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Abstract. To derive a Baum-Katz type result, a Chover-type law of the iterated logarithm
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random variables with a distribution in the domain of a stable law in this paper.
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1. INTRODUCTION

Let {X;,j > 1} are independently identically distributed (i.i.d.) with symmetric
stable distributions. And let these distributions belong to the domain of normal
attraction and non-degeneration. So, their characteristic functions are of the forms:

Eexp(itX;) = exp(—[t|¥), t e R, j > 1.

Chover (1966) has obtained that

1/loglogn
(1.1) lim sup (nl/a > = e/ as.

n—oo

> X
j=1

We call it Chover-type LIL (Laws of the iterated logarithm). This type of LIL has
been shown by Vasudeva and Divanji [11], Zinchenko [13] for delayed sums, by Chen
and Huang [2] for geometric weighted sums, and by Chen [1] for weighted sums.
Note that Qi and Cheng [9] extended the Chover-type law of the iterated logarithm
for the partial sums to the case when the underlying distribution is in the domain of
attraction of a non-symmetric stable distribution (see below for details).
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Let L, denote a stable distribution with exponent o € (0,2). Recall that the
distribution of X is said to be in the domain of attraction of L, if there exist
constants A4, € R and B,, > 0 such that

"X — A,
(1.2) ZF+ 4 L.

Assuming (1.2), Qi and Cheng (1996) and Peng and Qi (2003) showed that
n 1/loglogn

ZXjAn) =V as.

j=1

It is well known that (1.2) holds if and only if

n—oo

lim sup (Bn !

Ca(z)l
(1.3) |- o) = Q0@ L Gl
T
where F(z) denotes a stable distribution with exponent o € (0,2) for z > 0,
Ci(z) 20, lim Ci(z) =C;,i=1,2,C1 + Cy > 0, and I(x) > 0 is a slowly varying

in the sense of Karamata function, i.e.,

I(tx)

ti)rgo 0] =1 for z > 0.

According to Lin (1999, page 76, Exercise 21), we have B,, = (nl(n))'/°.
As for negatively associated (NA) random variables, Joag (1983) gave the following
definition.

Definition (Joag, 1983). A finite family of random variables {X;,1 < i < n} is
said to be negatively associated (NA) if for every pair of disjoint subsets 77 and T
of {1,2,...,n}, we have

COV(fl(Xi,i S Tl),fg(Xj,j S Tg)) < 07

whenever f1 and f> are coordinatewise increasing and the covariance exists. An infi-
nite family is negatively associated if every finite subfamily is negatively associated.

To derive a Baum-Katz type result, the main purpose of this paper is to establish a
Chover-type law of the iterated logarithm for weighted sums of NA and indentically
distributed random variables with a distribution in the domain of a stable law.

Throughout this paper, let h € B[0, 1] denote that a function h is bounded on
[0,1]. Further, C' will represent a positive constant though its value may change
from one appearance to another, and a,, = O(b,,) will mean a,, < Cb,,.
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2. MAIN RESULTS
In order to prove our results, we need the following lemma and definition.

Lemma 2.1 (Shao, 2000). Let {X;,i > 1} be a sequence of NA random variables,
EX; =0, E|X;|P < oo for some p > 2 and for every i > 1. Then there exists
C = C(p), such that

E max
1<kLn

k
> Xi
i=1

p n n p/2
<0{2E|Xi|p+(ZEX§) }
i=1 i=1

Definition (Lin and Lu, 1997). A function f(z) > 0 (x > 0) is said to be quasi-
monotone non-decreasing, if

ft)

limsup sup = < oo.
r—oo 0<t<x f(m)

Now we state the main results and their proofs.

Theorem 1. Let {X, X, i > 1} be an NA sequence of identically distributed
random variables with distribution F(z), where F(x) denotes a stable distribution

with exponent « € (0,2). Let h be a bounded function on [0,1], S, = > h(i/n)X;.
i=1

We have EX = 0, a > 1. Let f(z) > 0 be quasi-monotone non-decreasing and

[751)(zf(z))dz < oo. I(z) > 0 is a slowly varying in the sense of Karamata

1/«

function, supl(a,)/l(n) < oo, where a, = (nf(n)l(n))/®. Then under condition

n>=1

(1.2), for any € > 0, we have

21) 2”71P<f£ﬁgn 551 > E(nf(n)l(n))l/““) < 0.

n=1

Proof of Theorem 1. For any i > 1, define X" = X,I(|X;] < an),
") _ S~ (h(i )X ™ )X ™ _ 1/a
S;7 = > (h(i/n)X;"" — Eh(i/n)X;"), where an = (nf(n)l(n)) /e Then for any

i=1

€ > 0, we have

(2.2)
P( max |S;| > Ean) < P( max |X;| > an)
1<j<n 1<j<n
J
S Eh(i/n)x"

