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Abstract. Let V be an infinite-dimensional complex Banach space and X ⊂ P(V ) a
closed analytic subset with finite codimension. We give a condition on X which implies
that X is a complete intersection. We conjecture that the result should be true for more
general topological vector spaces.
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1. Complete intersections

For any locally convex and Hausdorff complex topological vector space V , let P(V )

be the projective space of all one-dimensional linear subspaces of V . We recall that a

holomorphic embedding j : X → Y between infinite-dimensional complex manifolds

is said to be locally split if for every P ∈ X there is an open neighborhood U of

j(P ) in Y and a complex manifold A such that U ∼= (U ∩ j(X)) × A; of course, if a

good Inverse Function Theorem is true for the local models of X and Y to have local

splitness it is sufficient that for every P ∈ X the linear subspace (dj)(P )∗(TP X) is a

closed supplemented subspace of the tangent space Tj(P )Y . It seems much easier to

work with complete intersections subvarieties of projective spaces, even the infinite-

dimensional ones (see [1] for complex analysis on them). The aim of this note is the

proof of the following result.
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Theorem 1. Let V be an infinite-dimensional complex Banach space and X a

closed analytic subset of finite definition of P(V ). Assume the existence of a closed

analytic subset Γ of X such that X \ Γ is smooth and locally split in P(V ) and Γ

is contained in P(M) with M a linear subspace (not necessarily closed) of V with

infinite algebraic codimension, and that the following Condition τ holds:���������
	�����
τ : There are finitely many continuous homogeneous polynomials

hi, 1 6 i 6 x, on V such that X = {Q ∈ P(V ) : hi(Q) = 0 for all i} and such that

for every P ∈ X \ Γ the differentials dh1(P ), . . . , dhx(P ) generate a supplementary

subspace for the tangent space of X at P inside the tangent space of P(V ) at P .

Then X is a complete intersection of finitely many hypersurfaces of P(V ).

An immediate corollary of Theorem 1 is that a smooth locally split analytic sub-

set of P(V ) satisfying Condition τ is a complete intersection when V is infinite-

dimensional. Obviously, this is no longer true when V is finite-dimensional. Indeed,

Condition τ is always satisfied when V is finite-dimensional. Since we conjecture that

the result is true for more general infinite-dimensional topological vector spaces (see

Remark 2), we consider the projective space P(V ) for more general vector spaces V .

To get good properties of the projective space P(V ) we will use the fact that any

codimension one closed linear subspace of V has a closed supplement; here we need

for instance that V is locally convex. Under this assumption P(V ) is covered by

infinitely many charts {Uv}v∈V ∗\{0} such that each Uv is biholomorphic to a codi-

mension one closed linear subspace of V . Indeed, for any continuous linear form

v : V → � , v 6= 0, the projective space P(Ker(v)) is a closed codimension one linear

projective subspace of P(V ) and we set Uv := P(V ) \ P(Ker(v)). If V is locally

convex, then Ker(v) has a topological supplement, i.e. V ∼= Ker(v) ⊕ � . We have
Uv

∼= Ker(v): send any a ∈ Ker(v) into the element of Uv determined by the equiv-

alence class of (a, 1) ∈ Ker(v) ⊕ � . Notice that Uv′ = Uv if and only if v′ = λv

for some λ ∈ � \ {0}. We will use these charts to define the locally free rank one

sheaves OP(V )(t), t ∈ � . For an equivalent definition when V is a Banach space,

see [2], §7. We set OP(V )(0) := OP(V ). Now we define OP(V )(1). We assume

that the holomorphic line bundle OP(V )(1) is the unique holomorphic line bundle on

P(V ) whose restriction to each Uv is trivial and such that for all v, w ∈ V ∗ \ {0}

its glueing datum over U ∩ Uw is w/u. If t > 2 let OP(V )(t) be the tensor power

of t copies of the locally free rank one sheaf OP(V )(1). If t < 0 let OP(V )(t) be the

dual of the sheaf OP(V )(−t). If t < 0, then H0(P(V ),OP(V )(t)) = 0. If t > 0,

then H0(P(V ),OP(V )(t)) is isomorphic (as a complex vector space) to the set of all

continuous homogeneous degree t polynomials on V .

