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Linus Carlsson, Ume̊a

(Received September 4, 2006)

Abstract. Pseudoconvex domains are exhausted in such a way that we keep a part of
the boundary fixed in all the domains of the exhaustion. This is used to solve a problem
concerning whether the generators for the ideal of either the holomorphic functions contin-
uous up to the boundary or the bounded holomorphic functions, vanishing at a point in Cn

where the fibre is nontrivial, has to exceed n. This is shown not to be the case.
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1. Introduction

The boundary of an open setM will be denoted bM and the set of strictly pseudo-

convex boundary points by S(bM). By B(M) we denote one of the Banach algebras

H∞(M) (the bounded holomorphic functions on M) or A(M) (holomorphic func-

tions on M which can be continuously continued up to the boundary). A point in

space will have the form z = (z1, z2, . . . , zn) ∈ C n and B(p, r) is the ball with center

at p and radius r. The set of strictly plurisubharmonic functions on a set M will be

denoted SPSH(M). The projection, π from the spectrumMB into C n is given by

π(ϕ) = (ϕ(z1), . . . , ϕ(zn)) and the inverse projection, π−1(p), is called the fibre over

p ∈ C n .

In the article [6], Gleason asked whether the Banach algebraA(B(0, 1)) was finitely

generated, if this was the case then he proved that the maximal ideal consisting of

functions vanishing at the origin, is generated by the coordinate functions. The

question whether these ideals in the algebras of holomorphic functions are generated

by the coordinate functions has been named the Gleason problem. The only known

counterexamples to the Gleason problem are domains where the fibres are nontrivial.
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In that case it easily follows that the coordinate functions cannot generate the ideal,

see e.g. [2].

In this paper we go back to the original question of Gleason. There has for some

years been a question around, concerning the number of generators in maximal ideals.

The question was whether there is a relationship between the number of elements in

the fibre and the number of generators. We show that there is no such relation.

Also we show that Proposition 1 in [1] is false.

2. Exhaustion of nonsmooth domains

In the rest of the article we use a smooth convex function bε : R → R+ equal to

|x| if |x| > ε. See e.g. [7]. If r, t ∈ SPSH(D) ∩ Ck(D) then Guan also shows that

s(z) := r(z) + t(z) + bε(r(z) − t(z))

is a strictly plurisubharmonic, Ck smooth, function on D.

This is useful when creating a Ck smooth strictly pseudoconvex domain which is,

except for a arbitrary small set, the intersection of two Ck smooth strictly pseudo-

convex domains.

Proposition 1. Let D ⊂ C n be a bounded pseudoconvex domain. Assume that

M ⊂ C n is a nonempty, open set, such that M ∩ bD ⊂⊂ S(bD) ∩ Ck, k > 2. Then

there is a family of domains {Dj}
∞
j=1 which exhaust D with the following properties;

(1) D =
∞⋃

j=1

Dj

(2) Dj is strictly pseudoconvex with Ck boundary,

(3) M ∩ bD ⊂⊂ bDj ,

(4) max
z∈Dj

dist(bD, z) < 1/j, j = 1, 2, . . . , n.

R em a r k 2. We only demand that D has a Ck smooth boundary on a neighbor-

hood of M .

P r o o f. Let M1 and M2 be such that M ⊂⊂ M1 ⊂⊂ M2 and M2 ∩ bD ⊂⊂

S(bD) ∩ C2.

Pick a χ ∈ C∞
0 (M2), 0 6 χ 6 1, such that χ = 1 on M1. Let ̺ ∈ SPSH(UM2

) be

a defining function for D on M2, where UM2
⊂ C n is an open set with

M2 ∩ bD ⊂⊂ UM2
∩ bD ⊂⊂ S(bD) ∩ C2

such that

D ∩ UM2
= {z ∈ UM2

: ̺(z) < 0} .
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Fix N0 > 1 so large that

D̃ := D ∪
{
z ∈ UM2

: ˜̺(z) := ̺(z) +
χ(z)

N0
< 0

}

has a strictly pseudoconvex boundary at M2, i.e. bD̃ ∩ M2 ⊂⊂ S(bD̃). Since D̃ is

pseudoconvex, we can find an exhaustion of strictly pseudoconvex domains D̃j , with

bD̃j ∈ C∞. For some N > 0 we have that if j > N then

M1 ∩ bD ⊂⊂ D̃j.

