COMMUTATIVE SEMIGROUPS THAT ARE NIL OF INDEX 2 AND HAVE NO IRREDUCIBLE ELEMENTS

Jaroslav Ježek, Tomáš Kepka, Petr Němec, Praha

(Received March 16, 2006)

Abstract

Every commutative nil-semigroup of index 2 can be imbedded into such a semigroup without irreducible elements.

Keywords: nil-semigroup, commutative nil-semigroup
MSC 2000: 20M14

1. Introduction

(Congruence-)simple semimodules over semigroups (and/or semirings) are easily divided into four pair-wise disjoint classes. That is, if M is a simple semimodule then the additive semigroup $M(+)$ is either
(1) cancellative, or
(2) idempotent, or
(3) constant (i.e. $|M+M|=1$), or
(4) nil of index 2 and without irreducible elements (i.e., $2 x+y=2 x$ for all $x, y \in M$ and $M+M=M)$.
Now, the last class is the most enigmatic one and was scarcely studied so far (cf. [1]). In fact, structural properties of commutative 2-nil semigroups without irreducible elements (zs-semigroups in the sequel) are not yet well understood and examples of these semigroups are rarely seen (see e.g. [2]). The aim of the present short note is to show that every commutative 2-nil semigroups can be imbedded into a commutative zs-semigroup. Consequently, there should exist many commutative zs-semigroups and then many simple semimodules of type (4) as well.

[^0]Throughout this note, the word semigroup will always mean a commutative semigroup, the binary operation of which will be denoted additively.
1.1 An element w of a semigroup S is called absorbing if $S+w=w$. There exists at most one absorbing element in S and it will be denoted by the symbol o ($=o_{S}$) in the sequel. The fact that S possesses the absorbing element will be denoted by $o \in S$.
1.2 A non-empty subset I of S is an ideal if $S+I \subseteq I$.

1.3 Lemma.

(i) A one-element subset $\{w\}$ is an ideal iff $w=o_{S}$.
(ii) If I is an ideal then the relation $r=(I \times I) \cup \mathrm{id}_{S}$ is a congruence of S and $I=o_{T}$, where $T=S / r$.
(iii) If $o \in S$ and and s is a congruence of S then the set $\{a \in S ;(a, o) \in s\}$ is an ideal.
1.4 Put $\left(Q_{S}(a)=\right) Q(a)=S+a$ and $\left(P_{S}(a)=\right) P(a)=Q(a) \cup\{a\}$ for every $a \in S$.

1.5 Lemma.

(i) $Q(a) \subseteq P(a)$ and both these sets are ideals of S.
(ii) $P(a)$ is just the (principal) ideal generated by the one-element set $\{a\}$.
1.6 Assume that $o \in S$. An element $a \in S$ is said to be nilpotent (of index at most $m \geqslant 1$) if $m a=o$. We denote by $N(S)\left(N_{m}(S)\right)$ the set of nilpotent (of index at most m) elements of S.

The semigroup S is said to be nil (of index at most m) if $N(S)=S\left(N_{m}(S)=S\right)$ and reduced if o_{S} is the only nilpotent element of S.

1.7 Lemma.

(i) $o=N_{1}(S) \subseteq N_{2}(S) \subseteq N_{3}(S) \subseteq \ldots$ and all these sets are ideals.
(ii) $N(S)=\bigcup N_{m}(S)$ is an ideal.
(iii) The factor-semigroup $T=S / N(S)$ is reduced.
1.8 Lemma. The following conditions are equivalent:
(i) $o \in S$ and $2 x=o$ for every $x \in S$.
(ii) S is nil of index at most 2 .
(iii) $2 x+y=2 z$ for all $x, y, z \in S$.
(iv) $2 x+y=2 x$ for all $x, y \in S$.
1.9 A semigroup satisfying the equivalent conditions of 1.8 will be called zeropotent (or, in a colourless manner, a $z p$-semigroup) in the sequel.

