COMMUTATIVE SEMIGROUPS THAT ARE NIL OF INDEX 2 AND HAVE NO IRREDUCIBLE ELEMENTS

JAROSLAV JEŽEK, TOMÁŠ KEPKA, PETR NĚMEC, Praha

(Received March 16, 2006)

Abstract. Every commutative nil-semigroup of index 2 can be imbedded into such a semigroup without irreducible elements.

Keywords: nil-semigroup, commutative nil-semigroup *MSC 2000*: 20M14

1. INTRODUCTION

(Congruence-)simple semimodules over semigroups (and/or semirings) are easily divided into four pair-wise disjoint classes. That is, if M is a simple semimodule then the additive semigroup M(+) is either

- (1) cancellative, or
- (2) idempotent, or
- (3) constant (i.e. |M + M| = 1), or
- (4) nil of index 2 and without irreducible elements (i.e., 2x + y = 2x for all $x, y \in M$ and M + M = M).

Now, the last class is the most enigmatic one and was scarcely studied so far (cf. [1]). In fact, structural properties of commutative 2-nil semigroups without irreducible elements (zs-semigroups in the sequel) are not yet well understood and examples of these semigroups are rarely seen (see e.g. [2]). The aim of the present short note is to show that every commutative 2-nil semigroups can be imbedded into a commutative zs-semigroup. Consequently, there should exist many commutative zs-semigroups and then many simple semimodules of type (4) as well.

Supported by the institutional grant MSM 0021620839 and by the Grant Agency of Czech Republic, grant #GAČR-201/05/0002.

Throughout this note, the word *semigroup* will always mean a commutative semigroup, the binary operation of which will be denoted additively.

1.1 An element w of a semigroup S is called *absorbing* if S + w = w. There exists at most one absorbing element in S and it will be denoted by the symbol $o (= o_S)$ in the sequel. The fact that S possesses the absorbing element will be denoted by $o \in S$.

1.2 A non-empty subset I of S is an *ideal* if $S + I \subseteq I$.

1.3 Lemma.

- (i) A one-element subset $\{w\}$ is an ideal iff $w = o_S$.
- (ii) If I is an ideal then the relation $r = (I \times I) \cup id_S$ is a congruence of S and $I = o_T$, where T = S/r.
- (iii) If $o \in S$ and and s is a congruence of S then the set $\{a \in S; (a, o) \in s\}$ is an ideal.

1.4 Put $(Q_S(a) =) Q(a) = S + a$ and $(P_S(a) =) P(a) = Q(a) \cup \{a\}$ for every $a \in S$.

1.5 Lemma.

- (i) $Q(a) \subseteq P(a)$ and both these sets are ideals of S.
- (ii) P(a) is just the (principal) ideal generated by the one-element set $\{a\}$.

1.6 Assume that $o \in S$. An element $a \in S$ is said to be *nilpotent (of index at most* $m \ge 1$) if ma = o. We denote by N(S) $(N_m(S))$ the set of nilpotent (of index at most m) elements of S.

The semigroup S is said to be nil (of index at most m) if N(S) = S ($N_m(S) = S$) and reduced if o_S is the only nilpotent element of S.

1.7 Lemma.

(i) $o = N_1(S) \subseteq N_2(S) \subseteq N_3(S) \subseteq \ldots$ and all these sets are ideals.

- (ii) $N(S) = \bigcup N_m(S)$ is an ideal.
- (iii) The factor-semigroup T = S/N(S) is reduced.

1.8 Lemma. The following conditions are equivalent:

- (i) $o \in S$ and 2x = o for every $x \in S$.
- (ii) S is nil of index at most 2.
- (iii) 2x + y = 2z for all $x, y, z \in S$.
- (iv) 2x + y = 2x for all $x, y \in S$.

1.9 A semigroup satisfying the equivalent conditions of 1.8 will be called *zeropotent* (or, in a colourless manner, a *zp-semigroup*) in the sequel.

