ak(Ω)) = Ω. �

Theorem 5.4. Let k ∈ � and let Ω1 and Ω2 be bounded Ak-domains in � m1 and

� m2 respectively. Let g1 ∈ A k
D(Ω1), g2 ∈ A k

I (Ω1) and h ∈ A k
D(Ω2) ∩ A k

I (Ω2) and

suppose that g1 does not vanish on Ω1. If the domain Ω defined by

Ω = {(z, w) ∈ Ω1 × Ω2 : g1(z) < h(w) < g2(z)}

fulfills int Ω = Ω and is a relatively compact subset of Ω1 × Ω2, then Ω has a Stein

neighbourhood basis.

���	�
���
. Define the domains

G1,ε =
{
(z, w) ∈ Ω1 × Ω2 : h(w) > 0,

g1(z)

h(w)
< 1 + ε

}

and

G2,ε =

{
(z, w) ∈ Ω1 × Ω2 : g2(w) > 0,

h(w)

g2(z)
< 1 + ε

}
.

From the plurisubharmonicity and the plurisuperharmonicity of the functions that

define G1,ε and G2,ε it follows that these domains are pseudoconvex. For ε > 0 small
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enough the intersection Gε = G1,ε ∩ G2,ε ⊂ Ω1 × Ω2 obviously contains Ω and is

pseudoconvex. Furthermore, for every open neighbourhood U of Ω we can find an ε

such that Ω ⊂ Gε ⊂ U . This completes the proof of the theorem. �

Corollary 5.5. Let k ∈ � and let Ω1 and Ω2 be bounded Ak-domains in � m1

and � m2 respectively. Let g1 ∈ A k
D(Ω1), g2 ∈ A k

I (Ω1) and h ∈ A k
D(Ω2) ∩ A k

I (Ω2)

and suppose that g1 does not vanish on Ω1. Let Ω be a domain defined by

Ω = {(z, w) ∈ Ω1 × Ω2 : g1(z) < h(w) < g2(z)} .

Assume that Ω has C1-boundary and is a relatively compact subset of Ω1 ×Ω2. Let

f1, . . . , fm be functions in Ak(Ω) such that |f1(z)| + |f2(z)| + . . . + |fm(z)| > 0 for

every z ∈ Ω. Then there exist functions g1, . . . , gm in Ak(Ω) such that

m∑

i=1

fi(z)gi(z) = 1 for every z ∈ Ω.

���	�
���
. It follows from Theorem 5.3 and Theorem 5.4 that the projection of

M Ak(Ω) on � n equals Ω. Theorem 5.1 now gives thatM Ak(Ω) = Ωe. The conclusion

in the theorem is then a standard result in the theory of uniform algebras. �

6. Ak-convexity

For a domain Ω in � n consider the property of being convex with respect to H(Ω).

This is both a necessary and a sufficient condition for Ω to be a domain of existence

for H(Ω) ([3]). The convexity property remains a necessary condition if the class

of holomorphic functions H(Ω) is replaced by an arbitrary subclass S of H(Ω) such

that if f is a function in S, then all derivatives of f also belong to S. For any

k ∈ � the corresponding convexity property of Ω when H(Ω) is replaced by Ak(Ω)

is neither necessary nor sufficient as remarked in Section 3. In this section we study

convexity with respect to the class of Ak-functions for domains of the type studied

in the previous sections.

We start with a lemma that will be used to show that the domains considered in

the statement of Theorem 5.4 are convex with respect to the class of Ak-functions.
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Lemma 6.1. Let Ω be a domain in � n and let S(Ω) be a subclass of H(Ω) such

that if f is a function in S, then all derivatives of f also belong to S. Let K be a

compact subset of Ω and denote by % = %(K, ∂Ω) :

%(K, ∂Ω) = inf
z∈K

{sup{R ∈ � : ∆(z, R) ⊂ Ω}}

where ∆(z, R) is the polydisc with centre at z and all radii equal R. If p is a point in

the S-convex hull K̂S of K, then every function f ∈ S(Ω) extends holomorphically

to the polydisc with centre at p and all radii equal %.

