A REMARK ON SUPRA-ADDITIVE AND SUPRA-MULTIPLICATIVE OPERATORS ON C(X)

Z. ERCAN, Ankara

(Received September 9, 2005)

Abstract. M. Radulescu proved the following result: Let X be a compact Hausdorff topological space and $\pi: C(X) \to C(X)$ a supra-additive and supra-multiplicative operator. Then π is linear and multiplicative. We generalize this result to arbitrary topological spaces.

Keywords: C(X)-space, supra-additive, supra-multiplicative operator, realcompact

MSC 2000: 46J10, 46E25

1. The result

We follow the terminology of [1]. As usual for a topological space X, the space of real valued continuous (bounded) functions on K is denoted by C(X) $(C_b(X))$. For each $x \in X$, $\delta_x \colon C(X) \to \mathbb{R}$ is defined by $\delta_x(f) = f(x)$. For $B \subset X$, χ_B denotes the characteristic function of B. For each $n \in \mathbb{R}$, **n** denotes the constant function with value **n**. A map $\pi \colon C(X) \to C(Y)$ is called

- (i) supra-additive if $\pi(f+g) \ge \pi(f) + \pi(g)$ for each $f, g \in C(X)$,
- (ii) supra-multiplicative if $\pi(fg) \ge \pi(f)\pi(g)$ for each $f, g \in C(X)$.

The following theorem is the main result of [4].

Theorem 1. Let X be a compact Hausdorff space and $\pi: C(X) \to C(X)$ a supra-additive and supra-multiplicative map. Then π is multiplicative and linear.

The main result of this note is to generalize the above theorem as follows.

55

Theorem 2. Let X and Y be topological spaces and $\pi: C(X) \to C(Y)$ a supraadditive and supra-multiplicative map. Then the following statements are equivalent. (i) $\pi(f^+ \wedge \mathbf{n} - f^- \wedge \mathbf{n})(y) \to \pi(f)(y)$ for each $f \in C(X)$ and $y \in Y$.

(ii) π is linear and multiplicative.

Proof. (ii) \implies (i): For each $y \in T$, $\delta_y \circ \pi$ is a Riesz homomorphism, so

$$\pi(f \wedge \mathbf{n})(y) = \delta_y \circ \pi(f \wedge \mathbf{n}) = \delta_y \circ \pi(f) \wedge n \to \delta_y \circ \pi(f) = \pi(f)(y)$$

 $(i) \Longrightarrow (ii):$

Claim 1. Let K be a compact Hausdorff space and let $T: C(K) \to \mathbb{R}$ be supraadditive and supra-multiplicative. Then T is linear and multiplicative.

Indeed, let $T^{\sim}: C(K) \to C(K)$ be defined by $T^{\sim}(f) = T(f)\mathbf{1}$. Then T^{\sim} is supraadditive and supra-multiplicative, so by Theorem 1, T^{\sim} is linear and multiplicative, so T is linear and multiplicative.

Claim 2. For each topological space M there exists a compact Hausdorff space K_M such that $C(K_M)$ and $C_b(M)$ are Riesz and algebraic isomorphic spaces.

As $C_b(M)$ is an AM-space with order unit **1**, this follows from the Kakutani-Krein Representation Theorem (see [1]).

Claim 3. Let $\pi^{\sim} = \pi|_{C_b(X)}$. Then for each $y \in Y$, $\delta_y \circ \pi^{\sim} \colon C_b(X) \to \mathbb{R}$ is linear and multiplicative.

This follows from Theorem 1 and from the above claims.

Claim 4. π is linear.

To see this we use the linearity of $\delta_y \circ \pi^{\sim}$ as follows. Let $f, g \ge 0$ be given. Then

$$\pi(f+g)(y) = \lim \delta_y \circ \pi^{\sim}((f+g) \wedge \mathbf{n}) \leqslant \lim \delta_y \circ \pi^{\sim}(f \wedge \mathbf{n} + g \wedge \mathbf{n}).$$

Since $\delta_y \circ \pi^{\sim}$ is linear and π is supra-additive we have

$$\pi(f+g) \leqslant \pi(f) + \pi(g) \leqslant \pi(f+g),$$

so π is additive on $C(X)^+$. Now by the Kantorovic Theorem (see Theorem 1.7. [1]), $\varphi: C(X) \to C(Y)$ defined by $\varphi(f) = \pi(f^+) - \pi(f^-)$ is linear and from the second assumption it is clear that $\varphi = \pi$, so π is linear.

Claim 5. π is multiplicative.