—|—P( max |S](-n)| > e£a, — max
tseli=

1<j<n j<n

)
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First we show that

(2.3)

1
— max
ap 1<j<n

J
ZEh(i/n)Xi(")’ — 0, as n — oo.
i=1

Let us consider two cases, (i) when 0 < a < 1, notice that h € B[0, 1]. Then for any

positive integers n, N,

1 (n) (n)
1ré1]a<xn ZEh i/n)X; ZEVL i/n)X;"|
C C C
<=L 2| dF(2) < —ay + — |z| dF (2)
an J|<an an Un Jay<|z|<an
=:C(A+ B).

Notice that f(x) > 0 is quasi-monotone non-decreasing and (1.3) holds. We have for
n > N, N large enough,

n

n - n
B=— dF(z) < — Plag-— X[ <
Yy o dF@) < & 37 Pl < X <a

n

" p=N+1 7 ar-1<lz|<ar k=N+1
<C Z kP(ap_1 < |X| <ay) <CNP(|X| > +cz (1X] >
k=N+1
1 < dx €
+C’ +C’/ — < .
Z k‘f f( ) N kf(k) 4
It is obvious that for each given NV,
A<C—N__ 9
X — U, n — OQ.
(f(n))}/

So, for 0 < a < 1, we have (2.3).
(ii) When 1 < a < 2, using EX; =0, h € B[0,1] and (1.3), when n — oo, then

zj: Eh(i/n)X™

1 — C
— Y B/ X I(1Xi] > an) < —BIX[I(X] > a,)
n i—1

n

1
= — max
an 1<j<n

Z Eh(i/n)X:I(|1X;i| > an)

1
— max
an 1<j<n

_Cn ¥ Cn [ Cllx)

P(X| >z z)dx = dx
an Ja, an Jq, T
c
= 2 Cal"lan) <+~ < =
o Can (an) ORE
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So, for 1 < a < 2, we also have (2.3). Further, (i) and (ii) imply (2.3).
By (2.2) and (2.3), we have that

< E —+ —
P(11i1]a<x |S | > san) NS . 1P(|Xj| > an) P( I?;E(nw | > an
J=

for n large enough. Hence we need only to prove

(2.4) I=:> n" "> P(X;] > an) < o0,
n=1 j=1

_. N (n) )
(2.5) II Zln P(lgljaé(n|s | > < .
From (1.3), it is easily seen that
Nt = C < dx
2.6 I = P(|X|>an) < \C/ — < 00.
(2.6) nz::l (IX] > an) T 7@

Lemma 2.1 and the fact that A € BJ0, 1] imply that

(2.7)
1 (n))2 - = (n)2
C’Zn ElriljaécnS - \C'Zl %<21E|hz/nX |>
=1
2 _ 2
<C;aE|X| I(|X]| San)—C;g/anx dF(z)
oo o0 1

_ Za2 Z/ 2 dF(z) < czaip(ak,1<|X|<ak)Za—2

ne=1 n p—1 7 ar—1<|z|<ak —1 "
<CD kPlar1 < |X|<a C/

k=1

Now we complete the proof of Theorem 1.
Corollary 1. Under the conditions of Theorem 1, we have

(2.8) lim sup Ve

n—oo n

Sy a.s.

|Sn| 1/loglogn
(z)" <

Proof of Corollary 1. Notice that for any positive integer n there exists
a non-negative integer k, such that 2% < n < 2¥+1. And there exists a ¢ € [0, 1), such
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that n = 2F+!. Using (2.1), we obtain

oo 2kH1_g

S @ DT P( max [S)] > @5 FEEIE))V) < o

k=0 n=2k A

Then
ZP( max |S;| > g(2k+1f(2k+t)z(2k+t))1/a) < 00,
k=0

1 <2k +t

and consequently
max |9;]
1< <2k+t

(2F+1 (2R 0y (2kF0)) e 0 a.s.

So
5l GBI e ki
(o )7e < @RI ()

max |9;]
1< <M+

(2T f(2kFt)) 1 /e

< 2V« 0 a.s.

Then

(2.9) lim sup [n|

eI T

Given € > 0, let f(z) = log'** z. It is obvious that [°1/(zf(z))dz < co. By (2.9),
we have

=0 a.s.

lim sup [n
n— 00 (nl(n) 10g1+6 n)l/a

Then

Lellte)/o 5

. Sn 1/loglogn
lim sup (|B(n|))

n—oo

Therefore
e as.

<e

. |Sn| 1/loglogn
im sup ( )
n—oo \B(n)

Now we complete the proof of (2.8). O
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