A zp-semigroup without irreducible elements (i.e., when $S+S=S$) will be called a $z s$-semigroup.
1.10 Define a relation $\left.\right|_{S}$ on S by $\left.a\right|_{S} b$ iff $b=a+u$ for some $u \in S^{0}$, where S^{0} is the least monoid containing S and 0 denotes the neutral element of S^{0}.
1.11 Lemma. The following conditions are equivalent:
(i) $\left.a\right|_{S} b$.
(ii) $b \in P(a)$.
(iii) $P(b) \subseteq P(a)$.

Moreover, if $a \neq b$ then these conditions are equivalent to:
(iv) $b \in Q(a)$.
(v) $P(b) \subseteq Q(a)$.
1.12 Lemma. The relation $\left.\right|_{S}$ is a fully invariant compatible quasiordering of the semigroup S and the equivalence $\|_{S}=\operatorname{ker}\left(\left.\right|_{S}\right)$ is a fully invariant congruence of the semigroup S.
1.13 Lemma. The following conditions are equivalent:
(i) $a \|_{S} b$.
(ii) $P(a)=P(b)$.

Moreover, if $a \neq b$ then these conditions are equivalent to:
(iii) $Q(a)=Q(b)=P(a)=P(b)$.
1.14 Lemma. The following conditions are equivalent:
(i) S is a group.
(ii) $\left.\right|_{S}=S \times S$.
(iii) $\|_{S}=S \times S$.
(iv) $P(a)=P(b)$ for all $a, b \in S$.
(v) $P(a)=S$ for every $a \in S$.
(vi) $Q(a)=S$ for every $a \in S$.
1.15 Lemma. The relation $\left.\right|_{S}$ is a (fully invariant compatible) ordering (or, equivalently, $\|_{S}=\mathrm{id}_{S}$), provided that at least one of the following four conditions is satisfied:
(1) S is not a group and $\mathrm{id}_{S}, S \times S$ are the only fully invariant congruences of S;
(2) S is cancellative and $0 \notin S$;
(3) S is nil;
(4) S is idempotent.

Proof. (1) Combine 1.13 and 1.14.
(2) If $a \neq b, b=a+u$ and $a=b+v, a, b, u, v \in S$, then $a=a+w$, where $w=u+v$, and hence $w=0$, a contradiction.
(3) If $a=a+w, a, w \in S$, then $a=a+m v$ for every $m \geqslant 1$, and hence $a=o$.
(4) If $b=a+u, a, b, u \in S$, then $a+b=a+a+u=a+u=b$.
1.16 Define a relation $/ S$ on S by $a / s b$ iff $Q(b) \subseteq Q(a)$.
1.17 Lemma. The relation $/ S$ is an invariant compatible quasiordering of the semigroup S and the equivalence $/ / S=\operatorname{ker}\left(/ S_{S}\right.$ is an invariant congruence of the semigroup S.
1.18 Lemma. The following conditions are equivalent:
(i) $/ S=S \times S$.
(ii) $/ / s=S \times S$.
(iii) $S+a=S+b$ for all $a, b \in S$.
(iv) $S+S=I$ is the smallest ideal of S and I is a subgroup of S.

2. The distractibility ordering of zp-SEmigroups

2.1 In this section, let S be a zp-semigroup. Put $\operatorname{Ann}(S)=\{a \in S ; S+a=o\}$.

2.2 Lemma.

(i) The relation $\left.\right|_{S}$ is a fully invariant compatible ordering of the semigroup S.
(ii) o is the greatest element.
(iii) $\operatorname{Ann}(S) \backslash\{o\}$ is the set of maximal elements of $T=S \backslash\{o\}$.
(iv) If $|S| \geqslant 2$ then $S \backslash(S+S)$ is the set of minimal elements of S.
(v) If $|S| \geqslant 3$ then S has no smallest element.
2.3 Lemma. If S is a non-trivial zs-semigroup then S has no minimal elements, S is infinite and not finitely generated.

Proof. Being nil, S is finitely generated iff it is finite. The rest is clear from 2.2(iv).
2.4 Lemma. If $0 \in S$ then S is trivial.

3. Every zp-semigroup is a subsemigroup of a Zs-SEmigroup

Now, we are in position to show the main result of this note.
3.1 Proposition. Every zp-semigroup is a subsemigroup of a zs-semigroup.

