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1. Introduction

It is well-known that the primitive F of a real-valued Henstock-Kurzweil integrable

function f defined on a compact interval [a, b] ⊂ � is ACG∗, and F is differentiable

almost everywhere on [a, b] and F ′(x) = f(x). The reverse implication also holds.

That is, if a function F is ACG∗ and F ′(x) = f(x) almost everywhere on [a, b], then f

is Henstock-Kurzweil integrable on [a, b] and F is the primitive of f . This fact is also

valid for the strong Henstock-Kurzweil integral of Banach-space valued functions de-

fined on 1-dimensional interval [a, b], see [1, Theorem 4.5 in Chapter 7]. The question

how to describe the primitive of a Banach-space valued Henstock-Kurzweil integrable

function defined on a multidimensional interval I0 ⊂ � m arises naturally. However,

the above well-known characterization of the 1-dimensional Henstock-Kurzweil inte-

gral in [1] relies heavily on the order structure of the real line, so it does not permit

direct extension to the multidimensional Henstock-Kurzweil integral. Since the main
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tool in the proof of the above characterization on the real line is the Vitali covering

theorem which requires regularity, we cannot succeed in higher-dimensional spaces.

For the strong McShane integral of Banach-valued function defined on a higher-

dimensional Euclidean space some full characterizations were given using variational

measure in [1], [2]. In this paper, we first use the methods from [3], [5], [6] to discuss

the SHK derivative of strong Henstock-Kurzweil integral, based on inner variation,

then we make use of the derivative, inner variation and the SL (strong Lusin) condi-

tion in [3], [5] to give some complete characterizations of the primitive of a strongly

Henstock-Kurzweil integrable function mapping an interval I0 in � m into a Banach

space. This work is closely related to Section 5 in Chapter 7 of [1].

2. Basic definitions and theorems

Throughout this paper X will denote a real Banach space, I0 is a compact interval

in � m and Σ is the family of subintervals of I0. Let I ⊂ I0, its Lebesgue measure

being denoted by µ(I). For x ∈ � m with x = (x1, x2, . . . , xm), the norm ‖x‖ is

defined by ‖x‖ = max{|x1|, |x2|, . . . , |xm|}. Given δ > 0, B(x, δ) denotes the set

{y ∈ � m : ‖y − x‖ < δ}.

A partial partition D of I0 is a finite family of interval-point pairs

D = {(Ii, xi) ; xi ∈ Ii, i = 1, 2, . . . , m}

with the intervals non-overlapping, and their union a subset of I0. If a partial

partition D is such that the union of the intervals in D is I0, then we call D a

partition of I0.

Given a positive function δ : I0 → (0, +∞) (a gauge) an interval-point pair (I, x)

is said to be δ-fine if I ⊂ B(x, δ(x)). A partition D of I0 is said to be δ-fine if each

interval-point pair in D is δ-fine.

Let f : I0 → X and δ : I0 → (0, +∞). Let D = {(Ii, xi)}m
i=1 be a δ-fine partition

of I0. The Riemann sum corresponding to f and D is written as
m
∑

i=1

f(xi)µ(Ii).

In the sequel, a partition D = {(Ii, xi)}m
i=1 will be often written as D = {(I, x)}

in which (I, x) represents the typical interval-point pair in D. The corresponding

Riemann sum will be written shortly in the form (D)
∑

f(x)µ(I).

Definition 2.1. A function f : I0 → X is said to be Henstock-Kurzweil inte-

grable on I0 if there is an additive interval function F with the following property:

for every ε > 0, there exists a gauge δ on I0 such that

∥

∥

∥
(D)

∑

[f(x)µ(I) − F (I)]
∥

∥

∥
< ε
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for every δ-fine partition D = {(I, x)} of I0. The function F is called the primitive

of f on I0.

F (I0) = (HK)
∫

I0
f dt is the Henstock-Kurzweil integral of f over I0.

