A REMARK ON SUPRA-ADDITIVE AND SUPRA-MULTIPLICATIVE OPERATORS ON $C(X)$

Z. Ercan, Ankara
(Received September 9, 2005)

Abstract

M. Radulescu proved the following result: Let X be a compact Hausdorff topological space and $\pi: C(X) \rightarrow C(X)$ a supra-additive and supra-multiplicative operator. Then π is linear and multiplicative. We generalize this result to arbitrary topological spaces.

Keywords: $C(X)$-space, supra-additive, supra-multiplicative operator, realcompact
MSC 2000: 46J10, 46E25

1. The result

We follow the terminology of [1]. As usual for a topological space X, the space of real valued continuous (bounded) functions on K is denoted by $C(X)\left(C_{b}(X)\right)$. For each $x \in X, \delta_{x}: C(X) \rightarrow \mathbb{R}$ is defined by $\delta_{x}(f)=f(x)$. For $B \subset X, \chi_{B}$ denotes the characteristic function of B. For each $n \in \mathbb{R}, \mathbf{n}$ denotes the constant function with value \mathbf{n}. A map $\pi: C(X) \rightarrow C(Y)$ is called
(i) supra-additive if $\pi(f+g) \geqslant \pi(f)+\pi(g)$ for each $f, g \in C(X)$,
(ii) supra-multiplicative if $\pi(f g) \geqslant \pi(f) \pi(g)$ for each $f, g \in C(X)$.

The following theorem is the main result of [4].

Theorem 1. Let X be a compact Hausdorff space and $\pi: C(X) \rightarrow C(X)$ a supra-additive and supra-multiplicative map. Then π is multiplicative and linear.

The main result of this note is to generalize the above theorem as follows.

Theorem 2. Let X and Y be topological spaces and $\pi: C(X) \rightarrow C(Y)$ a supraadditive and supra-multiplicative map. Then the following statements are equivalent.
(i) $\pi\left(f^{+} \wedge \mathbf{n}-f^{-} \wedge \mathbf{n}\right)(y) \rightarrow \pi(f)(y)$ for each $f \in C(X)$ and $y \in Y$.
(ii) π is linear and multiplicative.

Proof. (ii) $\Longrightarrow(i):$ For each $y \in T, \delta_{y} \circ \pi$ is a Riesz homomorphism, so

$$
\pi(f \wedge \mathbf{n})(y)=\delta_{y} \circ \pi(f \wedge \mathbf{n})=\delta_{y} \circ \pi(f) \wedge n \rightarrow \delta_{y} \circ \pi(f)=\pi(f)(y)
$$

(i) \Longrightarrow (ii):

Claim 1 . Let K be a compact Hausdorff space and let $T: C(K) \rightarrow \mathbb{R}$ be supraadditive and supra-multiplicative. Then T is linear and multiplicative.
Indeed, let $T^{\sim}: C(K) \rightarrow C(K)$ be defined by $T^{\sim}(f)=T(f) \mathbf{1}$. Then T^{\sim} is supraadditive and supra-multiplicative, so by Theorem $1, T^{\sim}$ is linear and multiplicative, so T is linear and multiplicative.

Claim 2. For each topological space M there exists a compact Hausdorff space K_{M} such that $C\left(K_{M}\right)$ and $C_{b}(M)$ are Riesz and algebraic isomorphic spaces.

As $C_{b}(M)$ is an AM-space with order unit 1, this follows from the Kakutani-Krein Representation Theorem (see [1]).

Claim 3. Let $\pi^{\sim}=\left.\pi\right|_{C_{b}(X)}$. Then for each $y \in Y, \delta_{y} \circ \pi^{\sim}: C_{b}(X) \rightarrow \mathbb{R}$ is linear and multiplicative.

This follows from Theorem 1 and from the above claims.
Claim 4. π is linear.
To see this we use the linearity of $\delta_{y} \circ \pi^{\sim}$ as follows. Let $f, g \geqslant 0$ be given. Then

$$
\pi(f+g)(y)=\lim \delta_{y} \circ \pi^{\sim}((f+g) \wedge \mathbf{n}) \leqslant \lim \delta_{y} \circ \pi^{\sim}(f \wedge \mathbf{n}+g \wedge \mathbf{n})
$$

Since $\delta_{y} \circ \pi^{\sim}$ is linear and π is supra-additive we have

$$
\pi(f+g) \leqslant \pi(f)+\pi(g) \leqslant \pi(f+g),
$$

so π is additive on $C(X)^{+}$. Now by the Kantorovic Theorem (see Theorem 1.7. [1]), $\varphi: C(X) \rightarrow C(Y)$ defined by $\varphi(f)=\pi\left(f^{+}\right)-\pi\left(f^{-}\right)$is linear and from the second assumption it is clear that $\varphi=\pi$, so π is linear.

