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respect to an irreducible system of generators consisting of idempotents. As an application
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1. Introduction

The symmetric group Sn is a central object of study in many branches of math-

ematics. There exist several “natural” analogues (or generalizations) of Sn in the

theory of semigroups. The most classical ones are the symmetric semigroup Tn and

the inverse symmetric semigroup ISn. These arise when one tries to generalize

Cayley’s Theorem to the classes of all semigroups or all inverse semigroups. A less

obvious semigroup generalization of Sn is the so-called Brauer semigroup Bn which

appears in the context of centralizer algebras in representation theory, see [2]. Bn

contains Sn as the subgroup of all invertible elements and has a nice geometric real-

ization (see Section 2). The deformation of the corresponding semigroup algebra, the

so-called Brauer algebra, has been intensively studied by specialists in representation

theory, knot theory and theoretical physics. The semigroup properties of Bn were

studied in [9], [10], [8], [5], [7], [6].

Given a finitely generated semigroup, a fundamental question is to find its presen-

tation with respect to some (irreducible) system of generators. For example, for Sn

and Bn several such presentations are known. However, for semigroups one can even
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make the problem more semigroup-oriented, and ask to find a presentation for the

singular part of the semigroup which, by definition, is the set of all non-invertible

elements. In the case of a finite semigroup all non-invertible elements form again a

semigroup and hence the problem to find a presentation for the singular part makes

sense. For example, in [4] a presentation for the singular part of ISn is found (a

presentation for ISn itself can be found in [1]).

From [8] we know that Bn \ Sn has a natural irreducible system of generators

consisting of idempotents. The main aim of the present paper is to obtain a presen-

tation of Bn \Sn with respect to this system of generators. Surprisingly enough, the

system of the corresponding defining relations is not big and all relations have an

obvious interpretation via the geometric realization of Bn. This result is presented

in Theorem 5. As usual, a tricky part in the proof of Theorem 5 is to show that the

listed system of defining relations is complete. This part of the proof is quite techni-

cal and occupies the whole Section 4. In Section 5 we present several combinatorial

applications of Theorem 5. These include an interesting combinatorial realization of

the symmetric group via equivalence classes of sequences of “connected” two-element

subsets, and a computation of the maximal length for an element in Bn \ Sn with

respect to our system of generators.

A c k n ow l e d gm e n t s. The paper was written during the visit of the first au-

thor to Uppsala University which was supported by the Swedish Institute. The

financial support of the Swedish Institute and the hospitality of Uppsala Univer-

sity are gratefully acknowledged. For the second author the research was partially

supported by the Swedish Research Council.

2. Preliminaries about Bn

Let n be a positive integer. Put n = {1, . . . , n} and n
′ = {1′, . . . , n′}. We consider

the map ′ : n→ n
′ as a fixed bijection and denote the inverse bijection by the same

symbol, that is (x′)′ = x for all x ∈ n. The elements of the Brauer semigroup Bn

are all possible partitions of n ∪ n
′ into two-element blocks. It is easy to see that

|Bn| = (2n− 1)!!.

A two-element subset {i, j} of n ∪ n
′ will be called

• a left bracket provided that {i, j} ⊂ n;

• a right bracket provided that {i, j} ⊂ n
′;

• a line, if {i, j} is neither a left nor a right bracket.

Obviously, every element of Bn contains the same number of left and right brackets.

Let π ∈ Bn, and assume that {ik, jk}, k ∈ K, is the list of all left brackets of π;
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{u′k, v
′
k}, k ∈ K, is the list of all right brackets of π; and {fl, g

′
l}, l ∈ L, is the list of

all lines of π. Then we have

(1) π =
{

{ik, jk}k∈K , {u
′
k, v

′
k}k∈K , {fl, g

′
l}l∈L

}

.

We say that π has corank corank(π) = 2|K| 6 2⌊ 12n⌋.

It is convenient to represent the elements of Bn geometrically as a kind of mi-

crochips as follows: we have two sets of pins (which correspond to elements in n and

n
′ respectively), which are connected in pairs (this corresponds to the partition of

n∪n
′ into two-element blocks which our element from Bn represents). An example

is shown in Figure 1, for convenience the same element is also written in the form (1).

•

•

•

•

•

•

•

•

•

•

•

•1→

2→

3→

4→

5→

6→

← 1′

← 2′

← 3′

← 4′

← 5′

← 6′

Figure 1. The element
{

{1, 5}, {4, 6}, {2′, 4′}, {3′, 5′}, {2, 1′}, {3, 6′}
}

of B6.

Now we would like to define multiplication in Bn. To give a formal definition,

for π ∈ Bn and x, y ∈ n ∪ n
′ we set x ≡π y provided that x and y are in the same

block of π. The relation ≡π is an equivalence relation on n ∪ n
′ with two-element

equivalence classes. Take now π, τ ∈ Bn. Define a new equivalence relation, ≡, on

n ∪ n
′ as follows:

• for x, y ∈ n we have x ≡ y if and only if x ≡π y or there is a sequence c1, . . . , c2s,

s > 1, of elements in n such that x ≡π c
′
1, c1 ≡τ c2, c

′
2 ≡π c

′
3, . . . , c2s−1 ≡τ c2s

and c′2s ≡π y;

• for x, y ∈ n we have x′ ≡ y′ if and only if x′ ≡τ y′ or there is a sequence

c1, . . . , c2s, s > 1, of elements in n such that x′ ≡τ c1, c
′
1 ≡π c

′
2, c2 ≡τ c3, . . . ,

c′2s−1 ≡π c
′
2s and c2s ≡τ y

′;

• for x, y ∈ n we have x ≡ y′ if and only if y′ ≡ x if and only if there is a sequence

c1, . . ., c2s−1, s > 1, of elements in n such that x ≡π c
′
1, c1 ≡τ c2, c

′
2 ≡π c

′
3, . . . ,

c′2s−2 ≡π c
′
2s−1 and c2s−1 ≡τ y

′.

It is easy to see that ≡ determines an equivalence relation on n ∪ n
′ with two-

element classes and thus is an element of Bn. We define this element to be the

product πτ . It is straightforward that this multiplication is associative. In our
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geometric realization the above multiplication reduces to concatenation of chips, see

an example in Figure 2.
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Figure 2. Elements of B8 and their multiplication.

Note that the element
{

{k, k′}k∈n

}

is the identity element in Bn. It is easy to see

(see for example [9]) that the group of all invertible elements in Bn is precisely the

set of all elements of corank 0, and it is isomorphic to Sn. We identify the elements

of this subgroup of Bn with Sn in the following way: π ∈ Sn corresponds to the

element
{

{k, π(k)}k∈n

}

. Then the subsemigroup of all non-invertible elements of

Bn coincides with Bn \ Sn.

We denote by R, L, H, D and J Green’s relations, in particular, for a semigroup

S and a ∈ S, Ha denotes the H-class of S containing a (similarly for all other

relations). We will need the following description of Green’s relations for Bn, which

was obtained in [9]:

Lemma 1. Let π, τ ∈ Bn. Then

(i) πRτ if and only if π and τ have the same left brackets;

(ii) πLτ if and only if π and τ have the same right brackets;

(iii) πHτ if and only if π and τ have both the same left brackets and the same right

brackets;

(iv) πDτ if and only if πJ τ if and only if corank(π) = corank(τ).
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3. An irreducible system of generators for Bn \ Sn

For i, j ∈ n, i 6= j, define σi,j as follows:

σi,j =
{

{i, j}, {i′, j′}, {k, k′}k 6=i,j

}

.

We have σi,j = σj,i = σ2
i,j and corank(σi,j) = 2. We will call these elements atoms.

An example of an atom can be found in Figure 3.

•

•

•

•

•

•

•

•

Figure 3. The atom σ1,3 of B4.

The following statement was proved in [8]. However, because of the poor avail-

ability of [8] we will prove it here as well.

Proposition 2. The set of all atoms is an irreducible system of generators in

Bn \ Sn.