Definition 2.2. A function f : I0 → X is said to be strongly Henstock-Kurzweil

integrable on I0 if f is Henstock-Kurzweil integrable on I0 with the primitive F such

that for every ε > 0 there exists a gauge δ on I0 such that

(D)
∑

‖f(x)µ(I) − F (I)‖ < ε

for every δ-fine partition D = {(I, x)} of I0.

We denote F (I0) = (SHK)
∫

I0
f dt in this case.

Denote further by SHK = SHK(I0; X) the set of functions f : I0 → X which are

strongly Henstock-Kurzweil integrable on I0.

An additive interval function F and a point function correspond in a straightfor-

ward way uniquely to each other (see [1]). So, if there is no confusion, we use the

same symbol F for an additive interval function on Σ and also for the corresponding

point function on I0.

Now we introduce some notations and concepts using the ideas from [3], [5], [6].

For each positive function δ on I0 and each real number η > 0, let Γ(δ, η) be a

family of δ-fine interval-point pairs (I, x) with I a subinterval of I0 and x ∈ I0.

Assume that for a fixed δ we have Γ(δ, η1) ⊂ Γ(δ, η2) if η2 6 η1 and for a fixed

η, Γ(δ1, η) ⊂ Γ(δ2, η) if δ1(x) 6 δ2(x). A family Γ(δ, η) is called an inner cover of

E ⊂ I0 if for each x ∈ E, there is at least one (I, x) ∈ Γ(δ, η).

Assume that for a fixed δ, Γ(δ, η) is an inner cover of E ⊂ I0 if η is small enough.

Let us introduce the following concept.

Definition 2.3. Let G be a Banach space-valued function defined on the family

of all interval-point pairs (I, x) with I ⊂ I0 and let E be a subset of I0. Then E is

said to be of inner G-variation zero with respect to Γ(δ, η) as given above if for each

ε > 0 there exists a positive function δ such that for every δ-fine partial partition

D = {(I, x)} of I0 with x ∈ E and D ⊂ Γ(δ, η), we have

(D)
∑

x∈E

‖G(I, x)‖ < ε.

If G(I, x) represents the volume of I (G(I, x) = µ(I)), then E is said to have inner

variation zero with respect to Γ(δ, η).

It is obvious that if a set E is of measure zero then it is of inner variation zero

with respect to Γ(δ, η), and the following propositions hold.
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Proposition 2.1. Let E be a subset of an interval I0 ⊂ � m . If E is of inner

variation zero with respect to Γ(δ, η), then any subset E ′ of E is of inner variation

zero with respect to Γ(δ, η).

Proposition 2.2. Let Ek, k = 1, 2, . . . be a sequence of disjoint subsets of I0

and let each Ek be of inner variation zero with respect to Γ(δ, η). Then E =
∞
⋃

k=1

Ek

is of inner variation zero with respect to Γ(δ, η).

The proofs are trivial, we omit them.

3. Derivatives of strong Henstock-Kurzweil integrals

Definition 3.1. An interval function F on I0 is said to be SHK differentiable at

x ∈ I0 with the SHK derivative DSHKF (x) if for every ε > 0 there exists a gauge δ

such that whenever (I, x) is δ-fine with x ∈ I , we have

‖F (I) − DSHKF (x)µ(I)‖ < εµ(I).

F is said to be SHK differentiable on I0 if F is SHK differentiable at each point x

in I0.

Note that in fact the SHK derivative DSHKF (x) is introduced by Henstock-

Kurzweil interval-point pairs in the above Definitions 2.1–2.2. In order to discuss

the derivatives of strong Henstock-Kurzweil integral, we need to specify Γ(δ, η)

introduced above.

Let f : I0 → X and let F be an X-valued interval function on I0. For each

δ(x) > 0 and each η > 0, define

(3.1) Γ(f, F, δ, η) = {(I, x) ; x ∈ I0, ‖F (I) − f(x)µ(I)‖ > ηµ(I)

and (I, x) is δ-fine}.

Then Γ(f, F, δ, η) is a family of δ-fine interval-point pairs. From now on, we write

Γ(δ, η) instead of Γ(f, F, δ, η) from (3.1) if it is obvious that we are discussing the

case of fixed f and F ; and we take the inner variation with respect to this specific

family Γ(δ, η) = Γ(f, F, δ, η), when we are discussing differentiation.