Lemma 1. Fix integers k > 0, x > 0, y > 0, ai, 1 6 i 6 x, and bj , 1 6

j 6 y, such that a1 6 . . . 6 ax and b1 6 . . . 6 by. Assume the existence of a

420



surjection Φ:
x⊕

i=1

OPk (ai) →
y⊕

j=1

OPk (bj). Then x > y and either x > k or there

is a subset S of {1, . . . , x} with ](S) = y, say {i1, . . . , iy} with i1 < . . . < iy, such

that aij
= bj for all j and Φ′ :

y⊕
j=1

OPk(aij
) →

y⊕
j=1

OPk (bj) is an isomorphism, where

Φ′ := Φ
∣∣∣

y⊕
j=1

OPk (aij
) is the restriction of Φ.

��� ����
. The inequality x > y is obvious. Assume x 6 k. First assume y = 1.

The existence of a surjection Φ is equivalent to the existence of x hypersurfaces

Yi = {fi = 0} with fi a homogeneous form of degree b1−ai such that Y1∩. . .∩Yx = ∅,

with the convention that Yi = P
k if fi ≡ 0, Yi = ∅ if b1 = ai and fi is a non-zero

constant and that fi ≡ 0 if b1 < ai. Since any k hypersurfaces of the complex

projective space P
k have a common point, we obtain a contradiction, unless Yi = ∅

for at least one index, say the index m. In this case Φ|OPk (aim
) is an isomorphism.

Now assume y > 2. Compose Φ with the surjection
y⊕

j=1

OPk (bj) → OPk (b1). By the

first part we obtain aim
= b1 for some m and we may split off a rank one factor in

the matrix of homogeneous forms representing Φ. Then we conclude by induction

on y. �

��� ��������������� � ��� �
. Since X is finitely defined in a smooth manifold,

Xreg is a non-empty open dense subset of X and Sing(X) is a nowhere dense closed

analytic subset of X ([2], Ch.V of Part II). By assumption the linear span P(M) of

Sing(X) has infinite algebraic codimension in P(V ).� � �! 	"��#%$&���
: We claim that the proofs in [3], §1.2, yield that for every P ∈

Xreg \Γ and every integer z > 0, X contains a z-dimensional linear subspace Az such

that P ∈ Az .��� ����'�&�(	��)� � � �! 	*��#%$&���
: By the Inverse Function Theorem (with re-

spect to a finite-codimensional submanifold) Condition τ implies that for every

P ∈ Xreg the germs at P of h1, . . . , hx generate the ideal sheaf of X in P(V ).

First, we will prove the First Claim in the case z = 1. Let ui, 1 6 i 6 s, be

finitely many continuous degree > 1 homogeneous polynomials on V . Since V is

infinite-dimensional, {u1 = . . . = us = 0} is a non-empty closed analytic subset of

P(V ). Hence any two non-empty closed analytic subsets of finite definition of P(V )

have non-empty intersection, i.e. the Connectedness Principle stated in [3], p. 1190,

is true in our set-up. Fix P ∈ X \ Γ. Since X is smooth at P , each hi has a Taylor

expansion at P . Since hi is a polynomial, this expansion has only finitely many non-

zero terms, say hi =
∑

j6si(P )

hi,j with each hi,j continuous non-zero homogeneous

polynomial on V with respect to the translation of V which sends a representative

P of P into 0. Since hi(P ) = 0, among the hi,j there is no constant polynomial.

