RING-LIKE STRUCTURES DERIVED FROM λ -LATTICES WITH ANTITONE INVOLUTIONS

IVAN CHAJDA, Olomouc

(Received December 12, 2005)

Abstract. Using the concept of the λ -lattice introduced recently by V. Snášel we define λ -lattices with antitone involutions. For them we establish a correspondence to ring-like structures similarly as it was done for ortholattices and pseudorings, for Boolean algebras and Boolean rings or for lattices with an antitone involution and the so-called Boolean quasirings.

Keywords: λ -lattice, λ -semilattice, ortholattice, λ -ortholattice, antitone involution, Boolean quasiring

MSC 2000: 06C15, 16Y99, 06B99, 81P10, 06A12

The well-known correspondence between Boolean algebras and Boolean rings (see e.g. [1]) was extended to orthomodular lattices by H. Länger [12] and to ortholattices by the author in [3]. A general setting was described by G. Eigenthaler, H. Länger and the author in [4] and [5]. It was generalized to lattices with antitone involution by D. Dorninger, H. Länger and M. Mączyński [6], [7] and to generalized orthomodular lattices, see [5]. It was motivated by the use of these ring-like structures in certain logics of quantum mechanics, see e.g. [6], [7] for the description. However, in quantum mechanics it can happen that we cannot distinguish between two possibilities. It leads us to study more general structures than lattices where still ring-like structures can be induced.

Suitable tools for our investigation thus can be the so-called λ -lattices introduced by V. Snášel [13] and treated in [11], [13] and the so-called λ -semilattices known also under the name commutative directoids in [9]. On the other hand, this level of generality can make problems in computing formulas because some well-known

This work is supported by the Czech Goverment via the research project MSM 6198959214.

results for lattices fail for λ -lattices. For example, if $x \mapsto x'$ is an antitone involution on a lattice $\mathcal{L} = (L; \lor, \land)$ then the De Morgan laws

(DM)
$$(x \lor y)' = x' \land y'$$
 and $(x \land y)' = x' \lor y'$

hold in \mathcal{L} , see e.g. [1], [8]. However, this is not the case for λ -lattices. Hence we must often require some additional properties.

1. λ -lattices with antitone involutions

First, we recall some well-known concepts. Let $(A;\leqslant)$ be an ordered set. For $a,\;b\in A$ denote

$$U(a,b) = \{x \in A; a \leq x \text{ and } b \leq x\},\$$

$$L(a,b) = \{x \in A; x \leq a \text{ and } x \leq b\}.$$

An ordered set $(A; \leq)$ is called *up-directed* (down-directed) if $U(a,b) \neq \emptyset$ (or $L(a,b)\neq \emptyset$, respectively) for each $a, b \in A$. Further, $(A; \leq)$ is directed if it is both an up- and down-directed set.

Let $(A; \leq)$ be a down-directed set. Denote by $\operatorname{Exp} A$ the power set of A. Let λ be a mapping λ : $\operatorname{Exp} A \to A$ such that

(i) $\lambda(L(a,b)) \in L(a,b),$

(ii) if $a \leq b$ then $\lambda(L(a, b)) = a$.

Define a binary operation \wedge on A as follows:

 $a \wedge b = \lambda(L(a, b)).$

The groupoid $(A; \wedge)$ will be called a λ -semilattice (or a commutative directoid in [9]). It is easy to verify that $(A; \wedge)$ satisfies the identities

(I) $x \wedge x = x$ (idempotency),

(C) $x \wedge y = y \wedge x$ (commutativity),

(SA) $x \wedge ((x \wedge y) \wedge z) = (x \wedge y) \wedge z$ (skew associativity).

Also conversely, if $(A; \wedge)$ is a groupoid satisfying (I), (C), (SA) and \leq is defined by the rule

 $a \leqslant b$ if and only if $a \wedge b = a$

then $(A; \leq)$ is a down-directed set and $\lambda(L(a, b)) = a \wedge b$ satisfies (i) and (ii) mentioned above.