For the reader’s convenience we prove the proposition:
���	�
���

. (See e.g. [9].) Every function f ∈ S(Ω) can in a neighbourhood of a be

expanded in a Taylor series

(6.1) f(z) =

∞∑

|k|=0

ck(z − p)k

since p ∈ Ω. Here

ck =
1

k!

∂|k|f

∂zk
(p).

Since p ∈ K̂S it follows that

∣∣∣∂
|k|f

∂zk
(p)

∣∣∣ 6

∥∥∥∂|k|f

∂zk

∥∥∥
K

.

Choose a number r < % and denote by Kr an r-neighbourhood of K. The function

f is bounded on Kr since Kr is relatively compact in Ω and we let

Mf (r) = ‖f‖r
K.

If z ∈ K, then ∆(z, r) ⊂ Kr and we get

|ck| 6
1

k!

∥∥∥∂|k|f

∂zk

∥∥∥
K

6
Mf (r)

r|k|
.

For any positive r1 < r and z ∈ ∆(p, r1) we have

∣∣ck(z − p)k
∣∣ 6 Mf (r)

(r1

r

)|k|

and from this we see that the series (6.1) converges in ∆(p, r1). Since we can choose

r and r1 arbitrary close to % it follows that the series (6.1) converges in ∆(p, %). The

holomorphic continuation is given by this series and the proof is completed. �

Since the coordinate functions belong to A∞(Ω) = H(Ω) ∩ C∞(Ω) we get from

Lemma 6.1 the following corollary:
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Corollary 6.2. An A∞-domain of holomorphy Ω ⊂ � n is A∞-convex.

However it is not true that every A∞-convex domain is an A∞-domain of holo-

morphy as is seen from the example by Sibony [10] mentioned in Section 3. That is

an example of a domain which is not an H∞-domain of holomorphy and hence not

an A∞-domain of holomorphy. However it is A∞-convex since it is pseudoconvex

and Runge.

Theorem 6.3. Let k ∈ � and let Ω1 and Ω2 be bounded Ak-domains in � m1 and

� m2 respectively. Let g1 ∈ A k
D(Ω1), g2 ∈ A k

I (Ω1) and h ∈ A k
D(Ω2) ∩ A k

I (Ω2) and

suppose that g1 does not vanish on Ω1. If the domain Ω defined by

Ω = {(z, w) ∈ Ω1 × Ω2 : g1(z) < h(w) < g2(z)}

fulfills int Ω = Ω and is a relatively compact subset of Ω1 ×Ω2, then Ω is Ak-convex.

���	�
���
. Recall that any pseudoconvex domain can be exhausted by bounded

pseudoconvex domains with C∞-boundary and that bounded pseudoconvex domains

with C∞-boundary are A∞-domains of holomorphy ([2], [5]). It follows from The-

orem 5.4 that Ω has a Stein neighbourhood basis and therefore Ω is the interior of

the intersection of A∞-domains of holomorphy. Hence Ω is an A∞-domain of holo-

morphy. Corollary 6.2 implies that Ω is convex with respect to A∞ and hence also

with respect to Ak, 0 6 k < ∞. �

���������	�
1. If the assumption that g1 is strictly positive on Ω1 in the statement

of Theorem 6.3 is removed, then it can be shown that the conclusion of the theorem

is not true in general. Suppose there is a point (z0, w0) ∈ Ω ⊂ � m1 × � such that
g1(z0) = 0. If h(w) = |w|, then Ω contains the punctured disk {(z0, w) : 0 < |w| <

g2(z0)} which implies that the Ak-convex hull of K = {(z0, w) : |w| = 2−1g2(z0)}

is not a compact subset of Ω. This also means that Ω is not an A∞-domain of

holomorhy since, by Corollary 6.2, every A∞-domain of holomorphy is convex with

respect to the class of A∞-functions.

Also if the condition that Ω is a relatively compact subset of Ω1×Ω2 is not fulfilled,

then the conclusion of the theorem may not be true. This can be seen by letting Ω1

and Ω2 be Ak-domains of holomorphy such that Ω1 × Ω2 is not Ak-convex. Then it

is trivial that one can find functions g1, g2 and h so that {(z, w) ∈ Ω1 ×Ω2 : g1(z) <

h(w) < g2(z)} = Ω1 × Ω2.
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