421



Set C(X, P ) := {Q ∈ P(V ) : hi,j(Q̄) = 0 for any representative Q̄ ∈ V of Q and

all 1 6 i 6 x, j 6 si(P )}. Thus C(X, P ) ∩ X is a non-empty finitely determined

closed analytic subset of P(V ) containing P . For any Q ∈ (C(X, P ) ∩ X) \ {P}

the line 〈{P, Q}〉 is contained in X . Since C(X, P ) ∩ X is a closed finitely defined

analytic subset of P(V ), there is Q ∈ (C(X, P ) ∩ X) \ {P} and hence the First

Claim is true if z = 1. Now assume z > 2 and that the First Claim is true for the

integer z′ := z − 1. By the inductive assumption there is a (z − 1)-linear subspace J

contained in (C(X, P ) ∩ X) \ {P}. Take as Az the linear span of the set {P} ∪ J ,

i.e. the union of all lines containing P and intersecting J .+��-,.�����/�0#%$-���
: For every P ∈ X \ X ∩ P(M) and every integer z > 0 the

analytic set X contains a z-dimensional linear subspace Az such that P ∈ Az and

Az ∩ P(M) = ∅. Furthermore, we may find a chain of such linear spaces, i.e. a

family of linear spaces {Az}z>1 such that P ∈ A1, dim(Az) = z, Az ∩ P(M) = ∅

and Az ⊂ Az+1 for every z > 1. Furthermore, given any finite-dimensional linear

subspace A ⊂ X \X ∩P(M) there is such a chain satisfying the additional condition

that A ⊂ Az for all z � 0.��� ��������	����1+2�-,.��3�4��#%$&���
: Since M has infinite codimension in V ,

there is a linear subspace W of M with infinite (and countable) algebraic dimension

(depending only on P and M) such that P ∈ P(W ) and W ∩M = {0} (i.e. P(W )∩

P(M) = ∅). Hence P(W ) ∩ B = ∅. Recall that X = {h1 = . . . = hx = 0}. Tyurin’s

algebraic proof recalled in the proof of the First Claim works (in his own set-up)

inside P(W ) using the finitely many homogeneous polynomials h1|W, . . . , hx|W . We

obtain Az ⊂ W and hence P(Az) ∩ B = ∅.����� � �5��#%$&���
: For every P ∈ X \X ∩P(M), every integer z > 0 and all lines

L, D ⊂ X such that P ∈ L ∩ D and L ∪ D ⊂ X \ P(M) there are linear spaces

Az , Bz ⊂ X \ X ∩ P(M) such that L ⊂ Az, D ⊂ Bz, dim(Az) = dim(Bz) = z and

dim(Az ∩ Bz) = z − 1.��� ����6��7	��)�*����� � �8��#%$&���
: Since M has infinite codimension in V and

L∪D ⊂ X\X∩P(M), there is a linear subspaceW ofM with infinite (and countable)

algebraic dimension (depending only on P, L, D andM) such that L∪D ⊂ P(W ) and

W ∩M = {0}, i.e. P(W ) ∩P(M) = ∅. Work inside the projective space P(W ) with

countable algebraic dimension using the fact that X ∩P(W ) has h1|W, . . . , hx|W as

global equations. The case z = 2 is [3], Lemma 1.5; the general case is very similar

and left to the reader.� � 9 � 	:�1��#%$&���
: For any P, Q ∈ X \X ∩P(M) there are lines L, L′ ⊂ X such

that P ∈ L, Q ∈ L′, L ∩ L′ 6= ∅ and L ∪ L′ ⊂ X \ X ∩P(M).��� ����;���	��)� � � 9 � 	:�1��#%$&���
: For the existence of L, L′, see [3], Lemma 1.4

at p. 1193. For reader’s sake we reproduce Tyurin’s proof in our set-up. As in

the proof of the First Claim set C(X, P ) := {Q ∈ P(V ) : hi,j(Q̄) = 0 for any
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representative Q̄ ∈ V of Q and all 1 6 i 6 x, j 6 si(P )}. Thus C(X, P ) ∩ X

is a non-empty finitely determined closed analytic subset of P(V ) containing P .