Let

E(f, F, δ, η) = {x ∈ I0 ; there exists I such that x ∈ I and (I, x) ∈ Γ(f, F, δ, η)},

E(f, F ) =
⋃

η

⋂

δ

E(f, F, δ, η).
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The set E(f, F ) ⊂ I0 consists of points x where DSHKF (x) 6= f(x) or DSHKF (x)

does not exist, and while Γ(f, F, δ, η) need not be a Vitali cover of E(f, F ), but it is

an inner cover and satisfies all conditions imposed on Γ(δ, η) mentioned above.

For convenience we denote E(f, F ) by E0, i.e.,

(3.2) E0 = E(f, F ) =
⋃

η

⋂

δ

E(f, F, δ, η).

Theorem 3.1. Let f : I0 → X be a strongly Henstock-Kurzweil integrable

function on I0 with the primitive F . Then DSHKF (x) = f(x) except at points of the

set E0 in (3.2) with inner variation zero with respect to Γ(δ, η) for every η > 0.

�������	�
. We only need to prove that E0 is of inner variation zero with respect

to Γ(δ, η) for every η > 0.

Let η be any positive real number and ε > 0. Since F is the primitive of the

strongly Henstock-Kurzweil integrable function f , there is a gauge δ of I0 such that

for any δ-fine partition D = {(I, x)} of I0 we have

(D)
∑

‖f(x)µ(I) − F (I)‖ < ε · η.

Then for any δ-fine partial partition D = {(I, x)} of I0 with x ∈ E0 and D ⊂ Γ(δ, η)

we have by (3.1) the inequality

η(D)
∑

µ(I) < (D)
∑

‖f(x)µ(I) − F (I)‖ < εη.

So,

(D)
∑

µ(I) <
1

η
(D)

∑

‖f(x)µ(I) − F (I)‖ <
1

η
· εη = ε.

The proof is complete. �

4. The primitive of strong Henstock-Kurzweil integral

In order to obtain a characterization of the primitive of a strongly Henstock-

Kurzweil integrable function, we introduce the following concept.

Definition 4.1. An interval function F is said to satisfy the SL (strong Lusin)

condition with respect to Γ(δ, η) on a set E ⊂ I0 if for every ε > 0 there exists a

gauge δ on E such that for any δ-fine partial partition D = {(I, x)} of I0 with x ∈ E

and D ⊂ Γ(δ, η), we have

(D)
∑

‖F (I)‖ < εµ(I).
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Theorem 4.1. Let f : I0 → X be a strongly Henstock-Kurzweil integrable

function on I0 with the primitive F . Then for every η > 0 the function F satisfies

the SL condition with respect to Γ(δ, η) on E0 from (3.2).

�������	�
. By Theorem 3.1 we know that E0 is of inner variation zero with respect

to Γ(δ, η) for every η > 0. Let

En = {x ∈ E0 : n − 1 6 ‖f(x)‖ < n}, n = 1, 2, . . .

Then E0 =
⋃

n

En. Since for every η > 0, E0 is of inner variation zero with respect

to Γ(δ, η), En is of inner variation zero with respect to Γ(δ, η) by Proposition 2.1.

That is, for every ε > 0 there is a gauge δn on En such that for any δn-fine partial

partition Dn = {(I, x)} with x ∈ En and Dn ⊂ Γ(δn, η), we have

(4.1) (Dn)
∑

µ(I) <
ε

2n+1n
.

Since f is a strongly Henstock-Kurzweil integrable function, for given ε > 0 there is

a gauge δ′ of I0 such that for any δ′-fine partition D = {(I, x)} of I0 we have

(4.2) (D)
∑

‖f(x)µ(I) − F (I)‖ <
ε

2
.