Moreover, if $(A; \leq)$ is a directed set and $\lambda \colon \operatorname{Exp} A \to A$ satisfies also

(iii) $\lambda(U(a,b)) \in U(a,b),$

(iv) if $a \leq b$ then $\lambda(U(a, b)) = b$

then we can introduce another operation \lor by setting

$$a \vee b = \lambda(U(a, b))$$

and easily verify the following identities:

(I') $x \lor x = x$, (C') $x \lor y = y \lor x$, (SA') $x \lor ((x \lor y) \lor z) = (x \lor y) \lor z$, (Ab) $x \lor (x \land y) = x$, $x \land (x \lor y) = x$ (absorption).

Then the algebra $(A; \lor, \land)$ is called a λ -lattice (see [11], [13]). Also conversely, if $(A; \lor, \land)$ is an algebra of type (2, 2) satisfying the identities (I), (I'), (C), (C'), (SA), (SA'), (Ab) then the relation defined by

 $a \leqslant b$ if and only if $a \lor b = b$

coincides with the already introduced induced order on $(A; \wedge)$. If we put

$$\lambda(U(a,b)) = a \lor b$$

then (iii) and (iv) are satisfied.

Hence, λ -semilattices and λ -lattices can be viewed either as algebras satisfying certain identities or as ordered sets with constraints on upper and lower bounds. Contrary to the case of lattices, the choice of $\lambda(L(a, b))$ or $\lambda(U(a, b))$ need not be unique. Consider e.g. the directed sets drawn in Fig. 1 and Fig. 2.

In the first case, we have three choices for $a \lor b$, namely c or d or 1. Analogously, $c \land d$ can be a or b or 0 (for comparable elements the choice is unique due to the conditions (ii) and (iv)). In all 9 possible cases, the resulting algebra will be a λ -lattice. Analogously, in the second case (which is a lattice) we can pick up e.g. $a \lor b = c$ or $a \lor b = 1$. In the latter case, the resulting algebra will be a λ -lattice which is not a lattice.

Let $(A; \leq)$ be an ordered set. A mapping $x \mapsto x'$ on A is called an *antitone* involution if x'' = x and $x \leq y$ implies $y' \leq x'$. It is well-known that if $(L; \lor, \land)$ is

a lattice and $x \mapsto x'$ is an antitone involution on $(L; \leq)$ where \leq is the induced order then the De Morgan laws (DM) hold.

Consider our λ -lattice $\mathcal{L} = (A; \vee, \wedge)$ visualized in Fig. 1. Define $x \mapsto x'$ on $A = \{0, a, b, c, d, 1\}$ by the table

Then clearly it is an antitone involution on A. Let us pick up e.g. $a \lor b = c$ (for other elements the operation \lor is determined as supremum). Then $(A; \lor)$ is a λ -semilattice (w.r.t. \lor). Now, if e.g. $c \land d = a$ (for other elements it is determined as infimum) then $\mathcal{L} = (A; \lor, \land)$ is a λ -lattice with an antitone involution but

$$b' \wedge a' = c \wedge d = a \neq b = c' = (b \lor a)',$$

thus in \mathcal{L} the De Morgan laws do not hold. On the contrary, when choosing $c \wedge d = b$, De Morgan laws hold in \mathcal{L} . Hence, validity of (DM) depends not only on the induced order but also on our choice of operations.

2. λ -Boolean quasirings

By a Boolean quasiring (see [4], [6], [7]) we mean an algebra $\mathcal{R} = (R; +, \cdot, 0, 1)$ of type (2, 2, 0, 0) satisfying the identities

- (R1) x+y=y+x,
- (R2) x+0=x,

(R3)
$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

- (R4) $x \cdot y = y \cdot x,$
- (R5) $x \cdot x = x,$
- (R6) $x \cdot 0 = 0,$ (R7) $x \cdot 1 = x,$
- (R8) $1 + (1 + x \cdot y) \cdot (1 + y) = y.$