For any Q ∈ (C(X, P ) ∩ X) \ {P} the line 〈{P, Q}〉 is contained in X . By the

Connectedness Principle we have C(X, P ) ∩ C(X, Q) ∩ X \ {P, Q} 6= ∅. For any

A ∈ C(X, P )∩C(X, Q)∩X \ {P, Q} we may take L := 〈{P, A}〉 and L′ := 〈{Q, A}〉.
� �
�%	��<�0#%$-���

: For any two lines L, D ⊂ X \X ∩P(M) there are planes A, B ⊂

X \ X ∩ P(M) such that L ⊂ A, D ⊂ B and A ∩ B 6= ∅.��� ����'�&�=	��)� � �
�%	��4��#%$&���
: As in the previous case work on a suitable

projective space and then apply [3], Corollary 1.6.

For any P ∈ X \Γ let c(P ) be the codimension of X in P(V ) at P . By assumption

0 6 c(P ) < +∞ and c(P ) is an integer valued locally constant function on X \ Γ.

We will see in Remark 1 that X is irreducible and hence X \ Γ is connected. Thus

there is an integer c > 0 such that c(P ) = c for all P ∈ X \Γ. Let I denote the ideal

sheaf of X ∈ P(V ). The sheaf I/I2 is an OX -module and it is usually called the

conormal sheaf of X in P(V ), while its dual is usually called the normal sheaf of X

in P(V ). In a neighborhood of each P ∈ X \ Γ the conormal sheaf is a holomorphic

vector bundle with rank equal to the codimension of X in P(V ); indeed, here we use

that the embedding of X \ Γ in P(V ) is locally split.

For any line L ⊂ X \ Γ there are uniquely determined integers a1,L > . . . > ac,L

such that I/I2|L has splitting type a1,L > . . . > ac,L, i.e. such that I/I2|L ∼=
c⊕

i=1

OL(ai,L).
+��
>�	��?��#%$&���

: There are integers a1 > . . . > ac such that ai,L = ai for ev-

ery line L ⊂ X \ X ∩ P(M). Furthermore, I/I2|A ∼=
c⊕

i=1

OA(ai) for every finite-

dimensional linear subspace A ⊂ X \ X ∩ P(M).
��� ����;���	��)�"+��
>�	��<�0#%$-���

: Fix any chain {Az}z>1 such that dim(Az) = z,

Az ∩P(M) = ∅ and Az ⊂ Az+1 for every z > 1 (Second Claim). By Lemma 1 there

are c uniquely determined integers a1 > . . . > ac such that I/I2|Az
∼=

c⊕
i=1

OAz
(ai) for

all z > 1. As in Tyurin’s proof we see that ai,L = ai for every line L ⊂ X \X∩P(M);

we use the Fourth and the Fifth Claim to get that the splitting type of the restriction

of I/I2 is the same for all lines contained in the fixed chain and for one line not

contained in it. This implies that the integers a1 > . . . > ac do not depend on the

choice of the chain {Az}z>1. The last assertion of the Sixth Claim follows from the

last assertion of the Second Claim.

Set di := deg(hi), 1 6 i 6 x. Since the polynomials h1, . . . , hx vanish on X and

generate I at each point of X \ Γ, they induce a surjective map Ψ:
x⊕

j=1

OX\B →

I/I2|X \ Γ; here we use Condition τ . Notice that this implies x > c, because
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I/I2|X \Γ has rank c. Fix any linear space A ⊂ X \X∩P(M) such that dim(A) > x

and set Φ := Ψ|A. Apply Lemma 1 to Φ and take c polynomials f1, . . . , fc from

the polynomials h1, . . . , hx such that deg(fi) = −ai and the restriction of Φ to

the corresponding factors is an isomorphism. Since X has codimension c in P(V ),

Theorem 1 will follow from our Last Claim below.@ $  	���#%$&���
: X is the complete intersection of the hypersurfaces f1, . . . , fc.��� ��������	:��� @ $  	A��#%$&���

: Set X̃ := {f1 = . . . = fc = 0}. Hence X ⊆ X̃.