To prove this statement we will need several auxiliary lemmas.

Lemma 3. The semigroup Bn \ Sn is generated by the set of all elements of

corank 2.

P r o o f. Let π ∈ Bn \ Sn be written in the form (1) as follows:

π =
{

{i, θ(i)′}i∈I , {uj, vj}j∈J , {f
′
j, g

′
j}j∈J

}

.

We have J 6= ∅, I ⊂ n, and θ : I → n is an injection. Assume that corank(π) > 2.

Fix j0 ∈ J . Construct a bijection ϑ : n \ {uj0 , vj0} → n \ {fj0 , gj0} as follows:

• ϑ(i) = θ(i) for all i ∈ I;

• ϑ(uj) = fj and ϑ(vj) = gj for all j ∈ J \ {j0}.

Put now τ =
{

{i, ϑ(i)′}i6=uj0 ,vj0
, {uj0 , vj0}, {f

′
j0
, g′j0}

}

. We have corank(τ) = 2 and

direct calculation shows that π =
∏

j∈J

σuj ,vj
· τ . The statement follows. �
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Lemma 4. Every element of the maximal subgroup corresponding to an atom is

decomposable into a product of atoms.

P r o o f. Let π ∈ Bn be a group element of corank 2, H-related to some atom.

From Lemma 1 it follows that in this case π =
{

{i, θ(i)′}i6=u,v, {u, v}, {u′, v′}
}

for

some u, v ∈ n, u 6= v, and some bijection, θ : n \ {u, v} → n \ {u, v}. We consider θ

as an element of S
n\{u,v}. Let

θ = (i
(1)
1 , . . . , i(1)p1

) · . . . · (i
(s)
1 , . . . , i(s)ps

)

be a cyclic decomposition of θ. By direct calculation one obtains that

(2) π = σu,vσu,i
(1)
1
. . . σ

u,i
(1)
p1

σu,v · . . . · σu,vσu,i
(s)
1
. . . σ

u,i
(s)
ps

σu,v.

The statement follows. �

Now we are ready to prove Proposition 2:

P r o o f o f P r o p o s i t i o n 2. First we show that atoms generate Bn \ Sn.

Because of Lemma 3 it is enough to show that any element π ∈ Bn of corank 2

decomposes into a product of atoms. We again write π in the form (1):

π =
{

{i, θ(i)′}i∈I , {u, v}, {f
′, g′}

}

,

where u, v ∈ n, u 6= v; f, g ∈ n, f 6= g; and θ : n \ {u, v} → n \ {f, g} is a

bijection. Without loss of generality we may assume that v 6= f . Consider the

element τ = σv,fσf,g =
{

{v, f}, {f ′, g′}, {g, v′}, {k, k′}k 6=v,f,g

}

. From Lemma 1 we

have πHσu,vτ and σu,vRσu,vτ . Hence, due to Green’s Lemma, we have that the map

x 7→ xτ from Hσu,v
to Hσu,vτ is a bijection. Therefore there exists ξ ∈ Hσu,v

such

that π = ξτ . By Lemma 4, ξ decomposes into a product of atoms. Hence so does π

as well.

Now we prove that no atom can be decomposed into a product of other atoms. Let

σu,v = σu1,v1 . . . σuk,vk
. The product σu1,v1 . . . σuk,vk

must contain the left bracket

{u1, v1} by the definition of multiplication inBn. However, the element σu,v contains

the unique left bracket {u, v}. This implies that {u1, v1} = {u, v} and the desired

statement follows. The proof is complete. �

After Proposition 2 it is natural to ask what is the presentation of Bn \ Sn with

respect to the system {σu,v} of generators. We answer this question in the next

section.
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4. Main result

Denote by T the semigroup generated by τi,j , i, j ∈ n, i 6= j, subject to the

following relations (here i, j, k, l are pairwise different):

τi,j = τj,i;(3)

τ2
i,j = τi,j ;(4)

τi,jτj,kτk,l = τi,jτi,lτk,l;(5)

τi,jτi,kτj,k = τi,jτj,k;(6)

τi,jτj,kτi,j = τi,j ;(7)

τi,jτk,lτi,k = τi,jτj,lτi,k;(8)

τi,jτk,l = τk,lτi,j .(9)

A straightforward calculation shows that the generators σi,j of Bn \ Sn satisfy

the relations (3)–(9) (the relations (3) and (4) are obvious, and the relations (5)–

(9) are illustrated in Figures 4, 5, 6, 7 and 8). Thus there is a homomorphism

ϕ : T → Bn \ Sn sending τi,j to σi,j . Our main goal in the section is to prove the

following theorem:
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Figure 4. An example illustrating the relation (5).
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Figure 5. An example illustrating the relation (6).
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Figure 6. An example illustrating the relation (7).
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Figure 7. An example illustrating the relation (8).
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Figure 8. An example illustrating the relation (9).

Theorem 5. ϕ : T → Bn \ Sn is an isomorphism.

The rest of this section is devoted to the proof of Theorem 5, which we will divide

into steps formulated as lemmas and propositions. To distinguish τi,j from the atoms

σi,j we will call τi,j quarks. Two quarks τi,j and τk,l are said to be connected provided

that {i, j} ∩ {k, l} 6= ∅. We denote by A = An the set of all quarks (the alphabet

of our presentation for T ), and by A+ the free semigroup over A. In what follows

we will do all our computations with words in T , not A+. In particular, v = w for

v, w ∈ A+ means that v = w in T .

A word τi1,j1τi2,j2 . . . τik,jk
∈ A+ will be called connected if τis,js

and τis+1,js+1 are

connected for all 1 6 s 6 k − 1. We start with the following statement:

Proposition 6. Each element of the semigroup T can we written in the form

wτi1,j1τi2,j2 . . . τik,jk
, where wτi1,j1 ∈ A

+ is connected and all sets {is, js}, s =

1, . . . , k, are pairwise disjoint.

P r o o f. We use induction on the length of element. For elements of length 1 the

statement is obvious. Let v = wτi1,j1τi2,j2 . . . τik,jk
∈ T be such that wτi1,j1 ∈ A

+ is

connected and all sets {is, js}, s = 1, . . . , k, are pairwise disjoint. Let further τi,j be

a generator. To complete the proof we have to show that the element vτi,j can be

written in the desired form. Without loss of generality we can assume that we have

one of the following cases:

C a s e 1: the set {i, j} is disjoint with all {is, js}, s = 1, . . . , k. In this case the

statement is trivial.
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C a s e 2: the set {i, j} is disjoint with all {is, js}, s = 2, . . . , k, but not with τi1,j1 .

In this case we can use (9) to write

vτi,j = wτi1,j1τi,jτi2,j2 . . . τik,jk
.

Observe that wτi1,j1τi,j is connected, and the necessary statement follows again.

C a s e 3: i = i1 and j ∈
k
⋃

s=2
{is, js}. Using (9) we can even assume j = j2. Using

(9) and (8) we have

vτi,j = wτi,j1τi2,jτi,jτi3,j3 . . . τik,jk
= wτi,j1τi2,j1τi,jτi3,j3 . . . τik,jk

.

Here wτi,j1τi2,j1 is connected and the sets {i2, j1}, {i, j}, {is, js}, s = 3, . . . , k, are

disjoint. The claim follows.

C a s e 4: i ∈
k
⋃

s=2
{is, js} and j 6∈

k
⋃

s=1
{is, js}. Using (9), we can even assume i = i2.

In this case we can use (9) to write

(10) vτi,j = wτi1,j1τi,j2τi,jτi3,j3 . . . τik,jk
.

Now we have

(11) τi1,j1τi,j2τi,j = τi1,j1τi,j2τi,jτi1,jτi,j (by (7))

= τi1,j1τi,j2τi1,j2τi1,jτi,j (by (5))

= τi1,j1τi,j1τi1,j2τi1,jτi,j (by (8))

= τi1,j1τi1,j2τi1,jτi,j1τi,j (by (9))

= τi1,j1τi1,j2τi1,jτi1,j1τi,j (by (8)).