A zp-semigroup without irreducible elements (i.e., when S + S = S) will be called a *zs-semigroup*.

1.10 Define a relation $|_S$ on S by $a |_S b$ iff b = a + u for some $u \in S^0$, where S^0 is the least monoid containing S and 0 denotes the neutral element of S^0 .

1.11 Lemma. The following conditions are equivalent:

(i) $a \mid_S b$. (ii) $b \in P(a)$.

- (iii) $D(h) \subset D(a)$
- (iii) $P(b) \subseteq P(a)$.

Moreover, if $a \neq b$ then these conditions are equivalent to:

(iv) $b \in Q(a)$. (v) $P(b) \subseteq Q(a)$.

1.12 Lemma. The relation $|_S$ is a fully invariant compatible quasiordering of the semigroup S and the equivalence $||_S = \ker(|_S)$ is a fully invariant congruence of the semigroup S.

1.13 Lemma. The following conditions are equivalent:

- (i) $a \parallel \mid_S b$.
- (ii) P(a) = P(b).

Moreover, if $a \neq b$ then these conditions are equivalent to:

(iii)
$$Q(a) = Q(b) = P(a) = P(b).$$

1.14 Lemma. The following conditions are equivalent:

- (i) S is a group.
- (ii) $|_S = S \times S$.
- (iii) $||_S = S \times S$.
- (iv) P(a) = P(b) for all $a, b \in S$.
- (v) P(a) = S for every $a \in S$.
- (vi) Q(a) = S for every $a \in S$.

1.15 Lemma. The relation $|_S$ is a (fully invariant compatible) ordering (or, equivalently, $||_S = id_S$), provided that at least one of the following four conditions is satisfied:

- (1) S is not a group and id_S , $S \times S$ are the only fully invariant congruences of S;
- (2) S is cancellative and $0 \notin S$;
- (3) S is nil;
- (4) S is idempotent.

Proof. (1) Combine 1.13 and 1.14.

(2) If $a \neq b$, b = a + u and a = b + v, $a, b, u, v \in S$, then a = a + w, where w = u + v, and hence w = 0, a contradiction.

(3) If a = a + w, $a, w \in S$, then a = a + mv for every $m \ge 1$, and hence a = o.

(4) If b = a + u, $a, b, u \in S$, then a + b = a + a + u = a + u = b.

1.16 Define a relation $/_S$ on S by $a/_S b$ iff $Q(b) \subseteq Q(a)$.

1.17 Lemma. The relation $/_S$ is an invariant compatible quasiordering of the semigroup S and the equivalence $//_S = \ker(/_S)$ is an invariant congruence of the semigroup S.

1.18 Lemma. The following conditions are equivalent:

- (i) $/_S = S \times S$.
- (ii) $/\!/_S = S \times S$.
- (iii) S + a = S + b for all $a, b \in S$.
- (iv) S + S = I is the smallest ideal of S and I is a subgroup of S.

2. The distractibility ordering of zp-semigroups

2.1 In this section, let S be a zp-semigroup. Put $Ann(S) = \{a \in S; S + a = o\}$.

2.2 Lemma.

- (i) The relation $|_S$ is a fully invariant compatible ordering of the semigroup S.
- (ii) o is the greatest element.
- (iii) $\operatorname{Ann}(S) \setminus \{o\}$ is the set of maximal elements of $T = S \setminus \{o\}$.
- (iv) If $|S| \ge 2$ then $S \setminus (S+S)$ is the set of minimal elements of S.
- (v) If $|S| \ge 3$ then S has no smallest element.

2.3 Lemma. If S is a non-trivial zs-semigroup then S has no minimal elements, S is infinite and not finitely generated.

Proof. Being nil, S is finitely generated iff it is finite. The rest is clear from 2.2(iv).

2.4 Lemma. If $0 \in S$ then S is trivial.

3. Every ZP-Semigroup is a subsemigroup of a ZS-Semigroup

Now, we are in position to show the main result of this note.