For our purposes, we modify this definition as follows. An algebra $\mathcal{R} = (R; +, \cdot, 0, 1)$ of type (2, 2, 0, 0) is called a λ -Boolean quasiring if it satisfies the identities (R1), (R2), (R4)–(R8) and

(R3*)
$$x \cdot ((x \cdot y) \cdot z) = (x \cdot y) \cdot z.$$

One can immediately verify that every Boolean quasiring is a λ -Boolean quasiring since (R3^{*}) follows easily by (R3), (R4) and (R5). The mutual correspondence between Boolean quasirings and lattices with an antitone involution was established in [6]. We are going to extend this correspondence to λ -Boolean quasirings.

Theorem 1. Let $\mathcal{L} = (L; \lor, \land, ', 0, 1)$ be a bounded λ -lattice with an antitone involution. Define

$$x + y = (x \lor y) \land (x \land y)'$$
 and $x \cdot y = x \land y$.

Then $\mathcal{R}(L) = (L; +, \cdot, 0, 1)$ is a λ -Boolean quasiring. If, moreover, the De Morgan laws hold in \mathcal{L} then $\mathcal{R}(L)$ satisfies the correspondence identity (Cor) $(1 + (1 + x) \cdot (1 + y)) \cdot (1 + x \cdot y) = x + y$.

Proof. Since $(L; \wedge)$ is a bounded λ -semilattice, the identities (R3*), (R4)–(R7) are immediate consequences of (I), (C), (SA) and the properties of the induced order. The identity (R1) is a trivial consequence of the definition and (R2) is evident. It remains to prove (R8) and (Cor).

For (R8) we use (Ab) to compute

$$1 + (1 + x \cdot y) \cdot (1 + y) = ((x \wedge y)' \wedge y')' = (y')' = y'' = y.$$

For (Cor), we apply De Morgan laws to derive

$$(1 + (1 + x) \cdot (1 + y)) \cdot (1 + x \cdot y) = (x' \wedge y')' \wedge (x \wedge y)' = (x \vee y) \wedge (x \wedge y)' = x + y.$$

We can prove also the converse.

Theorem 2. Let $\mathcal{R} = (R; +, \cdot, 0, 1)$ be a λ -Boolean quasiring. Define

 $x \wedge y = x \cdot y, \quad x' = 1 + x \text{ and } x \vee y = 1 + (1 + x) \cdot (1 + y).$

Then $\mathcal{L}(R) = (R; \lor, \land, ', 0, 1)$ is a bounded λ -lattice with an antitone involution in which the De Morgan laws hold.

Proof. By (R3^{*}), (R4)–(R7), $(R; \wedge)$ is a bounded λ -semilattice. If we put y = x in (R8) and apply (R5), we obtain the identity

$$(*) 1 + (1+x) = x$$

n	1
ч	
υ	т.

proving that the unary operation x' = 1 + x is an involution on R. Suppose $x \leq y$. Then $x \wedge y = x \cdot y = x$ and, by (R8),

$$1 + x' \cdot y' = 1 + (1 + x) \cdot (1 + y) = 1 + (1 + x \cdot y) \cdot (1 + y) = y$$

Thus, applying (*), we arrive at

$$x' \wedge y' = x' \cdot y' = 1 + (1 + x' \cdot y') = 1 + y = y'$$

whence $y' \leq x'$, i.e. this operation is an antitone involution on R.

Further, using (*), we obtain

$$x' \lor y' = 1 + (1 + x') \cdot (1 + y') = 1 + x \cdot y = (x \land y)'$$

and

$$x' \wedge y' = (1+x) \cdot (1+y) = 1 + (1+(1+x) \cdot (1+y)) = (x \lor y)'$$

thus the De Morgan laws hold in $\mathcal{L}(R)$. Due to this fact, $(R; \vee)$ is also a λ -semilattice and, by (R8),

$$(x \land y) \lor y = ((x \cdot y)' \cdot y')' = 1 + (1 + x \cdot y) \cdot (1 + y) = y.$$

The dual absorption law can be established by the De Morgan laws and involutorness. Hence, $\mathcal{L}(R) = (R; \lor, \land, ', 0, 1)$ is a bounded λ -lattice with an antitone involution.