For each j we fix a defining function ̺j ∈ SPSH(D̃j+1) such that

D̃j = {z ∈ C n : ̺j(z) < 0} .

Fix a sequence εj > 0, such that εj > εj+1, with ε1 small enough such that rj(z) :=

̺j(z) + ˜̺(z) + bεj
(̺j(z) − ˜̺(z)) is a strictly plurisubharmonic defining function for

Dj := {z ∈ C n : rj(z) < 0}, and such that bDj ∈ Ck (Sard’s theorem) andM∩bD ⊂

bDj. If necessary pick a subsequence jk such that property (4) holds. The domains

Djk
satisfies properties (1) to (4). �

3. Nebenhülle and pseudoconvexity

The following definition is equivalent to the one given in [5].

Definition 3. The Nebenhülle of a domain D ⊂ C n is defined as

N(D) = interior
(⋂

Dα

)
,

where the intersection is taken over all Dα which are smooth strictly pseudoconvex

domains such that D ⊂⊂ Dα.

Proposition 4. Let D be a domain in C n . Let K be a nonempty compact

subset of S(bD). If there is a strictly pseudoconvex domain D̂ and a neighborhood

V ⊂ S(bD) ∩ C2 of K such that D ⊂ D̂ and that V ⊂ bD̂ then K is included in the

boundary of the Nebenhülle of D, i.e. K ⊂ bN(D).

P r o o f. From the definition it is obvious that N(D) ⊂ N(D̂) and since D̂

is strictly pseudoconvex it follows that N(D̂) = D̂. Since D ⊂ N(D), we have

K = K ∩ bN(D̂) due to the hypothesis.

But since

K ⊂ D ⊂ N(D) ⊂ N(bD̂)

we must in fact have that K ⊂ bN(D). �
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The following example is a counterexample to Proposition 1 in [1].

E x am p l e 5. The worm domain W , defined in [5] is pseudoconvex and has

C∞ smooth boundary. The worm domain satisfies the property that there exists a

compact set K with nonempty interior in S(bW ) which is disjoint from the boundary

of the Nebenhülle. By Proposition 4 there can not be a strictly pseudoconvex domain

D̂ and a neighborhood V ⊂ S(bD) of K such that D ⊂ D̂ and V ⊂ bD̂.

3.1. Pseudoconvex domains in strictly pseudoconvex domains.

Lemma 6. Let D be a pseudoconvex domain. Let V ⊂ bD be an open set

satisfying V ⊂ S(bD) ∩ b(N(D)) ∩ C1.

Assume K ⊂ V is a nonempty compact set, then for every ε > 0 there ex-

ists a strictly pseudoconvex domain U with C∞ boundary such that D ⊂⊂ U and

dn(K, bU) < ε.

Here we use dn(K, bU) := sup
x∈K

dn(x, bU) where dn(x, bU) is the Euclidian distance

from x to bU in the direction of the normal vector pointing out of D.

P r o o f. Let ε > 0 and x ∈ K be arbitrary. From Proposition 4 we choose a

pseudoconvex domain Ux ⊃⊃ D such that dn(x, bUx) < ε/2.

Let Vx ⊂⊂ V be an open neighborhood of x such that dn(Vx, bUx) < ε, this is

possible since V is a C1 surface and Ux can be chosen to be C∞. Then {Vx} is an

open covering of K and since K is compact there is a finite number of Vx, call them

{Vxj
}N

j=1 such that

K ⊂⊂
N⋃

j=1

Vxj
.