3.1 Proposition. Every zp-semigroup is a subsemigroup of a zs-semigroup.

Proof. Let S be a non-trivial zp-semigroup and $Q = S \setminus (S + S)$. For every $a \in Q$, put $R_a = S \setminus P(a)$; then $o \notin R_a$ and $R_a \neq \emptyset$, provided that $|S| \ge 3$. Further, $0 \notin S$ by 2.4 and we put $R_{a,0} = R_a \cup \{0_a\}$, where the elements 0_a , $a \in Q$, are all distinct, $V_{a,1} = R_{a,0} \times \{1\}$ and $V_{a,2} = R_{a,0} \times \{2\}$. Now, consider the disjoint union

$$T = S \cup \bigcup_{a \in Q} V_{a,1} \cup \bigcup_{a \in Q} V_{a,2}$$

and define an addition on T in the following way:

(1) x + y coincides in S(+) and T(+) for all $x, y \in S$;

(2) x + (y,i) = (x + y,i) = (y,i) + x for all $x \in S$, $(y,i) \in V_{a,i}$, $a \in Q$, i = 1, 2, $x + y \in R_a$ (i.e., $x + y \notin P(a)$);

(3) (x,i) + (y,j) = x + y + a for all $x, y \in R_{a,0}, a \in Q, i \neq j$;

(4) $\alpha + \beta = o$ if $\alpha, \beta \in T$ and the sum $\alpha + \beta$ is not defined by (1), (2) or (3).

Clearly, $\alpha + \beta = \beta + \alpha$, $\alpha + \alpha = o$, $\alpha + o = o$ and $o + \alpha = o$ for every $\alpha \in T$. Next, we check that $\alpha + (\beta + \gamma) = (\alpha + \beta) + \gamma$ for all $\alpha, \beta, \gamma \in T$.

Put $\delta = \alpha + (\beta + \gamma)$, $\varepsilon = (\alpha + \beta) + \gamma$ and consider the following cases:

(a) $\alpha, \beta, \gamma \in S$. Then $\delta = \varepsilon$ by (1).

(b) $\alpha, \beta \in S$ and $\gamma = (x, i) \in V_{a,i}$. Assume first that $\alpha + \beta + x \in R_a$. Then $\varepsilon = (\alpha + \beta + x, i)$ by (2). Moreover, $\beta + x \in R_a$, and hence $\beta + \gamma = (\beta + x, i)$ and $\delta = \alpha + (\beta + x, i) = (\alpha + \beta + x, i) = \varepsilon$.

Assume next that $\alpha + \beta + x \notin R_a$. Then $\varepsilon = o$ by (4). Moreover, either $\beta + x \notin R_a$, $\beta + \gamma = o$ and $\delta = \alpha + o = o = \varepsilon$, or $\beta + x \in R_a$, $\beta + \gamma = (\beta + x, i)$ and $\delta = \alpha + (\beta + x, i) = o = \varepsilon$.

(c) $\alpha, \gamma \in S, \beta \in V_{a,i}$ (or $\beta, \gamma \in S, \alpha \in V_{a,i}$). These cases are similar and/or dual to (b).

(d) $\alpha = (x, i) \in V_{a,i}, \beta = (y, i) \in V_{a,i}$ and $\gamma \in S$. Then $\alpha + \beta = o$ by (4), and so $\varepsilon = o + \gamma = o$. Assume first that $y + \gamma \in R_a$. Then $\beta + \gamma = (y + \gamma, i)$ by (2) and $\delta = (x, i) + (y + \gamma, i) = o$ by (4). Thus $\varepsilon = \delta$.

Assume next that $y + \gamma \notin R_a$. Then $\beta + \gamma = o$ by (4) and $\delta = (x, i) + o = o = \varepsilon$. (e) $\alpha, \gamma \in V_{a,i}, \beta \in S$ (or $\beta, \gamma \in V_{a,i}, \alpha \in S$). These cases are similar to (d).

