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Abstract. Motivated by Vityuk and Golushkov (2004), using the Schauder Fixed Point
Theorem and the Contraction Principle, we consider existence and uniqueness of positive
solution of a singular partial fractional differential equation in a Banach space concerning
with fractional derivative.
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1. INTRODUCTION

Let 7 = (o,0), 0 < a, 8 < 1 and 0 < a < +o00, 0 < b < 4o0. For f €
L((0,a) x (0,b)), the expression

) = gy [ =9 = 0" ) st

where I'(+) is the Euler gamma function, is called [1] the left-sided mixed Riemann-
Liouville integral of order r. In particular,

(03 F)(wry) = / ' / D p(sydsdr, (19F)(e.y) = F.y)

for almost all (z,y) € L((0,a) x (0,b)).
The mixed fractional Riemann-Liouville derivative of order r is defined [1] by the
expression

(Dgf)(xv y) = Dﬂcyfl—v"(xv y)
where fi_y(z,y) = (I f)( ) and Day, = 0%/020y.
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Example 1.1.

YA (1 + A)F(l + w) Ao, w+B _ _
(IH)x (1+/\+oz)F(1+w+ﬁ)x yemP oA > -1, w> -1

T\ oA, W (1 + )‘)F(l + w) A—a, w—0 _ _
(D)z y” = (1+/\—oz)F(1+w—ﬁ)x yPoA> -1, w> -1

Proposition 1.1 [1]. Let g = (v,0), 7,0 > 0, the following relation is true

(815 H)(x,y) = (L5 )(z,y)

for all f € L((0,a) x (0,b)).

From the definition of the mixed Riemann-Liouville fractional derivative and in-
tegral, we have the following results.

Proposition 1.2. The relation

for all f € L((0,a) x (0,b)) holds.

Proposition 1.3. Let f be a continuous function defined on [0, a] X [0, b]. Assume
that (D f)(z,y) exists, r = (o, ). Then for 0 < r < 1, the following relation

(ISDSf)(xay) = f(xvy)

holds.

Recently, there appeared many papers where the existence of solutions of initial
value problem for partial differential equation of fractional order is considered, see
[2]-[4]. In particular, A.N. Vityuk and A.V. Golushkov [5] consider the existence of
solutions of systems of partial differential equations of fractional order in spaces of
integrable functions

(D67uz)(xay) = fz[xvyau(xay)] = fi[xvyaul(xvy)a e 7un(xay)]

with the initial value conditions

Ui 1—r; ((L‘, O) = %(x)a
wi1—r, (0,) = ¥i(y),
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where 7; = (v, 6;), 0 < ai, Bi < 1, win—r; (2, ) = (I "us) (2, ), @i(z) € AC([0,a))
and ;(y) € AC([0,b]), i = 1,...,n. Motivated by [5], by means of the Schauder
Fixed Point Theorem and Contraction Principle, we consider the existence and
uniqueness of positive solution of the following singular partial differential equation
of fractional order, in the function spaces concerning the mixed Riemann-Liouville
fractional derivative

M { (Dyu) (@, y) = f(z,y,u(z,y), (D§'u)(@,y), ..., (D5 u)(z,y)), (z,y) € p,
’U,(J?, 0) = u(O,y) =0,

where p = (0,a] x (0,b], and ¢; = (v:,0;), 0 < i, &; < r, & = 1,...,n, that is
0<y<a, 0K, <p.

Definition. In this paper, the positive solution of problem (1) means that
u(0,y) = u(x,0) = 0 and u(z,y) > 0 for (z,y) € (0,a] x (0,b)].

2. FUNCTION SPACES CONCERNING THE MIXED RIEMANN-LIOUVILLE
FRACTIONAL DERIVATIVE

Let P = [0,a] x [0, b]. Motivated by [6], we define function spaces as following

X ={ue C(P) having the mixed Riemann-Liouville fractional derivative

of order g; = (v;,0;), and (D§'u) € C(P), i=1,...,n}

where C(P) is the usual space of continuous functions on P, which is a Banach space
endowed with the norm

ullo = max |u(zx,
Jullo = max_fu(z.v)

Theorem 2.1. The space X endowed with the norm

lull = Ilullo + Y 1D w)lo
i=1

is a Banach space.