Theorem 3. Let $\mathcal{R} = (R; +, \cdot, 0, 1)$ be a λ -Boolean quasiring satisfying the correspondence indentity (Cor). Then $\mathcal{R}(\mathcal{L}(R)) = \mathcal{R}$.

Let $\mathcal{L} = (L; \lor, \land, ', 0, 1)$ be a bounded λ -lattice with an antitone involution in which De Morgan laws hold. Then $\mathcal{L}(\mathcal{R}(L)) = \mathcal{L}$.

Proof. Evidently, the multiplicative operations coincide in $\mathcal{R}(\mathcal{L}(R))$ and \mathcal{R} . To prove $\mathcal{R}(\mathcal{L}(R)) = \mathcal{R}$ we need only to show that also $\oplus = +$ where \oplus is the additive operation in $\mathcal{R}(\mathcal{L}(R))$. Applying (Cor) we compute

$$x \oplus y = (x \lor y) \land (x \land y)' = (1 + (1 + x) \cdot (1 + y)) \cdot (1 + x \cdot y) = x + y.$$

Analogously, the operation meet clearly coincides in $\mathcal{L}(\mathcal{R}(L))$ and \mathcal{L} . Hence, it remains to prove $\sqcup = \lor$ and $x^* = x'$ where \sqcup is the join and * is the antitone involution in $\mathcal{L}(\mathcal{R}(L))$. We have

$$x^* = 1 + x = (1 \lor x) \land (1 \land x)' = 1 \land x' = x'$$

and

$$x \sqcup y = 1 + (1+x) \cdot (1+y) = (x' \land y')' = x \lor y$$

due to the De Morgan laws.

3. λ -ortholattices

By an *ortholattice* (see e.g. [2], [10]) we mean a bounded lattice $\mathcal{L} = (L; \lor, \land, ', 0, 1)$ with an antitone involution which is a complementation, i.e. $x \land x' = 0$ and $x \lor x' = 1$ for each $x \in L$. Of course, De Morgan laws hold in \mathcal{L} and hence $x \land x' = 0$ is equivalent to $x \lor x' = 1$.

We can extend this concept to λ -lattices.

By a λ -ortholattice we mean a bounded λ -lattice $\mathcal{L} = (L; \vee, \wedge, ', 0, 1)$ with an antitione involution such that $x \wedge x' = 0$ and $x \vee x' = 1$.

Formally, the definition is the same as for ortholattices, but we must be careful. For example, the λ -lattice depicted in Fig. 3 is an λ -ortholattice.

Since it is a λ -lattice, we must specify joins and meets of non-comparable elements. If e.g. $a \vee b = c$ and $a' \wedge b' = d'$ then $a' \wedge b' = d' \neq c' = (a \vee b)'$ and hence the De Morgan laws do not hold. It means that for $a \vee b = c$ we must set $a' \wedge b' = c'$ etc.

The mutual correspondence between ortholattices and the so-called pseudosemirings was settled in [3]. However, it is easy to establish such a correspondence for λ -ortholattices and certain λ -Boolean quasirings.

Theorem 4. Let $\mathcal{L} = (L; \lor, \land, ', 0, 1)$ be a λ -ortholattice in which the De Morgan laws hold. Define

 $x + y = (x \lor y) \land (x \land y)'$ and $x \cdot y = x \land y$.

Then $\mathcal{R}(L) = (L; +, \cdot, 0, 1)$ is a λ -Boolean quasiring of characteristic 2 (i.e. satisfying the identity x + x = 0) satisfying the correspondence identity (Cor).