From (10) and (11) we have

vτi,j = wτi1,j1τi,j2τi,jτi3,j3 . . . τik,jk
= wτi1,j1τi1,j2τi1,jτi1,j1τi,jτi3,j3 . . . τik,jk

.

Here wτi1,j1τi1,j2τi1,jτi1,j1 is connected and the sets {i1, j1}, {i, j}, {is, js}, s =

3, . . . , k, are disjoint. The claim follows.

C a s e 5: i, j ∈
k
⋃

s=2

{is, js}. If {i, j} = {is, js} for some s > 2, the statement

follows from (9) and (4). Otherwise, using (9) we can even assume i = i2, j = j3. In

this case we can use (9) to write

(12) vτi,j = wτi1,j1τi,j2τi3,jτi,jτi4,j4 . . . τik,jk
.
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Now we have

(13) τi1,j1τi,j2τi3,jτi,j = τi1,j1τi,j2τi3,j2τi,j (by (8))

= τi,j2τi3,j2τi1,j1τi,j (by (9))

= τi,j2τi3,j2τi1,j1τj2,j1τi1,j1τi,j (by (7))

= τi,j2τi1,j1τj2,i3τj2,j1τi1,j1τi,j (by (9))

= τi,j2τi1,j1τi1,i3τj2,j1τi1,j1τi,j (by (8))

= τi1,j1τi1,i3τi,j2τj2,j1τi1,j1τi,j (by (9))

= τi1,j1τi1,i3τi,j2τi,i1τi1,j1τi,j (by (5))

= τi1,j1τi1,i3τi3,j2τi,i1τi1,j1τi,j (by (8))

= τi1,j1τi1,i3τi,i1τi1,j1τi3,j2τi,j (by (9)).

From (12) and (13) we have

vτi,j = wτi1,j1τi,j2τi3,jτi,jτi4,j4 . . . τik,jk
= wτi1,j1τi1,i3τi,i1τi1,j1τi3,j2τi,jτi4,j4 . . . τik,jk

.

Here wτi1,j1τi1,i3τi,i1τi1,j1 is connected and the sets {i1, j1}, {i3, j2}, {i, j}, {is, js},

s = 4, . . . , k, are disjoint. The claim follows.

Now the proof is completed by induction. �

Lemma 7. There is a unique anti-involution ∗ : T → T satisfying τ∗i,j = τi,j for

all i, j ∈ {1, 2, . . . , n}, i 6= j.

P r o o f. Existence follows from the fact that the relations (3)–(9) are stable

with respect to ∗. Uniqueness follows from the fact that T is generated by τi,j ,

i 6= j ∈ {1, 2, . . . , n}. �

Lemma 8. Let τi,jw ∈ A+ be connected. Then (τi,jw)(τi,jw)∗ = τi,j .

P r o o f. Let w = τi1,j1 . . . τik,jk
. Since τi,jw is connected, applying (7), (4) and

the definition of ∗ we compute

(τi,jw)(τi,jw)∗ = τi,jτi1,j1 . . . τik,jk
τik,jk

. . . τi1,j1τi,j

= τi,jτi1,j1 . . . τik−1,jk−1
τik,jk

τik−1,jk−1
. . . τi1,j1τi,j

= τi,jτi1,j1 . . . τik−2,jk−2
τik−1,jk−1

τik−2,jk−2
. . . τi1,j1τi,j

. . .

= τi,jτi1,j1τi,j

= τi,j .

�
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If {is, js}, s = 1, . . . , k, are pairwise disjoint, the element τi1,j1 . . . τik,jk
will be

called a standard idempotent. That such element is indeed an idempotent, follows

immediately from (9) and (4).

Corollary 9.

(i) Every element of T is L-equivalent to a standard idempotent.

(ii) T is regular.

(iii) The map ϕ induces a bijection between the sets of L-classes for the semigroups

T and Bn \ Sn. Similarly for the R-, H-, and D-classes.

P r o o f. Let v ∈ A+. By Proposition 6 we can write v = wτi1,j1τi2,j2 . . . τik,jk
,

where wτi1,j1 ∈ A
+ is connected and all sets {is, js}, s = 1, . . . , k, are pairwise

disjoint. By definition, the element ε = τi1,j1τi2,j2 . . . τik ,jk
is standard. We obviously

have v = wτi1,j1ε. By Lemma 8 we have

τi1,j1w
∗v = τi1,j1w

∗wτi1,j1τi2,j2 . . . τik,jk
= τi1,j1τi2,j2 . . . τik,jk

= ε.

Hence vLε, which proves (i). (i) implies that every L-class of T contains an idempo-

tent, and hence (ii) follows.

By Lemma 1, the images of standard idempotents under ϕ belong to different

L-classes of Bn \ Sn. Hence different standard idempotents of T belong to different

L-classes of T . In particular, there is a bijection between L-classes of T and standard

idempotents. Since ϕ is surjective, there is also a bijection between L-classes of

Bn \Sn and standard idempotents. This implies (iii) for L-classes. For R-classes the

statement now follows by applying ∗. For H- and D-classes the statement follows

from the definition and the corresponding statements for L- and R-classes. This

completes the proof. �

For k = 1, . . . , ⌊ 12n⌋ set εk = τ1,2τ3,4 . . . τ2k−1,2k and let Hk denote the H-class of

T containing the element εk. For i, j ∈ {3, . . . , n}, i 6= j, set γi,j = τ1,2τ1,iτ1,jτ1,2.

Note that, using (5) and (6), we have

(14) τ1,2τ1,iτ1,jτ1,2 = τ1,2τ1,iτi,jτ1,jτ1,2 = τ1,2τ2,jτi,jτ2,iτ1,2 = τ1,2τ2,jτ2,iτ1,2.

Lemma 10. The elements γi,j , i, j ∈ {3, . . . , n}, i 6= j, generate H1 as a monoid.

P r o o f. Let w ∈ A+ be such that w ∈ H1. Since τ1,2 is the unit element in

the group H1, we have w = τ1,2wτ1,2 and hence we can assume that w has the form

τ1,2w
′τ1,2 for some w

′ ∈ A+. We claim that w is connected. Indeed, assume that

w is not connected. Then direct calculation shows that ϕ(w) ∈ Bn has corank at

least 4. At the same time the corank of ϕ(ε1) is 2. This contradicts Lemma 1.
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We prove our lemma by induction on the length of w′ = τi1,j1 . . . τik,jk
(note that w′

is connected since w is). Because of (4) we can always assume that τis,js
6= τis+1,js+1

for all s = 1, . . . , k− 1, τi1,j1 6= τ1,2 and τik,jk
6= τ1,2. The basis of our induction will

be the cases k = 0, 1, 2. If k = 0, 1, then from (4) and (7) it follows that w = τ1,2,

and the statement is obvious.

Let k = 2. If either 1 or 2 occurs in both {i1, j1} and {i2, j2}, we are done by (14).

If not, without loss of generality and up to the application of ∗ we can assume that

i1 = 1 and i2 = 2. Then j1 = j2 since w is connected. Hence, using (6) we get

τ1,2τ1,j1τ2,j1τ1,2 = τ1,2τ1,j1τ1,2,

reducing everything to the case k = 1.

Now we proceed by induction and prove the step k − 1 ⇒ k, where k > 2. If

{i2, j2} ∩ {1, 2} 6= ∅, using (7) we can write

τ1,2τi1,j1τi2,j2τi3,j3 . . . τik,jk
τ1,2 = τ1,2τi1,j1τi2,j2τ1,2τi2,j2τi3,j3 . . . τik,jk

τ1,2

and the statement follows from the induction hypothesis. If {i2, j2} ∩ {1, 2} = ∅

then, using (5) if necessary, we may assume i1 = 1 and j1 = j2. Assume first that

j1 ∈ {i3, j3}, say j3 = j1. Then by (5) we have

τ1,2τ1,j1τi2,j1τi3,j1 = τ1,2τ2,i2τi2,j1τi3,j1 .