Let Ũ =
N⋂

j=1

Uxj
then Ũ is a pseudoconvex domain such that D ⊂⊂ Ũ . Let U be a

strictly pseudoconvex domain with C∞ boundary so that D ⊂⊂ U ⊂⊂ Ũ . �

Proposition 7. Let D ⊂ C n be a bounded pseudoconvex domain. Let V ⊂

S(bD) ∩ b(N(D)) be an open set, which is Ck smooth, where k > 2.

Assume that K is a nonempty, compact subset of V . Then there exists a bounded

strictly pseudoconvex domain D̂ ⊂ C n with Ck regular boundary such that

(1) D ⊂ D̂,

(2) K ⊂ bD̂.

P r o o f. Fix compacts K1 and K2 such that K ⊂ K1
◦, K1 ⊂ K2

◦ and K2 ⊂ V.

From Proposition 1 we get a strictly pseudoconvex domain D̃ ⊂ D such that

V ⊂ bD̃ ∈ Ck.
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Let r̃ ∈ SPSH ∩ Ck(UD̃) defining function for D̃, where UD̃ ⊂ C n is a domain

such that D̃ ⊂⊂ UD̃. Let ω ⊂ UD̃ be a domain such that r̃ ∈ SPSH(ω) and

K2 ⊂ ω ∩ bD ⊂ V .

Let ω1 ⊂⊂ ω and K1 ⊂ ω1 ∩ bD. Let χ ∈ C∞(C n ) be a cutoff function such that

χ = 0 on ω1 and χ = 1 outside ω.

Let r(z) = r̃(z)−χ(z) be locally defined on ω and R = {z ∈ C n : r(z) < 0}. Then

D ∩ ω ⊂ R ∩ ω and K1 ⊂ bR.

Close enough to ω1 the boundary bR will be strictly pseudoconvex since r ∈

Ck(U
D̂

). Let ω0 be an open set so that this property holds on a neighborhood and

so that ω1 ⊂⊂ ω0.

From Lemma 6 we pick a strictly pseudoconvex domain Ω with C∞ smooth bound-

ary such that D ⊂⊂ Ω and

Ω ∩ ω0 ∩ bR ⊂⊂ ω0 ∩ bR.

Choose it close enough so that r is strictly plurisubharmonic in a neighborhood of

Ω ∩ ω0 ∩ R. Let t be a smooth strictly plurisubharmonic defining function in a

neighborhood of Ω.

On ω0 we define s(z) = r(z) + t(z) + bε(r(z) − t(z)). Choose ε > 0 so small that

D ⊂ S := {z ∈ C n : s(z) < 0}

and s = r on ω1 and bS ∩ bω = bΩ ∩ bω.

Outside ω0 we let s = t. From [7] we have that s is a strictly plurisubharmonic

Ck function.

If the boundary of S is Ck we are done, but this needs not be the case, the

derivatives of the defining function may vanish and thereby creating a cusp. Due to

Sard’s theorem, there exists a sequence λj ց 0 such that

Sλj
:= {z ∈ C n : sj(z) := s(z) − λj < 0}

has Ck boundary for each λj and by Theorem 1.5.16 in [8] the domain is regular.

Observe that Ω ⊂⊂ Sλj
.

We don’t want any interference from t now, and therefore we choose two new

domains ω2, ω3 ∈ C n , such that ω2 ⊂⊂ ω3 ⊂⊂ ω1, K1 ⊂ ω2 ∩ D and bΩ ∩ ω3 = ∅.

Fix another cutoff function χ2 ∈ C∞(C n ) such that χ2 = 0 on ω2 and χ2 = 1

outside ω3. Define rj = (1 − χ2)r + χ2sj and

Dj = {z ∈ C n : rj(z) < 0}.
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Since Dj coincides with Sλj
outside ω3 and with D inside ω2 the boundary bDj is

strictly pseudoconvex there. On ω3 \ ω2 we have rj = r − λjχ2.