Fix P ∈ X\Γ. Since f1, . . . , fc generate the finitely generatedOX,P -module (I/I2)P ,

they generate the OX -module IP (Nakayama’s lemma); to apply Nakayama’s lemma

it is essential that IP is a finitely generatedOX,P -module. Thus we may use f1, . . . , fc

instead of h1, . . . , hx for Condition τ . By Condition τ we have X̃ \ Γ = X \ Γ. Even

more: by Condition τ and the Inverse Function Theorem (with respect to finite

codimensional submanifolds) there is an open neighborhood U of X \Γ in P(V ) such

that U ∩ X̃ = U ∩X . Since X̃ and X are finitely defined in P(V ), to prove the Last

Claim it is sufficient to prove that for every irreducible component Z of X̃ we have

Z ∩ (X \ Γ) 6= ∅; indeed, since U ∩ X̃ = U ∩ X , if Z ∩ (X \ Γ) 6= ∅, then Z ∩ X

contains a non-empty open subset of Z and hence Z ⊆ X by the irreducibility of Z.

We have Z ∩ (X \ Γ) 6= ∅ by the Connectedness Principle proved in the proof of the

First Claim. �

B ���C$ �:D
1. The condition “X \Γ is smooth and Γ is contained in a linear projec-

tive subspace (not necessarily closed) of P(V ) with infinite algebraic codimension”

is very strong. It implies that X is irreducible, for the following reason. Assume

that X has at least two irreducible components, say Y1 and Y2, with Y1 6= Y2. Every

point of Y1 ∩ Y2 is a singular point of X . Each Yi is closed and finitely defined

in P(V ). Y1 ∩ Y2 is a non-empty finitely defined closed analytic subset of P(V ) by

the Connectedness Principle ([3], p. 1190), which was checked in our set-up in the

proof of the First Claim in the proof of Theorem 1.

B ���C$ �:D
2. Let V be an infinite-dimensional complex topological vector space.

The proof of Theorem 1 shows that in the statement of Theorem 1 instead of assuming

that V is a Banach space it is sufficient (except at a critical point: the Last Claim)

to assume that V has the following properties:

(a) Every finite-dimensional linear subspace of V is closed and has a closed supple-

ment.

(b) Every finite-codimensional closed linear subspace of V has a closed supplement.

(c) For every closed analytic subset X ⊂ P(V ) with finite definition there are

finitely many continuous homogeneous polynomials h1, . . . , hx such that X =

{h1 = . . . = hx = 0} and the ideal sheaf of X in P(V ) is generated by h1, . . . , hx

at each point of Xreg.
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Properties (a) and (b) are satisfied if V is locally convex and Hausdorff (Hahn-

Banach). Of course, instead of Condition (c) we may just assume that the closed

analytic subset of finite definitionX ⊂ P(V ) we want to study satisfies this condition.

The critical point in the Last Claim is that for its proof one needs a weak form of

the Inverse Function Theorem. The form used in the Last Claim seems to be false

outside the Banach setting.

Look again to the proof of Theorem 1. In the First Claim we assumed P ∈ X \ Γ

and we only needed that B has infinite codimension (as an analytic subset) in X ,

not that the linear span of B in P(V ) has infinite algebraic codimension. The latter

assumption was only needed from the Second Claim on. Hence it may be possible

to have partial generalizations of Theorem 1 either assuming less on V or assuming

less on Γ or weakening Condition τ .

E D �)�-F6#��-�2G����H����	
. We want to thank the referee for essential remarks.
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