If i3 = 2, then (6) gives τ2,i2τi2,j1τ2,j1 = τ2,i2τ2,j1 and reduces our expression to the

case k−1. If i3 6= 2, using (5) we have τ2,i2τi2,j1τi3,j1 = τ2,i2τ2,i3τi3,j1 , which reduces

our expression to the case {i2, j2} ∩ {1, 2} 6= ∅ considered above.

Finally, assume that j1 6∈ {i3, j3}. Then without loss of generality we can assume

i3 = i2. If j3 = 1, then by (6) we have τ1,j1τi2,j1τi2,1 = τ1,j1τi2,1, which reduces

our expression to the case k − 1. If j3 6= 1, using (5) we have τ1,j1τi2,j1τi2,j3 =

τ1,j1τ1,j3τi2,j3 , which reduces our expression to the case {i2, j2}∩{1, 2} 6= ∅ considered

above. Now the proof is completed by induction. �

For 3 6 i 6 n− 1 set γi = γi,i+1.

Lemma 11. Let i, j ∈ {3, . . . , n}, i 6= j.

(i) γi,j = γj,i.

(ii) γi,j decomposes into a product of γk’s.
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P r o o f. We have

γi,j = τ1,2τ1,iτ1,jτ1,2

= τ1,2τ2,iτ1,iτ1,jτ1,2 (by (6))

= τ1,2τ2,iτ2,jτ1,jτ1,2 (by (5))

= τ1,2τ2,iτ2,jτ1,2 (by (6))

= τ1,2τ1,jτ1,iτ1,2 (by (14)),

which proves (i).

Because of (i) we can assume j > i. If j = i+ 1 then (ii) is obvious. We proceed

by induction on j − i and assume that some γi,j decomposes into a product of γk’s.

We have

γi,jγjγi,j = τ1,2τ1,iτ1,jτ1,2τ1,jτ1,j+1τ1,2τ1,iτ1,jτ1,2 (by (4))(15)

= τ1,2τ1,iτ1,jτ1,j+1τ1,2τ1,iτ1,jτ1,2 (by (7))

= τ1,2τ1,iτ1,jτ1,j+1τ1,2τ2,jτ2,iτ1,2 (by (14))

= τ1,2τ1,iτ1,jτ1,j+1τj,j+1τ2,jτ2,iτ1,2 (by (5))

= τ1,2τ1,iτ1,jτj,j+1τ2,jτ2,iτ1,2 (by (6))

= τ1,2τ1,iτ1,jτj,j+1τi,j+1τ2,iτ1,2 (by (5))

= τ1,2τ1,iτ1,jτ1,iτi,j+1τ2,iτ1,2 (by (5))

= τ1,2τ1,iτi,j+1τ2,iτ1,2 (by (7))

= τ1,2τ1,iτi,j+1τ1,j+1τ1,2 (by (5))

= τ1,2τ1,iτ1,j+1τ1,2 (by (6))

= γi,j+1.

The statement (ii) now follows by induction. �

Lemma 12. The elements γi, i = 3, . . . , n− 1, satisfy the following relations:

(a) γ2
i = τ1,2;

(b) γiγj = γjγi, |i− j| > 1;

(c) γiγjγi = γjγiγj , |i− j| = 1.

P r o o f. We have

γ2
i = τ1,2τ1,iτ1,i+1τ1,2τ1,iτ1,i+1τ1,2 (by (4))

= τ1,2τ2,i+1τ2,iτ1,2τ1,iτ1,i+1τ1,2 (by (14))

= τ1,2τ2,i+1τ2,iτ1,iτ1,i+1τ1,2 (by (6))

= τ1,2τ2,i+1τ1,i+1τ1,iτ1,i+1τ1,2 (by (5))

= τ1,2τ2,i+1τ1,i+1τ1,2 (by (7))
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= τ1,2τ1,i+1τ1,2 (by (6))

= τ1,2 (by (7)),

which implies (a).

To prove (b) we may assume j > i+ 2. We have

γiγj = τ1,2τ1,iτ1,i+1τ1,2τ1,jτ1,j+1τ1,2 (by (4))

= τ1,2τ1,iτ1,i+1τ1,2τ2,jτ1,jτ1,j+1τ1,2 (by (6))

= τ1,2τ1,iτ1,i+1τi+1,jτ2,jτ1,jτ1,j+1τ1,2 (by (5))

= τ1,2τ1,iτi,jτi+1,jτ2,jτ2,j+1τ1,j+1τ1,2 (by (5))

= τ1,2τ1,iτi,jτi+1,jτ2,jτ2,j+1τ1,2 (by (6))

= τ1,2τ2,jτi,jτi+1,jτi+1,j+1τ2,j+1τ1,2 (by (5))

= τ1,2τ2,jτi,jτi,j+1τi+1,j+1τ2,j+1τ1,2 (by (5))

= τ1,2τ2,jτ2,j+1τi,j+1τi+1,j+1τ1,i+1τ1,2 (by (5))

= τ1,2τ2,jτ2,j+1τi,j+1τ1,iτ1,i+1τ1,2 (by (5))

= τ1,2τ2,jτ2,j+1τ1,2τ1,iτ1,i+1τ1,2 (by (5))

= τ1,2τ1,j+1τ1,jτ1,2τ1,iτ1,i+1τ1,2 (by (14))

= τ1,2τ1,jτ1,j+1τ1,2τ1,iτ1,i+1τ1,2 (by Lemma 11 (i))

= γjγi. (by (4))

This gives (b).

Finally, to prove (c) we may assume j = i+ 1. We have

γi+1γiγi+1 = τ1,2τ1,i+1τ1,i+2τ1,2τ1,iτ1,i+1τ1,2τ1,i+1τ1,i+2τ1,2 (by (4))

= τ1,2τ1,i+1τ1,i+2τ1,2τ1,iτ1,i+1τ1,i+2τ1,2 (by (7))

= τ1,2τ2,i+2τ2,i+1τ1,2τ1,iτ1,i+1τ1,i+2τ1,2 (by (14))

= τ1,2τ2,i+2τ2,i+1τi,i+1τ1,iτ1,i+1τ1,i+2τ1,2 (by (5))

= τ1,2τ2,i+2τ2,i+1τi,i+1τ1,i+1τ1,i+2τ1,2 (by (6))

= τ1,2τ2,i+2τ2,i+1τi,i+1τi,i+2τ1,i+2τ1,2 (by (5))

= τ1,2τ2,i+2τ2,i+1τ2,i+2τi,i+2τ1,i+2τ1,2 (by (5))

= τ1,2τ2,i+2τi,i+2τ1,i+2τ1,2 (by (7))

= τ1,2τ1,iτi,i+2τ1,i+2τ1,2 (by (5))

= τ1,2τ1,iτ1,i+2τ1,2 (by (6))

= γi,i+2.

Now (c) follows from (15). This completes the proof. �
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Corollary 13.

(i) H1
∼= Sn−2.

(ii) Let π ∈ T be such that πDε1. Then the restriction of ϕ to Hπ is injective.

P r o o f. H1 contains ε1 and hence is a group. By Lemmas 11 and 10, H1 is

generated by γi, i = 3, . . . , n − 1. By Lemma 12, γi’s satisfy Coxeter relations of

type An−3. Hence H1 is a quotient of Sn−2. However, ϕ(H1) is a maximal subgroup

of Bn, which is isomorphic to Sn−2 by [9, Theorem 1]. The statement (i) follows.

(i) implies that the restriction of ϕ to H1 is injective. Then for arbitrary π ∈ T

such that πDε1 the statement (ii) follows from Green’s Lemma. �

To prove Theorem 5 we have to generalize the statement of Corollary 13 (ii) to all

other H-classes. For this we will use the following statement:

Proposition 14. |Hk| = (n− 2k)! for all k, 1 6 k 6 ⌊ 12n⌋.