In order to prove this theorem, we first prove the following two results.
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Lemma 2.2. Let o; = (v:,0;), i = 1,...,n. If sequence of functions wy,(z,y)
€ C(P) converges uniformly to a function w(x,y) € C(P), then the sequence
(I§wy)(x,y) converges uniformly to a function (I§w)(z,y) in C(P),i=1,...,n

Proof. By the definition of operator (I§*), i = 1,...,n, there has
(15" wn) (@, y) — (IQ’

‘ / / 2= 8) "y = )7 (wa(s, 1) — w(s, b)) ds dt

// (. — )Yy — )% Yw, — wlodsdt
L(v)T

a’i

r(1+vi) 1+ 5) = wlo

which completes the proof. O

Lemma 2.3. Let ¢; = (7;,0:), 0 < v,8; < 1,4 =1,2,...,n, and let u,(z,y) €
C(P) be a sequence, having the continuous mixed Riemann-Liouville fractional
derivative of order ¢; = (v,9:), ¢ = 1,2,...,n. Assume that the sequence u,(x,y)
converges to the function u(z,y) in C(P)-norm and that the sequence (D§ u,)(x,y)

converges to the function v;(x,y), i = 1,2,...,n, in C(P)-norm, then, (D§'u)(z,y) =
vi(xvy)) i = 172a' -5

Proof. Setting wy,(z,y) = (D§ un)(z,y), i = 1,2,...,n, then by Proposi-
tion 1.3 and Lemma 2.2,
(I§'wn)(x,y) = un(z,y), i=1,2,...,n
converge to the function (I§*v;)(z,y), ¢ =1,2,...,n in Cy-norm. This means
u(z,y) = (I5'v) (z,y), i=1,2,...,n
Hence, by Proposition 1.2, (D§ u)(z,y) = vi(z,y), i =1,2,...,n. O

Proof of Theorem 2.1. Let (u,(z,y))nen be a Cauchy sequence in X.
That is, for each € > 0 there exists an index n, such that for all n,m > n,

lun — uml|| < e

From the definition of X-norm, it follows that sequences u,,(z,v), (Dg un)(x,y), i =
1,2,...,n, are two Cauchy sequences in C(P), which are complete. So, denoting by
u(x,y) the limit of sequence u, (z, y) and v;(z,y) the limit of sequence (D u,,)(z,y),
i=1,2,...,n, Lemma 2.3 implies that (D§'u)(z,y) = vi(z,y), i = 1,2,...,n. This
proves that X is a Banach space.
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3. EXISTENCE RESULTS

We assume that
(H1) 2y f: [0,a] x [0,b] x R**! — [0, +0c0), is continuous, where 0 < p < o — 7;,
0<v<<pB—-9;,i=1,2,...,n;

Lemma 3.1. Assume that (H1) holds, then a function u(x,y) € X is a solution
of problem (1) if and only if u(x,y) satisfies the following integral equation

(2) w(@,y) = (lgf) (@, y, u(z,y), (Dg u)(@,y), .., (D§"u)(@,y))

Proof. Let us first prove the necessity. If u € X is a solution of problem (1),
then applying operator I to both sides of equation of (1), by the assumption (H1)
and Proposition 1.3, we have

u(x,y) = (Igf)(a:,y,u(x,y), (Dglu)(x7y)a IR (Dg”u)(xay))

for all (x,y) € P :=[0,a] x [0,b]. If we denote the right-hand side of this relation
by Tu(z,y), then we can check that it is in X. That is, that T maps X into itself.
Indeed, for v € X, by the definition of space X, for each € > 0, there exist n; > 0,
1 =0,1,2,...,n such that, for each (zo,y0) € P, when |(z,y) — (o,y0)| < 7,
1=0,1,2,...,n, (z,y) € P, we have

[u(z,y) — ulzo,y0)ll0 < €
[(D§u)(z,y) = (Dg u)((zo, yo)llo <&, i=1,2,...,n.