Define δ on I0 as follows: δ(x) = min{δn(x), δ′(x)} if x ∈ En, n = 1, 2, . . . and

δ(x) = δ′(x) if x ∈ I0 \ E0. Let D = {(I, x)} be a δ-fine partial partition of I0 with

x ∈ E0 and D ⊂ Γ(δ, η) and Dn = {(I, x) ∈ D ; x ∈ En}. Then (4.1) holds for this

Dn = {(I, x)}, therefore, by (4.1) and (4.2), we obtain

(4.3) (D)
∑

‖F (I)‖ 6 (D)
∑

‖F (I) − f(x)µ(I)‖ + (D)
∑

‖f(x)µ(I)‖

<
ε

2
+

∞
∑

n=1

(Dn)
∑

‖f(x)‖µ(I)

<
ε

2
+

∞
∑

n=1

ε

2n+1 · n
· n = ε.

That is, F satisfies the SL condition with respect to Γ(δ, η) for every η > 0 on E0

and the proof is complete. �
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Theorem 4.2. Let f : I0 → X and let F be an additive interval function on

Σ. If DSHKF (x) = f(x) except at points of the set E0 with inner variation zero

with respect to Γ(δ, η) for every η > 0 and F satisfies the SL condition with respect

to Γ(δ, η) for every η > 0 on E0, then the function f is strongly Henstock-Kurzweil

integrable on I0 with the primitive F .
�������	�

. Let ε > 0 be an arbitrary real number. Suppose η < ε/2µ(I0). If

x ∈ I0 \ E0 then F is differentiable at x and its derivative is f(x). Hence there is a

positive function δ0(x) on I0 \ E0 such that

(4.4) ‖F (I) − f(x)µ(I)‖ < ηµ(I)

whenever (I, x) is δ0-fine.

On the other hand, let

En = {x ∈ E0 : n − 1 6 ‖f(x)‖ < n}, n = 1, 2, . . . .

Since E0 is of inner variation zero with respect to Γ(δ, η), then for each n ∈ 
 , En

is of inner variation zero with respect to Γ(δ, η). So, for given ε > 0, there exists a

positive function δn on En, n = 1, 2, . . ., such that

(4.5) (D)
∑

µ(I) <
ε

2n+1n

for any δn-fine partial partition D = {(I, x)} of I0 with x ∈ En and D ⊂ Γ(δn, η).

On E0, we define δ′(x) = δn(x) if x ∈ En, n = 1, 2, . . .; then for any δ′-fine partial

partition D = {(I, x)} with x ∈ E0 and D ⊂ Γ(δ′, η), we have by (4.5)

(4.6) (D)
∑

‖f(x)‖µ(I) <

∞
∑

n=1

ε

2n+1n
n = ε.

Recall that

‖F (I) − f(x)µ(I)‖ > ηµ(I)

for all (I, x) ∈ D ⊂ Γ(δ′, η) with x ∈ E0. Suppose (I, x) is δ′(x)-fine with x ∈ E0

and (I, x) /∈ Γ(δ′, η), then

(4.7) ‖F (I) − f(x)µ(I)‖ < ηµ(I).

Since F satisfies the SL condition with respect to Γ(δ, η) on E0, there exists a gauge

δ′′ on E0 such that

(4.8) (D)
∑

‖F (I)‖ < ε

for any δ′′-fine partial partition D = {(I, x)} of I0 with x ∈ E0 and D ⊂ Γ(δ′′, η).
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Now we define a δ(x) on I0 as follows: δ(x) = δ0(x) if x ∈ I0 \ E0, and δ(x) =

min{δ′(x), δ′′(x)} if x ∈ E0. Then for any δ-fine partition D = {(I, x)} of I0, by

(4.4),

(4.9) (D)
∑

x∈I0\E0

‖f(x)µ(I) − F (I)‖ < η · (D)
∑

x∈I0\E0

µ(I) 6 η|I0|.

On the other hand, a δ-fine partial partition D = {(I, x)} of I0 with all x ∈ E0 can

be decomposed into D′ and D′′, where

D′ = {(I, x) ∈ D ; x ∈ E0, (I, x) /∈ Γ(δ, η)},

D′′ = {(I, x) ∈ D ; x ∈ E0, (I, x) ∈ Γ(δ, η)}.