P r o o f. We proceed by induction on k. The case k = 1 follows from Corol-

lary 13 (i). Let us prove the induction step k−1⇒ k. From the induction hypothesis

and Green’s Lemma it follows that every H-class, which is D-equivalent to Hk−1,

has cardinality (n− 2(k − 1))!.

For i = 1, 2, . . . , k set

θi = τ1,2τ3,4 . . . τ2i−3,2i−2τ2i+1,2i+2 . . . τ2k−1,2k.

If π ∈ Lθi
then, using Proposition 6, one shows that πτ2i−1,2i ∈ Lεk

. Let fi : Lθi
→

Lεk
denote the map fi(π) = πτ2i−1,2i. This induces the map

f :
∐

i

Lθi
→ Lεk

such that the restriction of f to Lθi
coincides with fi. By Proposition 6 we have

that f is surjective. Our aim is to prove that even f1 is surjective.

Let i, j ∈ {1, 2, . . . , k}, i 6= j. Define α : Lθi
→ Lθj

via α(π) = πτ2i,2jτ2i−1,2i and

β : Lθj
→ Lθi

via β(π) = πτ2i,2jτ2j−1,2j . Consider the diagram

(16) Lθi

fi
''NNNNNNNNNNNNN

α

11 Lθj

fj
wwppppppppppppp

β

qq

Lεk

.
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Every element π ∈ Lθi
satisfies πτ2j−1,2j = π by the definition of θi. Every element

π ∈ Lθj
satisfies πτ2i−1,2i = π by the definition of θj . Further,

τ2j−1,2jτ2i,2jτ2i−1,2iτ2j−1,2j = τ2j−1,2jτ2i−1,2j−1τ2i−1,2iτ2j−1,2j (by (5))

= τ2j−1,2jτ2i−1,2j−1τ2j−1,2jτ2i−1,2i (by (9))

= τ2j−1,2jτ2i−1,2i (by (7)).

This implies for all π ∈ Lθi
the following equalities

(fjα)(π) = (fjα)(πτ2j−1,2j)

= πτ2j−1,2jτ2i,2jτ2i−1,2iτ2j−1,2j

= πτ2j−1,2jτ2i−1,2i

= πτ2i−1,2i

= fi(π).

Hence fjα = fi. Analogously one shows that fiβ = fj . Thus the diagram (16) is

commutative, which implies that the map f1 is surjective.

Lemma 15. For any π ∈ Lθ1 there exists ω ∈ T such that ωHπ, ω 6= π, and

f1(π) = f1(ω).

P r o o f. Set ω = πτ3,4τ1,3τ2,3τ3,4. Direct calculation shows that ϕ(π)Lϕ(ω).

Hence ω ∈ Lθ1 by Corollary 9 (iii). Further, we have (τ3,4τ1,3τ2,3τ3,4)
2 = τ3,4 by

the statement analogous to that of Lemma 12 (a), which implies ωRπ, that is ωHπ.

Direct calculation shows that ϕ(π) 6= ϕ(π)ϕ(τ3,4τ1,3τ2,3τ3,4) and hence π 6= ω. On

the other hand,

f1(ω) = πτ3,4τ1,3τ2,3τ3,4τ1,2

= πτ3,4τ1,3τ2,3τ1,2τ3,4 (by (9))

= πτ3,4τ1,3τ1,2τ3,4 (by (6))

= πτ3,4τ1,3τ3,4τ1,2 (by (9))

= πτ3,4τ1,2 (by (7))

= πτ1,2 (since π ∈ Lθ1)

= f1(π).

�
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Lemma 16. Assume that π, τ ∈ Lθ1 are such that f1(π)Hf1(τ). Then there

exists η ∈ Hπ such that f1(η) = f1(τ).

P r o o f. If τ ∈ Hπ, we have nothing to prove, hence we assume that τ 6∈

Hπ. We have πτ1,2Hττ1,2. In particular, πτ1,2Rττ1,2. Moreover, we also have that

corank(ϕ(ττ1,2)) = 2k. Then, applying ∗ to the statement of Proposition 6, we

obtain that there exist w,w′ ∈ A+, pairwise distinct i1, j1, . . . , ik, jk, and a, b ∈

{1, 2, . . . , k} such that πτ1,2 = τi1,j1 . . . τik,jk
w, ττ1,2 = τi1,j1 . . . τik,jk

w′, the word

τia,ja
w is connected, and the word τib,jb

w′ is connected. Since both corank(ϕ(π)) =

corank(ϕ(τ)) = 2k − 2 and τ 6∈ Rπ, without loss of generality we may assume

τil,jl
π = π for all l = 1, . . . , k − 1 and τil,jl

τ = τ for all l = 2, . . . , k. Then, applying

Proposition 6, we get some v ∈ A+ and c ∈ {2, 3, . . . , k} such that τ = τi2,j2 . . . τik,jk
v

and the word τic,jc
v is connected. Put η = τi1,j1τi1,ik

τ . Since τik,jk
τ = τ by the

above and

τik,jk
τi1,ik

τi1,j1τi1,ik
τik,jk

= τik,jk

(by two applications of (7)), we have ηLτ .

Further, since τic,jc
v is connected, we have (τic,jc

v)(τic ,jc
v)∗ = τic,jc

by Lemma 8.

Using (9), this implies ηRτi1,j1τi1,ik
τi2,j2 . . . τik,jk

. Using (9), we further have

τi1,j1τi1,ik
τi2,j2 . . . τik,jk

= τi2,j2 . . . τik−1,jk−1
τi1,j1τi1,ik

τik,jk
.

Since τi1,j1τi1,ik
τik,jk

is connected, by the same argument as above we have τi1,j1τi1,ik

τi2,j2 . . . τik ,jk
Rτi1,j1τi2,j2 . . . τik−1,jk−1

. Hence ηRτi1,j1 . . . τik−1,jk−1
. It follows that

ηRπ and hence ηHπ.

The statement now follows from the following computation (using (7)):

f1(η) = ητ1,2 = τi1,j1τi1,ik
ττ1,2 = τi1,j1τi1,ik

τi1,j1 . . . τik,jk
w′

= τi1,j1 . . . τik,jk
w′ = ττ1,2 = f1(τ).

�

Since f1 : Lθ1 → Lεk
is surjective, Lemma 16 implies that the restriction of f1 to

Hθ1 is a surjection on a union of H-classes in Lεk
. By Corollary 9 (iii), the number

of H-classes in the latter union can be computed in the semigroup Bn via ϕ, and it

is easy to see that it equals
(

n−(2k−2)
2

)

.

We know by induction that |Hθ1 | = (n − 2(k − 1))!. Hence, taking into account

Lemma 15 and Green’s Lemma, we compute

(17) |Hf1(θ1)| 6
1

(

n−(2k−2)
2

)
·
(n− 2(k − 1))!

2
= (n− 2k)!.
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Since |Hϕ(f1(θ1))| = (n − 2k)! by [9, Theorem 1], (17) and Corollary 9 (iii) imply

|Hf1(θ1)| = (n − 2k)!. This forces |Hk| = (n − 2k)! by Green’s Lemma and the

statement follows by induction. �

P r o o f o f T h e o r e m 5. Let 1 6 k 6 ⌊ 12n⌋. By Proposition 14 we have

|Hk| = (n − 2k)!. By [9, Theorem 1] we have |ϕ(Hk)| = (n − 2k)! as well. Hence

the restriction of ϕ to Hk is injective. From Green’s Lemma it follows that the

restriction of ϕ to Hπ is injective for every π ∈ T such that πDεk. From Corollary 9

(iii) it therefore follows that ϕ is injective, and hence bijective. This completes the

proof. �

5. Combinatorial applications

5.1. Connected sequences. Two elements {i, j} and {k, l} of
(

n

2

)

are said to be

connected provided that {i, j} ∩ {k, l} 6= ∅. A connected sequence is a non-empty

sequence {i1, j1}, {i2, j2},. . . , {im, jm} of elements from
(

n

2

)

such that {il, jl} and

{il+1, jl+1} are connected for all l = 1, . . . ,m − 1. Two connected sequences will

be called equivalent provided that one of them can be obtained from the other by a

finite number of the following operations:

(I) replacing the fragment {i, j}, {i, j} by {i, j} and vice versa;

(II) replacing the fragment {i, j}, {j, k}, {k, l} by {i, j}, {i, l}, {k, l} and vice versa,

where i 6= l;

(III) replacing the fragment {i, j}, {j, k}, {k, i} by {i, j}, {k, i} and vice versa;

(IV) replacing the fragment {i, j}, {j, k}, {i, j} by {i, j} and vice versa.