If we fix k big enough we have the same properties of rk as r because of the

continuity of the derivatives of r and because the C2-norm of χ2 on the closure of

ω3 is finite. We are therefore done with D̂ = Dk. �

3.2. An example.

In this section we show that for any givenm > 2 and n > 2 there exists a bounded

smooth domain Rm
n ⊂ C n such that the envelope of holomorphy R̃m

n is an m-sheeted

Riemann domain spread over C n with a point p ∈ Rm
n such that #π−1(p) > m and

with the interesting property that the maximal ideal

Jp(R
m
n ) = {f ∈ B(Rm

n ) : f(p) = 0}

is generated by n functions in Jp(R
m
n ). I am very pleased to announce that the idea

to the case R2
2 was shown to me by Nils Øvrelid.

E x am p l e 8. Let m > 2 and n > 2 be integers.

Let ̺B(x) := |x|2 − 1 be a defining function for the unit ball in Rn . Let

V = {x = (x′, xn) ∈ Rn : ̺V (x) := xn − b0.01(|x
′|

2
) < 0, |x|2 − 4 < 0}.

Define the function V a : C n → Rn as V a(z) = (|z1| , |z2| , . . . , |zn|) .

Set ̺B1
n
(x) = ̺V (x) + ̺B (x) + b0.01 (̺V (x) − ̺B (x)) and define the domain

B1
n =

{
z ∈ C n : ̺B1

n
(V a(z)) < 0

}
.

The following is true for B1
n

• B1
n ⊂ B(0, 1) ⊂ C n .

• The boundary bB1
n is C∞-smooth.

• B1
n is a Reinhardt domain.

• B((0, 0, . . . , 0, 1
3 ), 0.11) ∩ B1

n = ∅.

• B(((0, 0, . . . , 0, 1
3 ), 0.11) is a subset of the envelope of holomorphy of B1

n.

In fact the envelope of holomorphy of B1
n is just the convex hull. This domain

can be thought of as an hour-sand-glass.

Denote by B2
n the domain

B2
n =

{
z ∈ C n : 10 ·

(
z − (0, 0, . . . , 0, 3−1)

)
∈ B1

n

}
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Fix a smooth curve γ : [0, 1] → C n which only takes real values such that: γ(0) =

(1, 0, 0, . . . , 0) ∈ bB1
n, γ(1) = (−0.1, 0, . . . , 0, 3−1) ∈ bB2

n, γ((0, 1)) ∩ (B1
n ∪ B2

n) = ∅,

and that

γ([0, 1]) ∩ B(((0, 0, . . . , 0, ), 0.11)

is equal to the straight line segment starting at γ(1) and ending at (−0.11, 0, . . . ,

0, 3−1); also we demand that γ′(0) intersect bB1
n transversally, and finally that

max(|γ(t)| , 0 6 t 6 1) < 1.05.

For a set M ⊂ C n let M (ε) = {z ∈ C n : |z − ξ| < ε for some ξ ∈ M}. Fix ε0 =

0.001.

We construct a domain R2
n (see Theorem 4.1.43 with proof in [9] for the construc-

tion) with the following properties,

• B1
n ∪ B2

n ∪ γ([0, 1]) ⊂ R2
n ⊂ B

1(ε0)
n ∪ B

2(ε0)
n ∪ γ([0, 1])(ε0),

• (B
1(ε0)
n ∩ R2

n) \ B(γ(0), ε0) = B
1(ε0)
n \ B(γ(0), ε0),

• (B
2(ε0)
n ∩ R2

n) \ B(γ(0), ε0) = B
2(ε0)
n \ B(γ(0), ε0).

• bR2
n ∈ C∞ (here we use Proposition 1).

• The envelope of holomorphy, R̃2
n, is a two sheeted Riemann domain spread overC n where B2

n is lifted to the second sheet. The envelope of holomorphy R̃2
n has

a Stein neighborhood basis and S(b(R̃2
n)) ∈ C∞.

Now assume that Rp
n has been created, let

Rp+1
n = Rp

n ∪
( 1

10p
R2

n +
(
0, 0, . . . , 0,

1

3

(
1 +

1

10
+ . . . +

1

10p−1

)))
,

so we retrieve our domain Rm
n as m copies of B1

n of different sizes nestled in such

a way that we lift every Bj
n, 1 6 j 6 m to a new sheet and thereby getting an

m-sheeted Riemann domain spread over C n .