Then, taking into account the assumption (H1), for any (xo,y0) € P and (z,y) € P
such that |(z,y) — (x0,y0)| < 0i, 7 =0,1,2,...,n we have

|2y f (@, y,u, (DG ), ..., (D§"w)) = 25y5 f(x0, yo, u, (DG w), ..., (D§"u))| <&

Thus, for © € X, combining with these facts and the definition of T', for each € > 0,
(l‘o,yo) € Pa let

. MNMl—p+a)FQ—v+p) e
f = min {77“ <2ka1+°‘—ﬂbl+5—l’F(1 — )1 - 1/)) ’
Fl—p+a)l(1-—v+p) =
=0,1,2,...
(2ka1+a*/*b1+5*”1“(1 — (1= y))  1=0,1,2,.mp,
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where k is maximum number of x*y”|f(z,y,u,(D§'u,...,(Dg"u)] + 1 on P x
[=llull, [[ull]™***, when, for |(z,y) — (z0,%0)| <0, (z,y) € P, we have

|Tu(x,y) Tu(zo,yo)]
// )T 1 1—t)'3 1( ﬁf(xs,yt,u,(Dglu),...,(Dg"u))
—J?oyof(ﬂcos yot. u, (DEu). ..., (Dg"u))) ds t
/ / )11 — 1) ay fws, yt,u, (D§), .., (DE))
—xoyo 705, yot, s (DEu), ., (D" u)))] ds dt

okl L1 0

x (a7 () (y)” (s, yt, u, (D§ ), . ..., (D" u))
— (z0)"(0)" f (208, yot, u, (D' u), ..., (D§"u))]
+ |xa7# v — xg_/"yg_l’|(xo)ﬂ(yo)l/f(xo(% yota u, (Dglu), ey (Dgnu))D dsdt

// all—t)ﬁla“yﬁ VsTHtTV dsdt

k? a—p, B—v _ 0 H
i |x y o |// — )PtV ds dt

// z—5) Yy —t)P leys 1tV dsdt

klw" “yﬁ ”—xo "y |

// x—5)2 My — )P lplmatuyl=ftvgmn v qs dt

eal T rpIH BV (1 — )T(1 — v)
Fl—p+a)I'(1—v+pP)
kabl'(1 — p)I(1 —v)
rl—p+a)(1—-v+p)

i

a—p

In order to estimate |z® Hy#~" — z ygﬂ’|, we write

B g Thye Y] = ey

e o e [T Y
<Yt — a4 ety — )

a—p, B—v _ xg—uyﬁ—y + mg—uyﬁ—y _ mg—uyﬁ—yl

|z Hy 0

Next, we estimate [z*~# — zg ™~ ¥|

x > xo. Since, by the triangle inequality, |z — zo| < |(z,y) — (0, y0)| < 0, |y — yo| <

. Without loss of generality, we may assume that
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[(z,y)— (z0,y0)| < 6, thus, for § < zp < z < a, and by means of mean value theorem

of differentiation, we find
T — gl TH < (@ — p)0 P (2 — xg) < 20%7H
for 0 < zg < 0, v < 26. Also, we find that
aOTH — g T at TR < 20T < 20071,
while for 0 < zg < z < 6, we find
zOTH — gy T LT L OYTR < 20071

We can obtain the estimate of |y?~" — yg ~"| by the same way. In consequence, we
obtain
eal T HpIHB—VI(1 — )T (1 — v)
Fl—p+a)I'1—v+p)
kabla®hyP ¥ — 23 y8 V01 = (1 = v)
Frl—p+a)l(1-—v+p)
gatte AV (1 — )I(1 - v)
T —pral(d—v+0)
2kal T HpIHB—VT(1 — p)T(1 — v)
Frl—p+a)I1—-v+p)
eal T #pIHB—VD(1 — )T (1 — v)
Frl—p+a)I'1—v+p)

|TU’($7 y) - T’U,(J?(), y0)| <

0+ +07)

+ 2¢

Therefore, Tu(x,y) is continuous at the point (xg,yo). It follows from the arbitrary
choice of (g, yo) that Tu(x,y) is continuous in P, that is, Tu(z,y) € C(P). On the
other hand, by Propositions 1.1 and 1.2, we see that

(DETw)(,y) = (g~ )0, (D§w), . (DE™w)), i =1, o,

In a similar way, we can obtain that the right-hand side of the above equality belongs
to function space C'(P). That is, u is a solution of integral equation (2).

For sufficiency, applying D to both sides of (2), by Proposition 1.2, we obtain
that u satisfies the equation in (1), and that, it follows from the necessity proof
that (1§ f)(x,y,u, (D§'u),...,(D§"u)) € C(P). Hence, u(z,0) = u(0,y) = 0, which
implies that u is a solution of problem (1). The proof is complete. O

Next, define the operator T: X — X by

Tu(x,y) = (Io f) (2, y, u(z,y), (D§ u(x,y), .. ., (D§"u)(x,y)).
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Lemma 3.2. Assume that (H1) holds, then operator T: X — X is completely
continuous.