It is obvious that each of the operations (I)–(IV), applied to a connected sequence,

produces a new connected sequence. As an immediate corollary of Theorem 5 we

have the following result:

Proposition 17. Let n ∈ {2, 3, . . .}.

(i) There exist only finitely many, namely 1
4n(n− 1)n!, equivalence classes of con-

nected sequences.

(ii) For all {i, j}, {k, l} ∈
(

n

2

)

the number of connected sequence whose first element

is {i, j} and whose last element is {k, l}, equals (n− 2)!.

P r o o f. Let S denote the set of all equivalence classes of connected sequences.

Define a semigroup structure on S ∪ {0} as follows: 0 is the zero element of S ∪ {0},

and for f, g ∈ S

f · g =

{

fg if fg is connected,

0 otherwise.
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LetB denote the Rees quotient ofBn\Sn modulo the ideal containing all elements

of corank at least 4. By Theorem 5, mapping σi,j to the connected sequence {i, j}

defines an epimorphism ψ from B to S∪{0}. On the other hand, from the definition

of the equivalence relation on the connected sequences we have that mapping {i, j}

to σi,j defines an epimorphism ψ′ : S ∪ {0} → B. Thus ψ and ψ′ induce a pair of

mutually inverse bijections between the set of all elements in Bn of corank 2 and the

set of equivalence classes of connected sequences. The claim now follows by direct

computation in Bn. �

It might be interesting to find a purely combinatorial proof for the statement of

Proposition 17.

5.2. Paths in the graph Γn. There is another interesting combinatorial inter-

pretation of the elements ofBn of corank 2. Consider a non-oriented graph Γn whose

vertex set is
(

n

2

)

, and such that two vertices {i, j} and {k, l} are connected by an

edge if and only if {i, j} ∩ {k, l} 6= ∅. The graph Γ4 is shown in Figure 9.

(1, 2)

GGGGGGGG
(1, 3)

GGGGGGGG

xxxxxxxx

(1, 4)

xxxxxxxx

(2, 3) (2, 4) (3, 4)

Figure 9: The graph Γ4.

Obviously, the paths in Γn can be interpreted as connected sequences as defined in

the previous subsection. Then the equivalence relation on the connected sequences,

defined by the operations (I)–(IV), has the following interpretation in terms of the

graph Γn:

(I) the trivial path in each vertex is an idempotent;

(II) if the full subgraph of Γn corresponding to a quadruple of vertices has the form

•

@
@

@
@

@
@

@ •

@
@

@
@

@
@

@

• •

then the paths of length 2 in this subgraph with the same initial and the same

terminal points are equivalent;

(III) for any triple {i, j}, {j, l}, {i, l} of vertices the paths in the full subgraph Γn,

corresponding to these vertices, with the same initial and the same terminal

points are equivalent;
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(IV) the path consisting of going along the same edge in two different directions

coincides with the trivial path in the starting point.

These relations generate an equivalence relation on the set of all paths in Γn. From

Proposition 17 it thus follows that the number of non-equivalent paths in Γn equals
1
4n(n− 1)n!, and the number of non-equivalent loops at each point equals (n− 2)!.

5.3. The maximal length of an element from Bn \ Sn. For w ∈ Bn \ Sn we

define the length ls(w) of w as the length of the shortest possible presentation of w

as a product of the generators σi,j ’s. For w ∈ A+
n we define the length l(w) of w

as the length of presentation of w as a product of the generators τi,j ’s. The aim of

this subsection is to prove the following statement about the maximal value f(n) of

ls(w) on w ∈ Bn \ Sn.

Theorem 18. Let n > 2. Then f(n) = ⌊ 32n⌋ − 2.

For the proof of Theorem 18 we will need several auxiliary statements. Set g(n) =

⌊ 32n⌋ − 2. We will show that f(n) 6 g(n). For n 6= 3 we will then find an element

w ∈ Hσ1,2 such that ls(w) = g(n). For n = 3 we have ls(σ1,2σ2,3) = 2 = g(3). By

Theorem 5 we have Bn \ Sn ≃ T and hence in the sequel we can work with the

semigroup T and the generators τi,j ’s. The function ls on T is defined in the obvious

way, and we consider all elements of A+ as elements of T via the natural projection.

Lemma 19. Let ui ∈ {3, . . . , n}, 1 6 i 6 k. Then

τ1,2τ1,u1 . . . τ1,uk
τ1,2 = τ1,2τ2,u1 . . . τ2,uk

τ1,2.

P r o o f. Because of (4) we may assume that ui 6= ui+1 for all i = 1, . . . , k − 1.

We have

τ1,2τ1,u1 . . . τ1,uk
τ1,2 = τ1,2τ2,u1τ1,u1τ1,u2 . . . τ1,uk

τ1,2 (by (6))

= τ1,2τ2,u1τ2,u2τ1,u2 . . . τ1,uk
τ1,2 (by (5))

. . .

= τ1,2τ2,u1τ2,u2 . . . τ2,uk
τ1,uk

τ1,2 (by (5))

= τ1,2τ2,u1τ2,u2 . . . τ2,uk
τ1,2 (by (6)).

�
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Corollary 20. Let ui ∈ {2, . . . , n}, 1 6 i 6 k. Then there exist elements

vi ∈ {1, . . . , n} \ {2}, 1 6 i 6 k, such that

w = τ1,2τ1,u1 . . . τ1,uk
τ1,2 = τ1,2τ2,v1 . . . τ2,vk

τ1,2.

P r o o f. If 2 /∈ {u1, . . . , uk} then the statement follows from Lemma 19. Other-

wise let ui1 = ui2 = . . . = uip
= 2, i1 < i2 < . . . < ip, be all occurrences of 2 among

u1, . . . , uk. Set u0 = uk+1 = 2, i0 = 0, ip+1 = k + 1. The statement now follows by

applying Lemma 19 to each element τ1,uij
τ1,uij+1 . . . τ1,uij+1

, j = 0, . . . , p. �

Lemma 21. Let w ∈ A+ be such that w ∈ H1. Assume that l(w) = ls(w) > 4

and set m = l(w) − 2. Then there exist ui ∈ {2, . . . , n}, i = 1, . . . ,m, such that

w = τ1,2τ1,u1 . . . τ1,um
τ1,2.

P r o o f. We use induction onm = l(w)−2. Ifm = 2, we havew = τ1,2τa,bτc,dτ1,2.

Without loss of generality we may assume a, d ∈ {1, 2}. If a = d = 1, we have nothing

to prove. If a = d = 2, the statement follows from Lemma 19. If a 6= d, using (6) we

see that ls(w) < 4, a contradiction.

Now we prove the induction step m − 1 ⇒ m. Let w = τ1,2τi1,j1 . . . τim,jm
τ1,2.

Without loss of generality we may assume i1 ∈ {1, 2}.

C a s e 1: i1 = 1. If 1 ∈ {il, jl} for all l 6 m, we have nothing to prove. Otherwise

let p < m be such that 1 ∈ {il, jl} for all l 6 p and 1 6∈ {ip+1, jp+1}. Thus, without

loss of generality we may assume il = 1 for all l 6 p. If jp = 2, the statement follows

from the induction hypothesis.