(f) $\alpha = (x,i) \in V_{a,i}, \beta = (y,j) \in V_{a,j}, i \neq j, \gamma \in S$. Then $\alpha + \beta = x + y + a$ by (3), and hence $\varepsilon = x + y + a + \gamma$ by (1). Assume first that $y + \gamma \in R_a$. Then $\beta + \gamma = (y + \gamma, j)$ by (2) and $\delta = (x,i) + (y + \gamma, j) = x + y + \gamma + a = \varepsilon$.

Assume next that $y + \gamma \notin R_a$. Then $\beta + \gamma = o$ by (4), and hence $\delta = (x, i) + o = o$. However, $y + \gamma \notin R_a$ means $y + \gamma \in P(a)$ and then $a + y + \gamma = o$, since S is nil of index at most 2. Thus $\varepsilon = x + a + y + \gamma = x + o = o = \delta$.

(g) $\alpha \in V_{a,i}, \gamma \in V_{a,j}, \beta \in S$ (or $\beta \in V_{a,i}, \gamma \in V_{a,j}, \alpha \in S$). These cases are similar to (f).

(h) $\alpha, \beta, \gamma \in V_{a,i}$. Then $\beta + \gamma = o = \alpha + \beta$, and hence $\delta = a + o = o = o + \gamma = \varepsilon$. (i) $\alpha = (x, i) \in V_{a,i}, \beta = (y, i) \in V_{a,i}$ and $\gamma = (z, j) \in V_{a,j}, i \neq j$. Then $\alpha + \beta = o$

by (4), and hence $\varepsilon = o + (z, j) = o$. Further, $\beta + \gamma = y + z + a$ by (3). Now, $x + y + z + a \in P(a)$ and $\delta = (x, i) + y + z + a = o$ by (4). Thus $\delta = \varepsilon$.

(j) $\alpha, \gamma \in V_{a,i}, \beta \in V_{a,j}$ (or $\beta, \gamma \in V_{a,i}, \alpha \in V_{a,j}$). These cases are similar to (i).

(k) In all the remaining cases we get $\delta = o = \varepsilon$ due to (4).

We have shown that T = T(+) is a zp-semigroup and S is a subsemigroup of T. Clearly,

$$T+T=S\cup \bigcup_{a\in Q}(R_a\times\{1\})\cup \bigcup_{a\in Q}(R_a\times\{2\}).$$

Thus $S \subseteq T + T$ and

$$T \setminus (T+T) = \bigcup_{a \in Q} \{(0_a, 1), (0_a, 2)\}.$$

Finally, put $T_0 = S$, $T_1 = T$ and consider a sequence

$$T_0 \subseteq T_1 \subseteq T_2 \subseteq \ldots$$

of zp-semigroups such that T_i is a subsemigroup of T_{i+1} and $T_i \subseteq T_{i+1} + T_{i+1}$. Then $\bigcup T_i$ is a zs-semigroup.

References

- [1] R. El Bashir, T. Kepka, M. Kechlibar: Commutative semigroups with few fully invariant congruences I. Acta Univ. Carolinae Math. Phys. 46/1 (2005), 49–64. [2b]
- [2] V. Flaška, T. Kepka: Commutative zeropotent semigroups. Acta Univ. Carolinae Math. Phys. 47/1 (2006), 3–14.

Authors' addresses: Jaroslav Ježek, Tomáš Kepka, Charles University, Faculty of Mathematics and Physics, Department of Algebra, Sokolovská 83, 18675 Praha 8, Czech Republic, e-mails: jezek@karlin.mff.cuni.cz, kepka@karlin.mff.cuni.cz; Petr Němec, Czech University of Life Sciences, Faculty of Engineering, Department of Mathematics, Kamýcká 129, 16621 Praha 6-Suchdol, Czech Republic, e-mail: nemec@tf.czu.cz.