Proof. From (H1) and the proof of necessity in Lemma 3.1 and the Arzela-
Ascoli Theorem, we can easily obtain that 7: X — X is completely continuous. [

Theorem 3.3. Assume that (H1) holds, and f is nonnegative, satisfying one of
the following conditions:
(H2) There exist constants ¢; > 0, i = —1,0,1,2,...,nand 0 < 7; < 1, j = 0,1,
2,...,n, such that

Ti

2y’ |f (@, y, ulz,y), (D§ ), ..., (D§*u))] < et + eolul™ + ) ¢l (D)
i=1

for all (x,y) € P.
(H3) There exist constants d; > 0,4 = 0,1,2,...,nandn; > 1, j =0,1,2,...,n,
such that

i

n
2y” | f(@,y u(@,y), (D§ u), ..., (D§ )| < doful™ + ) di|(D§ u)

i=1

for all (x,y) € P.
(H4) There exist constants ¢; > 0,1 = —1,0,1,2,...,n, satisfying

(1 — (1l —v)a®*Hsv " 1
T~ p+a)l(I-v+p) <+§> S

(1 — p)T(1 — v)a® v mpf=di—v " 1
Tl—pta—)I1—v+p—0o) C‘“Z%C’ Shtl

i=1,2,...,n, such that

n
'y | f @y, ulz,y), (D§ ), .., (Dg"w))| < e1 + eolul + ) el (D u)]

i=1
for all (x,y) € P.

Then problem (1) has at least a positive solution.

Proof. By Lemma 3.1, we know that we only need to consider existence of
fixed point of operator T in X. It follows from Lemma 3.2 that T: X — X is a
completely continuous operator. First, we assume that condition (H2) holds. Let

36



T = max{79,T1,...,Tn}, and Br = {u € X; |ju|| < R} be a closed, bounded and
convex subset of the function space X, where

2c_1(n+ 1)1 — pI'(1 — v)a> HbP~"

TO-pral(-vtd)
2c_1(n+ 1)I'(1 — p)D(1 — v)a® = rpP=0i—v
Fl-—p+a-7)IT1-v+5-205) 7

R>max{1

1

Fl—p+a)I'1—v+p0) >1—*.

<2(n—|—1) ﬁ%(cz—i—l) (1= W)T(1 — v)ao—npp—v

s

1

l—p+a—y)TA—-v+5-10) )1_7}
(ci + DT(1 — p)T(1 — v)ae—vi—upB—di—v

r

—~

M:

(2(n+ 1)

0

.
Il

i=1,2,...,n
By (H2), for every u € X, we have

Tu(z,y)| = [(Io f )(m y,u, (DG ), ..., (D§"w))]
// (x— ) Yy —t)P s Ht

(0_1 + colu|™ + ZC” Dg'u)|" ) dsdt
i=1

L(1— (1 —v)a*HpPv = ,
< - ©+ > cll(Dg
T(l—p+a)l(I—v+8) \° v+ collulls - <l (Dg"u)llo

(1 — (1 —v)a®*Hsv - ‘ .
STA— i+ all(l—v 1 5) <Cl+§(01+lm >

(1 — (1 —v)a®*HPv
<F(l—u—i—oz)lj(l—y—l-ﬁ <01+201+1 )

D1 — )T (1 — v)a®= P . |

T T p+al(l—v+p) (C‘l +h R;(cz + 1))
R R R

2(n+1) + 2(n+1) Tht 1

(DET) (@, )| = (I~ )@y, u, (D w), ... (Dg )|

P(1— p)D(L —v)a® ni#pf=% n B

X B ’ 1 T
TA-—p+ta— ) (l—v+8-20) C1+;(c+ JR"™'R
R n R R

2n+1)  2(n+1) n+l

~

X
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Hence, ||Tul| < R(n+1)"t + Z R(n+1)"! = R for u € Bg, that is, T(Bg) C Bg.

The Schauder Fixed Point Theorem implies that the operator T" has at least a fixed
point u* € Bgr. By Lemma 3.1, problem (1) has a solution u* € Bg. On the
other hand, by the nonnegativity of f and the monotonicity of (Ij), we obtain that
u*(z,y) = Tu*(z,y) = (IJf)(z,y,u*, (D§'u*),...,(D§"u*)) = 0, that is, problem
(1) has a positive solution u* € Bp.