Then D′ satisfies (4.7) and D′′ satisfies (4.6) and (4.8). Thus

(D′)
∑

‖f(x)µ(I) − F (I)‖ < η|I0|,(4.10)

(D′′)
∑

‖f(x)‖µ(I) <

∞
∑

n=1

ε

2n+1n
n = ε(4.11)

and

(4.12) (D′′)
∑

‖F (I)‖ < ε.

Hence, by (4.9)–(4.12), we have

(D)
∑

‖f(x)µ(I) − F (I)‖(4.13)

= (D)
∑

x∈I0\E0

‖f(x)µ(I) − F (I)‖ + (D′)
∑

x∈E0

‖f(x)µ(I) − F (I)‖

+ (D′′)
∑

x∈E0

‖f(x)µ(I) − F (I)‖

6 2η|I0| + (D′′)
∑

x∈E0

‖f(x)‖µ(I) + (D′′)
∑

x∈E0

‖F (I)‖

< ε + ε + ε = 3ε.

Therefore f is a strongly Henstock-Kurzweil integrable function on I0 and F is its

primitive. �

By Theorems 3.1, 4.1 and 4.2 we obtain the following complete characterization of

the primitive of a strong Henstock-Kurzweil integrable function mapping an interval

I0 in � m into a Banach space X .
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Theorem 4.3. A function f : I0 → X is strongly Henstock-Kurzweil integrable

on I0 if and only if there exists an additive interval function F such thatDSHKF (x) =

f(x) except at points of the set E0 with inner variation zero with respect to Γ(δ, η)

for every η > 0, and F satisfies the SL condition on E0 with respect to Γ(δ, η) for

every η > 0.

To establish another characterization of the primitive of a strongly Henstock-

Kurzweil integrable function, we recall the concept ACG∗∗
δ in [7], [8], which can also

be found in [1].

Definition 4.2 [1], [7], [8]. Let I0 be an interval in � m andM ⊂ I0. An interval

function F defined on Σ is said to be AC∗∗
δ (M) if for every ε > 0 there exist a gauge

δ : I0 → (0,∞) and η > 0 such that for any two δ-fine partitions D1 = {(ti, Ii)},

D2 = {(sj , Jj)} with tags ti, sj ∈ M such that any interval Jj lies in some interval

Ii, we have
∑

D1\D2

µ(I) < η =⇒
∑

D1\D2

‖F (I)‖X < ε

where D1 \ D2 = {(ti, Ii \
⋃

j,Jj⊂Ii

Jj)}. If I = Ii \
⋃

j,Jj⊂Ii

Jj then F (I) = F (Ii \

⋃

j,Jj⊂Ii

Jj) = F (Ii)−
∑

j,Jj⊂Ii

F (Jj) and µ(I) = µ(Ii \
⋃

j,Jj⊂Ii

Jj) = µ(Ii)−
∑

j,Jj⊂Ii

µ(Jj).

Furthermore, F is ACG∗∗
δ (I0) if I0 =

∞
⋃

i=1

Mi and F is AC∗∗
δ (Mi) for each i ∈ 
 .

It is known that the primitive F of a strongly Henstock-Kurzweil integrable func-

tion f is ACG∗∗
δ (see [7]). Further, we prove the following theorem.

Theorem 4.4. Let f : I0 → X and let an additive ACG∗∗
δ (I0) interval function

F be given.

If DSHKF (x) = f(x) except at points of a set E0 with inner variation zero with

respect to Γ(δ, η) for every η > 0, then f is a strongly Henstock-Kurzweil integrable

function on I0 and F is its primitive.

�������	�
. Let ε > 0 be an arbitrary real number. Suppose η < ε/2µ(I0).

Since DSHKF (x) = f(x) for each x ∈ I0\E0, there is a gauge δI0\E0
on I0\E0 such

that for any δI0\E0
-fine partial partition DI0\E0

= {(I, x)} of I0 with x ∈ I0 \E0, we

have

(4.14) (DI0\E0
)
∑

‖f(x)µ(I) − F (I)‖ < η|I0|.