To prove the promised result in this section we will look at the zero set of an ana-

lytic function g, denoted Zg. The common zero set of a family of analytic functions

G = (g1, g2, . . . , gm) will be denoted ZG, that is

ZG = {z ∈ C n : g1(z) = g2(z) = . . . = gm(z) = 0} .

Lemma 9. Let

p =
(
0, 0, . . . , 0,

1

3

(
1 +

1

10
+ . . . +

1

10m−1

))
∈ Rm

n .

Let R̃m
n denote the envelope of holomorphy of Rm

n . Then there exist a V ⊂⊂

S(b(R̃m
n )) ∩ C∞ which is open in b(R̃m

n ) such that there exists functions G :=

(g1, g2, . . . , gn) ∈ A∞(R̃m
n )n such that ZG ∩ R̃m

n = {p} and

Zgj
∩ b(Rm

n ) ⊂ V, 1 6 j 6 n − 1.
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P r o o f. Let ω ⊂⊂ C n be the domain given by

ω = Rm
n ∩ B

(
p,

1

10m
+

1

10m+2

)

rounded off so we get a smooth strictly pseudoconvex domain. Let the distance from

the origin to the boundary be denoted by d = dist(bRm
n , 0). Define a neighborhood

of the point p as

Op =
{

z ∈ ω : |zn − pn| <
d

2
10−m

}
.

and let V = bBm
n ∩ bOp.

Then V, lifted to the m-th sheet, satisfies the hypothesis since R̃m
n has a Stein

neighborhood basis. By Proposition 7 there exists a smooth strictly pseudoconvex

domain Ω such that Rm
n ⊂ Ω and V ⊂ bΩ (the proposition is true in this case since

the result is a local one).

Let ϕ be a cut off function on ω such that ϕ(Op) = 1, ϕ ∈ C∞(ω), and ϕ|bω\V = 0.

Observe that this is only done locally in the m-th sheet of the domain so we may

continue ϕ to be identically 0 on Ω \ ω.

Let γ be the curve in the construction of Rm
n . Since γ is real, the argument of zj ,

j = 1, 2, . . . , n − 1 on ω \ Bn
m stays away from

1
2π there exists an analytic branch of

log(zj) on supp(∂ϕ).

Let

λj =

{
∂ϕ log(zj), when z ∈ supp(∂ϕ),

0, otherwise.

Then λj ∈ C∞
(0,1)(Ω̄) with ∂λj = 0, so by Corollary 5.2.7 in [4] there is a solution

vj ∈ C∞(Ω̄) such that ∂vj = λj .

Defining

gj(z) = exp(ϕ(z) · log(zj) − vj(z))

for j = 1, 2, . . . , n − 1 and gn(z) = zn − pn yields the desired functions. �

R em a r k 10. The function g1 ∈ A∞(R̃m
n ) satisfy g1(p) = 0 on the m-th sheet

but g1(p) 6= 0 on the first sheet, so g1 separates the two sheets apart. Using the

construction of g1 above, we can construct a function that separates all the sheets

at π−1(π(p)) in R̃m
n , that is: The number of elements in the fibre over p ∈ C n are at

least m.

C l a i m 11. With Rm
n as in Example 8 we have that the maximal ideal Jp =

Jp(R̃m
n ) (where R̃m

n is the envelope of holomorphy of R
m
n ) is generated by n functions

gi ∈ H∞(R̃m
n ), i.e. for any f ∈ Jp there exist fi ∈ B(D), i = 1, 2, . . . , n, such that

f(z) =

n∑

i=1

gi(z)fi(z).
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To prove this claim we will use the Koszul complex argument, following [10],

we will use a trivial generalization of two of the lemmas there. We introduce the

necessary notation for the classes of forms which we work in.

N o t a t i o n 12. Let

Kr = {u ∈ (C∞
(0,r) ∩ L∞

(0,r))(D) : ∂u ∈ L∞
(0,r+1)(D)},

and Ks
r = Kr ⊗C Es, where Es =

∧
E and E is just an n-dimensional space.