Proof. Let S be a non-trivial zp-semigroup and $Q=S \backslash(S+S)$. For every $a \in Q$, put $R_{a}=S \backslash P(a)$; then $o \notin R_{a}$ and $R_{a} \neq \emptyset$, provided that $|S| \geqslant 3$. Further, $0 \notin S$ by 2.4 and we put $R_{a, 0}=R_{a} \cup\left\{0_{a}\right\}$, where the elements $0_{a}, a \in Q$, are all distinct, $V_{a, 1}=R_{a, 0} \times\{1\}$ and $V_{a, 2}=R_{a, 0} \times\{2\}$. Now, consider the disjoint union

$$
T=S \cup \bigcup_{a \in Q} V_{a, 1} \cup \bigcup_{a \in Q} V_{a, 2}
$$

and define an addition on T in the following way:
(1) $x+y$ coincides in $S(+)$ and $T(+)$ for all $x, y \in S$;
(2) $x+(y, i)=(x+y, i)=(y, i)+x$ for all $x \in S,(y, i) \in V_{a, i}, a \in Q, i=1,2$, $x+y \in R_{a}$ (i.e., $x+y \notin P(a)$);
(3) $(x, i)+(y, j)=x+y+a$ for all $x, y \in R_{a, 0}, a \in Q, i \neq j$;
(4) $\alpha+\beta=o$ if $\alpha, \beta \in T$ and the sum $\alpha+\beta$ is not defined by (1), (2) or (3).

Clearly, $\alpha+\beta=\beta+\alpha, \alpha+\alpha=o, \alpha+o=o$ and $o+\alpha=o$ for every $\alpha \in T$. Next, we check that $\alpha+(\beta+\gamma)=(\alpha+\beta)+\gamma$ for all $\alpha, \beta, \gamma \in T$.

Put $\delta=\alpha+(\beta+\gamma), \varepsilon=(\alpha+\beta)+\gamma$ and consider the following cases:
(a) $\alpha, \beta, \gamma \in S$. Then $\delta=\varepsilon$ by (1).
(b) $\alpha, \beta \in S$ and $\gamma=(x, i) \in V_{a, i}$. Assume first that $\alpha+\beta+x \in R_{a}$. Then $\varepsilon=(\alpha+\beta+x, i)$ by (2). Moreover, $\beta+x \in R_{a}$, and hence $\beta+\gamma=(\beta+x, i)$ and $\delta=\alpha+(\beta+x, i)=(\alpha+\beta+x, i)=\varepsilon$.

Assume next that $\alpha+\beta+x \notin R_{a}$. Then $\varepsilon=o$ by (4). Moreover, either $\beta+x \notin R_{a}$, $\beta+\gamma=o$ and $\delta=\alpha+o=o=\varepsilon$, or $\beta+x \in R_{a}, \beta+\gamma=(\beta+x, i)$ and $\delta=\alpha+(\beta+x, i)=o=\varepsilon$.
(c) $\alpha, \gamma \in S, \beta \in V_{a, i}$ (or $\beta, \gamma \in S, \alpha \in V_{a, i}$). These cases are similar and/or dual to (b).
(d) $\alpha=(x, i) \in V_{a, i}, \beta=(y, i) \in V_{a, i}$ and $\gamma \in S$. Then $\alpha+\beta=o$ by (4), and so $\varepsilon=o+\gamma=o$. Assume first that $y+\gamma \in R_{a}$. Then $\beta+\gamma=(y+\gamma, i)$ by (2) and $\delta=(x, i)+(y+\gamma, i)=o$ by (4). Thus $\varepsilon=\delta$.