Since F is ACG∗∗
δ (I0), I0 =

∞
⋃

i=1

Ei and F is AC∗∗
δ (Ei). We assume that Ei∩Ej = ∅

for any i 6= j. Then for any given ε > 0 there is a gauge δ̃i on each Ei and
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0 < ηi 6 ε2−i
( ∞

∑

i=1

ηi 6 ε
)

, such that for any δ̃i-fine partial partition Di = {(I, x)}

of I0 with x ∈ Ei, we have

(4.15) (Di)
∑

µ(I) < ηi ⇒ (Di)
∑

‖F (I)‖ <
ε

2i
.

Let Xi = E0 ∩ Ei, Yn = {x ∈ I0 : n − 1 6 ‖f(x)‖ < n} and Xin = Xi ∩ Yn. Then

(4.16) E0 =

∞
⋃

i=1

Xi =

∞
⋃

i=1

∞
⋃

n=1

Xin and also E0 =

∞
⋃

n=1

(E0 ∩ Yn).

Since E0 is of inner variation zero with respect to Γ(δ, η), each Xin is of inner

variation zero with respect to Γ(δ, η). So, for ηin = ηi/n2n, there is a δin 6 δ̃i on

Xin such that for any δin-fine partial partition Din = {(I, x)} of I0 with x ∈ Xin

and Din ⊂ Γ(δin, η), we have

(4.17) (Din)
∑

µ(I) <
ηi

n2n
.

Now define a gauge δE0
on E0 as follows: δE0

(x) = δin(x) if x ∈ Xin, i, n = 1, 2, . . ..

Then for any δE0
-fine partial partition Di = {(I, x)} of I0 with x ∈ Xi and Di ⊂

Γ(δE0
, η), by (4.16) and (4.17), we have

(4.18) (Di)
∑

µ(I) =

∞
∑

n=1

(Di)
∑

x∈Xin

µ(I) <

∞
∑

n=1

ηi

2n
= ηi

and by (4.15) and (4.18), we obtain

(4.19) (Di)
∑

‖F (I)‖ <
ε

2i
.

Let us now define a gauge δ(x) on I0 in the following way: δ(x) = δE0
(x) if x ∈ E0

and δ(x) = min{δI0\E0
(x), δ̃i(x)} if x ∈ (I0 \ E0) ∩ Ei, i = 1, 2, . . .. Then for any

δ-fine partition D = {(I, x)} of I0 (similarly to the proof of (4.13)), by (4.14), (4.17)

288



and (4.19), we conclude

(D)
∑

‖f(x)µ(I) − F (I)‖

= (D)
∑

x∈I0\E0

‖f(x)µ(I) − F (I)‖ + (D)
∑

x∈E0

‖f(x)µ(I) − F (I)‖

6 2(D)
∑

x∈I0\E0

ηµ(I) + (D)
∑

x∈E0,(I,x)∈Γ(δ,η)

‖f(x)‖µ(I)

+ (D)
∑

x∈E0,(I,x)∈Γ(δ,η)

‖F (I)‖

6 2η|I0| +
∞
∑

i=1

∞
∑

n=1

(D)
∑

x∈Xin,(I,x)∈Γ(δ,η)

‖f(x)‖µ(I) +
∞
∑

i=1

(D)
∑

x∈Xi

‖F (I)‖

< ε +

∞
∑

i=1

∞
∑

n=1

n
ηi

n2n
+

∞
∑

i=1

ε

2i

< ε + ε + ε = 3ε.

The proof is complete. �

By Theorem 4.4 and Theorem 4.1 of [7], it is easy to obtain the following theo-

rem giving another complete characterization of the primitive of strongly Henstock-

Kurzweil integrable functions.

Theorem 4.5. Let f : I0 → X , and let F be an additive interval function defined

on Σ. Let E0 be as in (3.2). Then f is strongly Henstock-Kurzweil integrable on

I0 with the primitive F if and only if E0 is of inner variation zero with respect to

Γ(δ, η) for every η > 0 and F is ACG∗∗
δ on I0.
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