Let $\mathcal{R} = (R; +, \cdot, 0, 1)$ be a λ -Boolean quasiring of characteristic 2. Define

$$x \lor y = 1 + (1+x) \cdot (1+y), \quad x \land y = x \cdot y, \quad x' = 1+x.$$

Then $\mathcal{L}(R) = (R; \lor, \land, ', 0, 1)$ is a λ -ortholattice in which the De Morgan laws hold.

Moreover, $\mathcal{L}(\mathcal{R}(L)) = \mathcal{L}$ and if \mathcal{R} satisfies (Cor) then also $\mathcal{R}(\mathcal{L}(R)) = \mathcal{R}$.

Proof. Of course, if $x \wedge x' = 0$ then $x + x = x \wedge x' = 0$, thus the induced λ -Boolean quasiring $\mathcal{R}(L)$ is of characteristic 2 for each λ -ortholattice \mathcal{L} . The rest of the proof follows by Theorem 1.

Conversely, if \mathcal{R} satisfies x + x = 0 then $x \wedge x' = (x \vee x) \wedge (x \wedge x)' = x + x = 0$ and, due to the De Morgan laws, also $x \vee x' = 1$ and thus $\mathcal{L}(R)$ is really a λ -ortholattice. The remaining statements follow directly by Theorems 2 and 3.

In what follows we concentrate on a special case of a λ -ortholattice, the so-called orthomodular λ -lattice which satisfies the orthomodular law

(OML)
$$x \leqslant y \Rightarrow x \lor (y \land x') = y$$

which is equivalent to the identity

$$(**) \qquad (x \wedge y) \lor (x \wedge (x \wedge y)') = x.$$

An example of an orthomodular λ -lattice can be constructed from the lattice drawn in Fig. 4.

One can easily verify that \mathcal{L} is an orthomodular lattice. To change it into a λ -lattice which is not a lattice, we define $a \vee b = 1$ and $a' \wedge b' = 0$ and leave all other joins and meets as they were in \mathcal{L} . Of course, the new algebra is a λ -lattice but not a lattice, but the orthomodular law remains valid.

We are wonder what a $\lambda\text{-Boolean}$ quasiring corresponds to an orthomodular $\lambda\text{-lattice.}$

Theorem 5. Let $\mathcal{L} = (L; \lor, \land, ', 0, 1)$ an orthomodular λ -lattice in which the De Morgan laws hold. Define

$$x + y = (x \lor y) \land (x \land y)'$$
 and $x \cdot y = x \land y$

Then $\mathcal{R}(L)$ is a λ -Boolean quasiring of characteristic 2 satisfying the identity

(OM)
$$(1 + x \cdot y) + (x + x \cdot y) = 1 + x$$

Let $\mathcal{R} = (R; +, \cdot, 0, 1)$ be a λ -Boolean quasiring of characteristic 2 satisfying the identity (OM). Define

$$x \lor y = 1 + (1 + x) \cdot (1 + y), \quad x \land y = x \cdot y \text{ and } x' = 1 + x$$

Then $\mathcal{L}(R) = (R; \lor, \land, ', 0, 1)$ is an orthomodular λ -lattice in which the De Morgan laws hold.

Moreover, $\mathcal{L}(\mathcal{R}(L)) = \mathcal{L}$ and if \mathcal{R} satisfies also (Cor) then $\mathcal{R}(\mathcal{L}(R)) = \mathcal{R}$.

Proof. In virtue of Theorem 4, we need only to verify the orthomodular law for $\mathcal{L}(R)$ and the identity (OM) for $\mathcal{R}(L)$.