Secondly, we assume that condition (H3) holds. In a similar way, we can complete
this proof, provided if we take a closed, bounded and convex subset Br = {u €
X; |lu]l < R} of the function space X, where

3

R<mm{1 ( NMl—p+a)F1—v+p) )1/(177)
(n+1)> (¢ + )1 — )1 — v)a>—HbP—¥

1=0
< (1= p+a—v)T1—v+B—5) )1/(1—">}
(n+1) i (ci + DT(1 — p)T(1 — v)ao—ri—ppB—8i—v

1=1,2,...,n, where n = min{no, m, ..., nn}
For condition (H4), in a similar way, we can also easily complete this proof. [

Theorem 3.4. Assume that (H1) holds, and f is nonnegative, satisfying the
following condition:
(H5) There exist positive functions g(x,y), hi(z,y) € C(P), i = 1,2,...,n satisfying

— —v - T—0; -_— —V 1
(IJz™Hy g)(x,y)—kZ(% YaTHyT ) (z,y) < B
i=1
n

Sy )+ Y3y hy)y) <

=1
such that
xl‘«yl’|f(x7y’ uy, (Dglul)a ceey (Dg"’ul)) - f(xvya Uz, (D81u2)a sy (DS’LUQ)N
9z, y)|ur —uz| + > hi(w,y)[(D§ ur) — (D§ us))|
i=1

for all (x,y) € P and uy,us € (—00, +00).
Then problem (1) has a unique positive solution.

Proof. By Lemma 3.1, we know that we only need to consider the existence of
a fixed point of the operator T in X. It follows from the necessity proof of Lemma 3.1
that T: X — X is well defined.
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For Yu,v € X, by assumption (H5), we have
|T7.L(£C, y) - T’U(i[,‘, y)|
= |(Ig f) (@, y, u, (DG u), ..., (Dg"u) — (I f)(@, y, v, (Dg'v), ..., (Dg"v))|
<) (a7 (sl = ol + 3t )| 0F )~ (D)) )
i=1
<) (v (o
< Ipa My g)(a,y) + Z Igz ™"y~ hi)(z,y)||lu — v
i=1

(D Tu)(w,y) — (DL Tw)(x, )|
= |5 )@y, u, (Dg ). (Dg ) — (I =% f)(w,y, (DE"v). ... (DE"v))|

<ty (e (st — ol + S by )| (D2 ) — o))

j=1

e)llu—vlo+ 3 il )| (D) — (Dg,.,v>|0)>

i=1

< ) (e (ste )= ol + S by )| (DB ) — g lh) )

Jj=1

n
< (g~ ™ty g) (@, y) + Y (Lg% y ™ hy) (@, y)|u — o]
j=1

Hence,

1T —To|| = | Tu—Tolo+ Y I(D§Tu) = (D§Tw)lo
i=1

< ((Igwy”m(m, b+ 3 Iy g) )

=1
n n n
Y gy ) (@ y) + Y Y (1o Sy hy) (x, y>) lJu— v]|
i=1 i=1 j=1
< Ju—

which implies that T is a contraction operator. Then the Contraction Principle
assures that the operator T has a unique fixed point u* € X. By Lemma 3.1,
problem (1) has a unique solution u* € X. By the same reason as in the Theorem 3.3,
problem (1) has a unique positive solution u* € X.

Remark 3.5. We can define another function space concerning the mixed
Riemann-Liouville fractional derivative, and consider existence and uniqueness of
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solution of systems of partial differential equations of fractional order, which are
analogy with that ones considered by A.N. Vityuk and A. V. Golushkov [5]

(Dgluz)(xvy) = fi[x7y7u1(x7y)7 e 7un(x7y)7 (Dglul(x7y)v ) (DSLun(x7y)]
with the initial value conditions

ui,lfﬂ'(xvo) = Spl(x)7 z

0
wi1—r, (0,y) = Yi(y), O

NN
NN

y<b, 9i(0)=1;(0)

where 7, = (o, 3:i), 0 = (7:,0:), 0 <7 < a; < 1,0<8; < B; <1, wi1—r,(2,y) =
(Ié_Tiui)(x7y)a %01(1) € AC([O7G‘]) and wz(y) € AC([Ovb])v 1= ]-7 ceey N
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