Assume that jp 6= 2. Without loss of generality we may write

w = τ1,2τ1,j1 . . . τ1,jp
τjp,jp+1 . . . τjp,jp+q

τjp+q,jp+q+1 . . . τim,jm
τ1,2.

Observe that jp+q+1 6= jp since l(w) = ls(w).

Now we apply successively the relation (5) starting from τjp,jp+q
and moving to

the left until we reach the element τjp,jp+2 . We get

w = τ1,2τ1,j1 . . . τ1,jp
τjp,jp+1τjp+1,jp+q+1 . . . τjp+q−1,jp+q+1τjp+q,jp+q+1 . . . τim,jm

τ1,2.

If jp+q+1 = 1, then we can reduce the length of w by (6), a contradiction. Otherwise,

using (5) we can change τjp,jp+1 to τ1,jp+q+1 . Since we have not changed the length

of w, the proof in Case 1 is now completed by induction on p.

C a s e 2: i1 = 2. Analogously to Case 1, we get existence of ui ∈ {1, 3, . . . , n},

i = 1, . . . ,m, such that w = τ1,2τ2,u1 . . . τ2,um
τ1,2. Now the claim follows from

Corollary 20. �
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Note that for every w ∈ H1 there exists a unique permutation π ∈ Sn−2 such that

(18) w =
{

{1, 2}, {1′, 2′}, {k, π(k − 2)′ + 2}k 6=1,2

}

.

Let (i′
(1)
1 , . . . , i′(1)p1

),. . . , (i′
(s)
1 , . . . , i′(s)ps

) be a complete list of cycles of π which have

length at least 2. Set i
(b)
a = i′

(b)
a + 2 for all possible a, b. Then, by (2), we have the

following decomposition of w:

w = τ1,2τ1,i
(1)
1
. . . τ

1,i
(1)
p1

τ1,2 . . . τ1,2τ1,i
(s)
1
. . . τ

1,i
(s)
ps

τ1,2.

We will call this decomposition a cyclic decomposition of w. We will also say that

τ1,2 is the cyclic decomposition of τ1,2. In the obvious way we now define cycles in

H1.

Lemma 22. Let w ∈ H1 be a non-trivial cycle. Then ls(w) equals the length of

the cyclic decomposition of w.

P r o o f. By Lemma 21 there exist u1, . . . , uls(w)−2 ∈ {2, . . . , n} such that

w = τ1,2τ1,u1 . . . τ1,uls(w)−2
τ1,2.

But then all elements from {3, . . . , n} moved by the cycle w should obviously occur

among u1, . . . , uls(w)−2. The claim now follows from the formula (2). �

Finally, for Theorem 5 we obtain for pairwise distinct 1, u, u1, . . . , uk and for any

l ∈ k that

(19) τ1,uτ1,u1 . . . τ1,uk
τ1,u = τ1,uτ1,ul

. . . τ1,uk
τ1,u1 . . . τ1,ul−1

τ1,u.

Lemma 23. Let 1, a, u, u1, . . . , uk be pairwise distinct. Then

τ1,aτ1,uτ1,u1 . . . τ1,uk
τ1,u = τ1,aτ1,u1 . . . τ1,uk

τ1,aτ1,u.

P r o o f.

τ1,aτ1,uτ1,u1 . . . τ1,uk
τ1,u = (by (7))

τ1,aτ1,uτ1,u1 . . . τ1,uk
τ1,aτ1,uk

τ1,u = (by (19))

τ1,aτ1,u1 . . . τ1,uk
τ1,uτ1,aτ1,uk

τ1,u = (by (19))

τ1,aτ1,u1 . . . τ1,uk
τ1,uτ1,uk

τ1,aτ1,u = (by (7))

τ1,aτ1,u1 . . . τ1,uk
τ1,aτ1,u.

�
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Lemma 24. Let w ∈ H1. Then the cyclic decomposition of w is of length ls(w).

P r o o f. We use induction on ls(w). If ls(w) 6 3 then the statement is trivial

since, by (4) and (7), the only possibility is w = τ1,2. Let us now prove the induction

step m+ 1⇒ m+ 2.

Let w ∈ H1 be such that ls(w) = m + 2. By Lemma 21 we may write w =

τ1,2τ1,u1 . . . τ1,um
τ1,2 for some ui ∈ {2, . . . , n}, i = 1, . . . ,m. We set u0 = um+1 = 2.

If all of ui’s are pairwise distinct, the word w is a cycle and the statement follows.

Suppose now that there are some repetitions among u0, u1, . . . , um. Take the leftmost

element which repeats in this series, say ui = u. Let j > i be the minimal possible

such that uj = u. Consider the element

w′ = τ1,ui
. . . τ1,uj

= τ1,uτ1,ui+1 . . . τ1,uj−1τ1,u ∈ Hτ1,u
.

Since ls(w) = m+2, ls(w′) = j−i+1 < m+2. Hence, using the induction hypothesis,

the cyclic decomposition of w′ has length j − i + 1. Without loss of generality we

hence may assume that the subword w′ of w already coincides with the corresponding

cyclic decomposition, that is, it is a cycle.

Now we claim that ui−1, ui, . . . , uj−1 are pairwise distinct. Indeed, if not, then

ui−1 coincides with one of ui+1, . . . , uj−1. Then applying (19) we can obtain the

fragment τ1,ui−1τ1,ui
τ1,ui−1 which can be shortened by (7), a contradiction. Hence

Lemma 23 gives

τ1,ui−1τ1,ui
τ1,ui+1 . . . τ1,uj−2τ1,uj−1τ1,ui

τ1,uj+1

= τ1,ui−1τ1,ui+1τ1,ui+2 . . . τ1,uj−1τ1,ui−1τ1,ui
τ1,uj+1 .

This operation makes the index of the first letter with repetition smaller. Hence,

applying this procedure as many times as necessary, we may assume that i = 0.

This means that w is a product of a cycle with some element v from H1 of strictly

smaller length. By induction hypothesis, we may assume that v is written in its

cyclic decomposition. We are left to prove that none of the elements u1, . . . , uj−1

occurs among cycles in v. Assume that some of these elements does occur. Then,

using (19), we may assume that this is uj−1. At the same time, the cycles of any

cyclic decomposition commute and hence using this and (19) we may assume that

uj−1 = uj+1. In this case we can make w shorter by applying (7), a contradiction.

This completes the proof. �
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Proposition 25. Let w ∈ H1. Then ls(w) 6 g(n). Moreover, if n > 4 then there

exists v ∈ H1 such that ls(v) = g(n).

P r o o f. If w = τ1,2 or n 6 3 then the statement is obvious. Suppose now that

w 6= τ1,2 and n > 4. Let π ∈ Sn−2 be the permutation which corresponds to w by

(18). Let c and s be the number of non-trivial and trivial cycles in π respectively.

From Lemma 24 it follows that ls(w) = (n− 2)− s+ c+ 1.

C a s e 1: n = 2k, k ∈ N. Then ls(w) = (2k − 1) + c− s 6 (2k − 1) + 1
2 (2k − 2) =

3k − 2 = g(n) and the equality holds if and only if π contains k − 1 transpositions.

C a s e 2: n = 2k+1, k ∈ N. If s = 0 then there should exist a cycle in π of length

at least 3. Then ls(w) = 2k + c 6 2k + 1
2 (n − 2 − 3) + 1 = 3k − 1 = g(n) and the

equality holds if and only if π contains one cycle of length 3 and k−2 transpositions.

If s > 1 then ls(w) = 2k+ c− s 6 2k−1+ c 6 2k−1+ 1
2 (n−2−1) = 3k−2 < g(n).

The proof is complete. �

Lemma 26. Let i1, j1, . . . , ik, jk be pairwise distinct elements from n. Then there

exists a word µ ∈ A+ such that l(µ) 6 2k,

τ1,2 . . . τ2k−1,2kµ ∈ Lτi1,j1 ...τik,jk
,

and {m,m′} ∈ ϕ(µ), m ∈ n \ {i1, j1, . . . , ik, jk, 1, 2, . . . , 2k − 1, 2k}.