Claim 5. π is multiplicative.
Indeed, let $0 \leqslant f \in C(X)$ be given. As for each $y \in Y, \delta_{y} \circ \pi^{\sim}$ is multiplicative, we have

$$
\begin{aligned}
\pi\left(f^{2}\right)(y)=\delta_{y} \circ \pi\left(f^{2}\right) & =\lim \delta_{y} \circ \pi^{\sim}\left(f^{2} \wedge \mathbf{n}\right)=\lim \delta_{y} \circ \pi^{\sim}\left(\left(f \wedge \mathbf{n}^{\frac{1}{2}}\right)^{2}\right) \\
& =\left(\lim \delta_{y} \circ \pi^{\sim}\left(f \wedge \mathbf{n}^{\frac{1}{2}}\right)\right)^{2}=\pi(f)^{2}(y)
\end{aligned}
$$

so $\pi\left(f^{2}\right)=\pi(f)^{2}$. Let $f \in C(X)$ be given. As $\pi\left(f^{+}\right) \pi\left(f^{-}\right)=0$, due to the linearity of π we have $\pi\left(f^{2}\right)=\pi(f)^{2}$. Now the multiplicativity follows from the equality

$$
f g=\frac{1}{4}\left((f+g)^{2}-(f-g)^{2}\right)
$$

Recall that a topological space X is called pseudocompact if $C(X)=C_{b}(X)([3])$. It is clear that any countable compact space is pseudocompact. Now the following corollary immediately follows from the above theorem.

Corollary 3. Let X be a pseudocompact space and Y a topological space. A map $\pi: C(X) \rightarrow C(Y)$ is supra-additive and supra-multiplicative if and only if it is linear and multiplicative.

Recall that a topological space is called realcompact if it is homeomorphic to a closed subspace of the product space of \mathbb{R}. It is well known that a Hausdorff space is compact if and only if it is realcompact and pseudocompact (see [3]). If K is a realcomapct space and $T: C(K) \rightarrow \mathbb{R}$ is nonzero linear and multiplicative then there exists $k \in K$ such that $T(f)=f(k)$ for each $f \in C(K)$ (see [2] for a simple proof). By using this fact we have the following theorem.

Theorem 4. Let X be a realcompact space and let Y be an arbitrary topological space. Let $\pi: C(X) \rightarrow C(Y)$ be a supra-additive and supra-multiplicative map. Then the following assertions are equivalent.
(i) $\pi\left(f^{+} \wedge \mathbf{n}-f^{-} \wedge \mathbf{n}\right)(y) \rightarrow \pi(f)(y)$ for each $f \in C(X)$ and $y \in Y$
(ii) There exists a clopen subset $B \subset Y$ and a continuous function $\sigma: Y \rightarrow X$ such that

$$
\pi(f)(y)=\chi_{B}(y) f(\sigma(y))
$$

for each $y \in Y, f \in C(X)$.
Proof. It is clear that (ii) \Longrightarrow (i). Suppose that (i) holds. Then from Theorem $2, \pi$ is linear and multiplicative. The fact that $\pi(\mathbf{1})^{2}=\pi(\mathbf{1})$ for each $y \in Y$ implies that either $\pi(\mathbf{1})(y)=0$ or $\pi(\mathbf{1})(y)=1$, so $B=\{y \in Y: \pi(\mathbf{1})(y)=1\}$ is clopen in Y. Let $y \in Y$ be given. As X is realcompact and $\delta_{y} \circ \pi: C(X) \rightarrow \mathbb{R}$ is linear and multiplicative there exists $\alpha(y)$ such that

$$
\pi(f)(y)=\pi(\mathbf{1})(y) f(\alpha(y))=\chi_{B}(y) f(\alpha(y))
$$

Since X is completely regular Hausdorff space, $\alpha(y)$ must be unique for each $y \in B$. Let $x_{0} \in Y$ be fixed and let $\sigma: Y \rightarrow X$ be defined by $\sigma(y)=\alpha(y)$ when $y \in B$ and $\sigma(y)=x_{0}$ otherwise. It is clear that $\left.\sigma\right|_{B}: B \rightarrow X$ is continuous. Since B is clopen, actually σ itself is continuous. This completes the proof.

References

[1] C. D. Aliprantis, O. Burkinshaw: Positive Operators. Academic Press, New York, 1985. Zbl 0608.47039
[2] Z. Ercan, S. Önal: A remark on the homomorphism on $C(X)$. Proc. Amer. Math. Soc. 133 (2005), 3609-3611.

Zbl 1087.46038
[3] K. P. Hart, J. Nagata, J. E. Vaughan: Encyclopedia of General Topology. Elsevier, Amsterdam, 2004.

Zbl 1059.54001
[4] M. Radulescu: On a supra-additive and supra-multiplicative operator of $C(X)$. Bull. Math. Soc. Sci. Math. Répub. Soc. Roum., Nouv. Sér. 24 (1980), 303-305.

Zbl 0463.47034

Author's address: Z. Ercan, Middle East Technical University, Department of Mathematics, 06531 Ankara, Turkey, e-mail: zercan@metu.edu.tr.