Indeed, let $0 \leq f \in C(X)$ be given. As for each $y \in Y$, $\delta_y \circ \pi^{\sim}$ is multiplicative, we have

$$\pi(f^2)(y) = \delta_y \circ \pi(f^2) = \lim \delta_y \circ \pi^{\sim}(f^2 \wedge \mathbf{n}) = \lim \delta_y \circ \pi^{\sim}((f \wedge \mathbf{n}^{\frac{1}{2}})^2)$$
$$= (\lim \delta_y \circ \pi^{\sim}(f \wedge \mathbf{n}^{\frac{1}{2}}))^2 = \pi(f)^2(y),$$

56

so $\pi(f^2) = \pi(f)^2$. Let $f \in C(X)$ be given. As $\pi(f^+)\pi(f^-) = 0$, due to the linearity of π we have $\pi(f^2) = \pi(f)^2$. Now the multiplicativity follows from the equality

$$fg = \frac{1}{4}((f+g)^2 - (f-g)^2).$$

Recall that a topological space X is called pseudocompact if $C(X) = C_b(X)$ ([3]). It is clear that any countable compact space is pseudocompact. Now the following corollary immediately follows from the above theorem.

Corollary 3. Let X be a pseudocompact space and Y a topological space. A map $\pi: C(X) \to C(Y)$ is supra-additive and supra-multiplicative if and only if it is linear and multiplicative.

Recall that a topological space is called *realcompact* if it is homeomorphic to a closed subspace of the product space of \mathbb{R} . It is well known that a Hausdorff space is compact if and only if it is realcompact and pseudocompact (see [3]). If K is a realcomapct space and $T: C(K) \to \mathbb{R}$ is nonzero linear and multiplicative then there exists $k \in K$ such that T(f) = f(k) for each $f \in C(K)$ (see [2] for a simple proof). By using this fact we have the following theorem.

Theorem 4. Let X be a realcompact space and let Y be an arbitrary topological space. Let $\pi: C(X) \to C(Y)$ be a supra-additive and supra-multiplicative map. Then the following assertions are equivalent.

- (i) $\pi(f^+ \wedge \mathbf{n} f^- \wedge \mathbf{n})(y) \to \pi(f)(y)$ for each $f \in C(X)$ and $y \in Y$
- (ii) There exists a clopen subset $B \subset Y$ and a continuous function $\sigma \colon Y \to X$ such that

$$\pi(f)(y) = \chi_B(y)f(\sigma(y))$$

for each $y \in Y$, $f \in C(X)$.

Proof. It is clear that (ii) \implies (i). Suppose that (i) holds. Then from Theorem 2, π is linear and multiplicative. The fact that $\pi(\mathbf{1})^2 = \pi(\mathbf{1})$ for each $y \in Y$ implies that either $\pi(\mathbf{1})(y) = 0$ or $\pi(\mathbf{1})(y) = 1$, so $B = \{y \in Y : \pi(\mathbf{1})(y) = 1\}$ is clopen in Y. Let $y \in Y$ be given. As X is realcompact and $\delta_y \circ \pi : C(X) \to \mathbb{R}$ is linear and multiplicative there exists $\alpha(y)$ such that

$$\pi(f)(y) = \pi(\mathbf{1})(y)f(\alpha(y)) = \chi_B(y)f(\alpha(y))$$

Since X is completely regular Hausdorff space, $\alpha(y)$ must be unique for each $y \in B$. Let $x_0 \in Y$ be fixed and let $\sigma: Y \to X$ be defined by $\sigma(y) = \alpha(y)$ when $y \in B$ and $\sigma(y) = x_0$ otherwise. It is clear that $\sigma|_B: B \to X$ is continuous. Since B is clopen, actually σ itself is continuous. This completes the proof. \Box

57

References

- [1] C. D. Aliprantis, O. Burkinshaw: Positive Operators. Academic Press, New York, 1985. Zbl 0608.47039
- [2] Z. Ercan, S. Önak: A remark on the homomorphism on C(X). Proc. Amer. Math. Soc. 133 (2005), 3609–3611.
 Zbl 1087.46038
- [3] K. P. Hart, J. Nagata, J. E. Vaughan: Encyclopedia of General Topology. Elsevier, Amsterdam, 2004.
 Zbl 1059.54001
- [4] *M. Radulescu*: On a supra-additive and supra-multiplicative operator of C(X). Bull. Math. Soc. Sci. Math. Répub. Soc. Roum., Nouv. Sér. 24 (1980), 303–305.

Author's address: Z. Ercan, Middle East Technical University, Department of Mathematics, 06531 Ankara, Turkey, e-mail: zercan@metu.edu.tr.

Zbl 0463.47034