P r o o f. For a, b, c, d ∈ n, a 6= b, c 6= d, set

µa,b,c,d =

{

τa,cτc,d if {a, b} ∩ {c, d} = ∅,

τc,d otherwise.

Note that {m,m′} ∈ ϕ(µa,b,c,d) provided that m 6= a, b, c, d.

Now direct calculation implies that τa,bµa,b,c,dµc,d,a,b = τa,b for all a, b, c, d such

that a 6= b and c 6= d. In particular, it follows that for any w ∈ T such that wτa,b = w

we have that the coranks of the elements ϕ(w) and ϕ(wµa,b,c,d) coincide.

In particular, the element ϕ(µ1), where µ1 = τ1,2 . . . τ2k−1,2kµ1,2,i1,j1 , has corank

2k. Further, µ1 satisfies µ1τi1,j1 = µ1 by the definition of µ1,2,i1,j1 . Hence there exist

pairwise distinct a1, b1, . . . , ak−1, bk−1 from n \ {i1, j1} such that

µ1 ∈ Lτi1,j1τa1,b1
...τak−1,bk−1

.

Analogously, the element ϕ(µ2), where µ2 = µ1µa1,b1,i2,j2 , also has corank 2k. The

element µ2 satisfies µ2τi1,j1 = µ2 and µ2τi2,j2 = µ2 by the definition of µa1,b1,i2,j2 .

Hence there exist pairwise distinct c1, d1, . . . , ck−2, dk−1 from n \ {i1, j1, i2, j2} such

that

µ2 ∈ Lτi1,j1τi2,j2τc1,d1
...τck−2,dk−2

.
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Continuing this process for k − 2 more steps we will construct the element µk with

the desired properties. �

P r o o f o f T h e o r e m 1 8. Let n > 4. Then, by Proposition 25, there is w ∈ T

such that ls(w) = g(n). For n = 2, 3 an example of w ∈ T such that ls(w) = g(n)

was constructed immediately after the formulation of Theorem 18. Hence we are left

to show that for any w ∈ T we have ls(w) 6 g(n). Without loss of generality it is

even enough to consider those w for which τ1,2w = w.

Let now w ∈ T be such that τ1,2w = w. Assume first that corank(ϕ(w)) = 2. Then

there exists a unique {i, j}, i 6= j, such that wτi,j = w. Without loss of generality

we have one of the following cases:

C a s e 1: {i, j} = {1, 2}. Then the statement follows from Proposition 25.

C a s e 2: i = 1 and j 6= 2. Then, applying (4) and (7), we obtain w = wτ1,jτ1,2τ1,j .

Setting w′ = wτ1,jτ1,2 = wτ1,2 we have w = w′τ1,j by (7). It follows that w
′Hτ1,2.

Consider the cyclic decomposition of w′. Assume that the cycles occurring in this

decomposition do not move the element j. Then, by Lemma 24 and Proposition 25,

we have that the length of this decomposition is at most g(n− 1). Since w = w′τ1,j ,

we have ls(w) 6 1 + g(n − 1) 6 g(n). Assume now that there is a cycle in w′

which moves j. Using (19) and the fact that the cycles in the cyclic decomposition

commute, we may write w′ = w′′τ1,jτ1,2 for some w
′′ such that ls(w′′) = ls(w′) − 2.

Since w = w′τ1,j , we have w = w′′τ1,j by (7), and thus ls(w) < ls(w′) 6 g(n).

C a s e 3: {i, j} ∩ {1, 2} = ∅. Then we can write w = w′τ1,iτi,j , w
′ ∈ Hτ1,2 .

Consider again the cyclic decomposition of w′. If neither i nor j are moved by all the

cycles, we have ls(w) 6 2+ g(n− 2) 6 g(n). If i is moved, then, as in Case 2, we can

write w′ = w′′τ1,iτ1,2 for some w
′′ such that ls(w′′) = ls(w′) − 2 and, using (7), we

obtain ls(w) 6 ls(w′′)+2 = ls(w′) 6 g(n). Finally, let us assume that i is not moved

but j is. Assume that x1, . . . , xp, j, p > 0, is a cycle in the cyclic decomposition of w′.

Then, using (19) and the fact that the cycles in the cyclic decomposition commute,

we may assume that this cyclic decomposition has the form

τ1,2 . . . τ1,2τ1,x1 . . . τ1,xp
τ1,jτ1,2.

Now we can compute the following expression containing the last cycle of this de-

composition:

τ1,2τ1,x1 . . . τ1,xp
τ1,jτ1,2τ1,iτi,j = (by (5))

τ1,2τ1,x1 . . . τ1,xp
τ1,jτ1,2τ2,jτi,j = (by (6))

τ1,2τ1,x1 . . . τ1,xp
τ1,jτ2,jτi,j = (by (5))

τ1,2τ1,x1 . . . τ1,xp
τ2,xp

τ2,jτi,j = (by (5))

. . .
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τ1,2τ1,x1τ2,x1 . . . τ2,xp−1τ2,xp
τ2,jτi,j = (by (6))

τ1,2τ2,x1 . . . τ2,xp−1τ2,xp
τ2,jτi,j .

It follows that ls(w) 6 ls(w′) 6 g(n).

Assume now that corank(ϕ(w)) = 2k, k > 1. We may further assume that

τ1,2 . . . τ2k−1,2kw = w and wτi1,j1 . . . τik,jk
= w for some pairwise distinct elements

i1, j1, . . . , ik, jk. Without loss of generality we may assume that we have one of the

following cases:

C a s e 1: {i1, j1, . . . , ik, jk} = {1, . . . , 2k}. Since the map

Hτ1,2...τ2k−1,2k
→ Hτi1,j1 ...τik,jk

x 7→ xτi1,j1 . . . τik ,jk

is obviously a bijection, there exists w′ ∈ Hτ1,2...τ2k−1,2k
for which we have w =

w′τi1,j1 . . . τik,jk
. From the definition of g we have g(n + 2p) = g(n) + 3p for all

positive integers n and p. Hence

ls(w) 6 k + ls(w′) 6 k + (k − 1) + g(n− 2(k − 1)) = g(n) + 2− k 6 g(n).

C a s e 2: |{ik, jk} ∩ {1, . . . , 2k}| 6 1. Without loss of generality we may also

further assume {ik, jk} ∩ {1, . . . , 2k − 2} = ∅. Then, using Lemma 26, we see that

there exists µ such that l(µ) 6 2(k − 1) and

τ1,2 . . . τ2k−3,2k−2τik,jk
µLτi1,j1 . . . τik,jk

.

This implies that the map

Lτ1,2...τ2k−3,2k−2τik,jk
→ Lτi1,j1 ...τik,jk

x 7→ xµ

is a bijection. In particular, there exists v ∈ Lτ1,2...τ2k−3,2k−2τik,jk
such that vµ =

w. Since τ1,2 . . . τ2k−1,2kw = w, it follows that τ1,2 . . . τ2k−1,2kv = v (because of

corank(ϕ(v)) = corank(ϕ(w))). Hence v ∈ Rτ1,2...τ2k−1,2k
.

From the above we derive τ2a−1,2av = vτ2a−1,2a = v for all a = 1, . . . , k − 1.

Hence we can write v = τ1,2 . . . τ2k−3,2k−2v
′, where v′ is such that corank(ϕ(v′)) = 2

and {m,m′} ∈ ϕ(v′) for all m 6 2k − 2. Using induction on n and the case of

corank 2 considered above, we obtain ls(v′) 6 g(n − 2(k − 1)). Hence ls(v) 6

(k − 1) + g(n− 2(k − 1)) and from w = vµ we get

ls(w) 6 ls(v) + ls(µ) 6 (k − 1) + g(n− 2(k − 1)) + 2(k − 1) = g(n).

This completes the proof. �
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