Let \mathcal{L} be an orthomodular λ -lattice in which the De Morgan laws hold. We can easily derive $x' \vee (x' \vee y') = x' \vee y'$ since $x' \leq x' \vee y'$ and thus

$$x \cdot (1 + x \cdot y) = x \wedge (x \wedge y)' = x \wedge (x' \vee y') = x \wedge (x' \vee (x' \vee y'))$$
$$= x \wedge (x \wedge (x \wedge y))' = (x \vee (x \wedge y)) \wedge (x \wedge (x \wedge y))' = x + x \cdot y.$$

Since $1 + x \cdot y = (x \wedge y)' \ge x \wedge (x \wedge y)' = x \cdot (1 + x \cdot y)$ and for $a \ge b$ we have

$$a + b = (a \lor b) \land (a \land b)' = a \land b' = a \cdot b',$$

then also $(1 + x \cdot y) + x \cdot (1 + x \cdot y) = (1 + x \cdot y) \cdot (1 + x \cdot (1 + x \cdot y))$. Now we apply (**) to compute

$$(1 + x \cdot y) + (x + x \cdot y) = (1 + x \cdot y) + x \cdot (1 + x \cdot y) = (1 + x \cdot y) \cdot (1 + x \cdot (1 + x \cdot y))$$
$$= [(x \wedge y) \lor (x \wedge (x \wedge y)']' = x' = 1 + x.$$

Thus $\mathcal{R}(L)$ satisfies (OM).

Conversely, let \mathcal{R} be a λ -Boolean quasiring of characteristic 2 satisfying (OM). Let $x \leq y$ in $\mathcal{L}(R)$. Then

$$\begin{aligned} x \lor (y \land x') &= 1 + (1+x) \cdot (1+y \cdot (1+x)) \\ &= 1 + ((1+x) + y \cdot (1+x)) = 1 + ((1+x \cdot y) + y \cdot (1+x \cdot y)) \\ &= 1 + ((1+x \cdot y) + (y+x \cdot y)) = 1 + (1+y) = y \end{aligned}$$

(by (*) of the proof of Theorem 2). Hence, $\mathcal{L}(R)$ is an orthomodular λ -lattice. \Box

References

- [1] G. Birkhof: Lattice Theory. (Third edition.) Amer. Math. Soc. Colloq. Publ. 25, Providence, RI, 1979. Zbl 0505.06001
- L. Beran: Orthomodular Lattices. Reidel Publ., Dordrecht, 1985. Zbl 0558.06008
- [3] I. Chajda: Pseudorings induced by ortholattices. Czechoslovak Math. J. 46 (1996), Zbl 0879.06003 405 - 411.
- [4] I. Chajda, G. Eigenthaler: A note on orthopseudorings and Boolean quasirings. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II 207 (1998), 83-94. Zbl 1040.06003
- [5] I. Chajda, H. Länger, M. Maczyński: Ring-like structures corresponding to generalized Zbl 1068.06008 orthomodular lattices. Math. Slovaca 54 (2004), 143-150.
- [6] D. Dorminger, H. Länger, M. Mączyński: The logic induced by a system of homomorphisms and its algebraic characterizations. Demonstratio Math. 30 (1997), 215-232.
 - Zbl 0879.06005
- [7] D. Dorminger, H. Länger, M. Maczyński: On ring-like structures occuring in axiomatic quantum mechanics. Österr. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II 206 (1997), 279-289. Zbl 0945.03095 Zbl 0385.06015
- [8] G. Grätzer: General Lattice Theory. Birkhäuser, Basel, 1978.
- [9] J. Ježek, R. Quackenbush: Directoids: algebraic models of up-directed sets. Algebra Univers. 27 (1990), 49-69. Zbl 0699.08002
- [10] G. Kalmbach: Orthomodular Lattices. Academic Press, London, 1983. Zbl 0512.06011

[11] J. Karásek: Rotations of λ -lattices. Math. Bohem. 121 (1996), 293–300.

- Zbl 0879.06001
- [12] H. Länger: Generalizations of the correspondence between Boolean algebras and Boolean rings to orthomodular lattices. Tatra Mt. Math. Publ. 15 (1998), 97-105.

Zbl 0939.03075 Zbl 0897.06003

[13] V. Snášek: λ-Lattices. Math. Bohem. 122 (1997), 267–272.

Author's address: Ivan Chajda, Department of Algebra and Geometry, Palacký University Olomouc, Tomkova 40, 779 00 Olomouc, Czech Republic, e-mail: chajda@inf.upol.cz.