Assume next that $y+\gamma \notin R_{a}$. Then $\beta+\gamma=o$ by (4) and $\delta=(x, i)+o=o=\varepsilon$.
(e) $\alpha, \gamma \in V_{a, i}, \beta \in S$ (or $\beta, \gamma \in V_{a, i}, \alpha \in S$). These cases are similar to (d).
(f) $\alpha=(x, i) \in V_{a, i}, \beta=(y, j) \in V_{a, j}, i \neq j, \gamma \in S$. Then $\alpha+\beta=x+y+a$ by (3), and hence $\varepsilon=x+y+a+\gamma$ by (1). Assume first that $y+\gamma \in R_{a}$. Then $\beta+\gamma=(y+\gamma, j)$ by (2) and $\delta=(x, i)+(y+\gamma, j)=x+y+\gamma+a=\varepsilon$.

Assume next that $y+\gamma \notin R_{a}$. Then $\beta+\gamma=o$ by (4), and hence $\delta=(x, i)+o=o$. However, $y+\gamma \notin R_{a}$ means $y+\gamma \in P(a)$ and then $a+y+\gamma=o$, since S is nil of index at most 2. Thus $\varepsilon=x+a+y+\gamma=x+o=o=\delta$.
(g) $\alpha \in V_{a, i}, \gamma \in V_{a, j}, \beta \in S$ (or $\beta \in V_{a, i}, \gamma \in V_{a, j}, \alpha \in S$). These cases are similar to (f).
(h) $\alpha, \beta, \gamma \in V_{a, i}$. Then $\beta+\gamma=o=\alpha+\beta$, and hence $\delta=a+o=o=o+\gamma=\varepsilon$.
(i) $\alpha=(x, i) \in V_{a, i}, \beta=(y, i) \in V_{a, i}$ and $\gamma=(z, j) \in V_{a, j}, i \neq j$. Then $\alpha+\beta=o$ by (4), and hence $\varepsilon=o+(z, j)=o$. Further, $\beta+\gamma=y+z+a$ by (3). Now, $x+y+z+a \in P(a)$ and $\delta=(x, i)+y+z+a=o$ by (4). Thus $\delta=\varepsilon$.
(j) $\alpha, \gamma \in V_{a, i}, \beta \in V_{a, j}$ (or $\beta, \gamma \in V_{a, i}, \alpha \in V_{a, j}$). These cases are similar to (i).
(k) In all the remaining cases we get $\delta=o=\varepsilon$ due to (4).

We have shown that $T=T(+)$ is a zp-semigroup and S is a subsemigroup of T. Clearly,

$$
T+T=S \cup \bigcup_{a \in Q}\left(R_{a} \times\{1\}\right) \cup \bigcup_{a \in Q}\left(R_{a} \times\{2\}\right)
$$

Thus $S \subseteq T+T$ and

$$
T \backslash(T+T)=\bigcup_{a \in Q}\left\{\left(0_{a}, 1\right),\left(0_{a}, 2\right)\right\}
$$

Finally, put $T_{0}=S, T_{1}=T$ and consider a sequence

$$
T_{0} \subseteq T_{1} \subseteq T_{2} \subseteq \ldots
$$

of zp-semigroups such that T_{i} is a subsemigroup of T_{i+1} and $T_{i} \subseteq T_{i+1}+T_{i+1}$. Then $\bigcup T_{i}$ is a zs-semigroup.

References

[1] R. El Bashir, T. Kepka, M. Kechlibar: Commutative semigroups with few fully invariant congruences I. Acta Univ. Carolinae Math. Phys. 46/1 (2005), 49-64.
[2] V. Flaška, T. Kepka: Commutative zeropotent semigroups. Acta Univ. Carolinae Math. Phys. 47/1 (2006), 3-14.

Authors' addresses: Jaroslav Ježek, Tomáš Kepka, Charles University, Faculty of Mathematics and Physics, Department of Algebra, Sokolovská 83, 18675 Praha 8, Czech Republic, e-mails: jezek@karlin.mff.cuni.cz, kepka@karlin.mff.cuni.cz; Petr Němec, Czech University of Life Sciences, Faculty of Engineering, Department of Mathematics, Kamýcká 129, 16621 Praha 6-Suchdol, Czech Republic, e-mail: nemec@tf.czu.cz.

[^0]: Supported by the institutional grant MSM 0021620839 and by the Grant Agency of Czech Republic, grant \#GAČR-201/05/0002.