N o t a t i o n 13. Let U1 be a fixed open set in D, with p ∈ U1. We denote by M s
r

the set {k ∈ Ks
r : k|U1

= 0}.

Obviously ∂Ks
r ⊂ Ks

r+1 and ∂M s
r ⊂ M s

r+1

In his article [10], Øvrelid assumes that D is a domain in C n . Using the result

of Theorem 4.10.4 in [8] one sees that the result of the following two Lemmas holds

true when D is a smooth Riemann domain as well.

Lemma 14 (Lemma 1′. [10]). If k ∈ Ks
r and ∂k = 0, r > 1, there exists a

k′ ∈ Ks
r−1, such that ∂k′ = k and k′ has a continuous extension to D.

With G as in Claim 11 and δG : Ks
r → Ks−1

r as the interior product.

Lemma 15 (Lemma 3. [10]). If k ∈ M s
r and δGk = ∂k = 0, there exists a

k′ ∈ Ks+1
r , with δGk′ = k and ∂k′ = 0.

P r o o f o f C l a i m 1 1. Let V and G be as in the proof of Lemma 9. Given

f ∈ Jp. Choose a smooth strictly convex set ω ⊂ Rm
n with V ⊂ bω, it follows

that p ∈ ω. By Proposition 7 (which works in this case since R̃m
n has a Stein

neighborhood basis) we get another bounded smooth strictly pseudoconvex Riemann

domain Ω spread over C n such that R̃m
n ⊂ Ω with V ⊂ bΩ. Using the ∂ result from

Theorem 4.10.4 in [8] together with technique in the proof of proposition 2.2 in [3]

we get a solution f0
i ∈ H∞(ω), i = 1, 2, . . . , n, such that

f(z) =

n∑

i=1

gi(z)f0
i (z), z ∈ ω.

Let ϕ0 be a smooth cutoff function with supp(ϕ0) ⊂⊂ ω, ϕ0(U1) = 1 where U1 is a

neighborhood of p in ω.

For 1 6 j 6 n − 1 we fix open sets ωj ⊂ R̃m
n such that Zgj

∩ R̃m
n ⊂ ωj and bωj ∩

bR̃m
n ⊂⊂ V so small that (ωj \ U1)∩ZGj = ∅, where Gj = (g1, g2, . . . , gj−1, gj+1, . . . ,

gn) is the vector G with gj omitted.
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For each 1 6 j 6 n − 1, let ϕ̃j be a smooth cutoff function, with supp(ϕ̃j) ⊂ ωj ,

ϕ̃j(OZgj
) = 1 where OZgj

is an open neighborhood of Zgj
in R̃m

n such that OZgj
⊂ ωj

and bOZgj
∩ bωj ⊂ V .

Define ϕ1 = (1 − ϕ0)(1 − ϕ̃1). Assuming that ϕk−1 has been defined, let

ϕk = ϕk−1(1 − ϕ̃k), k 6 n − 1,

and ϕn = 1 −
n−1∑
j=0

ϕj .

Letting

f1
i (z) = f0

i ϕ0 + f
ϕi

gi

,

we get a smooth solution f1
i ∈ C∞(R̃m

n ) ∩ L∞(R̃m
n ), that is

f =

n∑

i=1

gif
1
i .

Notice that supp(∂f1
i ) ∩ bR̃m

n ⊂ V and can hence be extended trivially to Ω. Fur-

thermore ∂f1
i (z) = 0 when z ∈ U1.

Defining

F 1 =

n∑

j=1

f1
i ⊗ ei

we get (that the extension of) ∂F 1 ∈ M1
1 = M1

1 (Ω).

Applying Lemma 15 and then Lemma 14, we find a form k ∈ K2
0 continuous on

Ω, with ∂δGk = δG∂k = ∂F 1. Let F be the form defined by

F = F 1 − δGk

then ∂F = 0 on R̃m
n . Writing F =

n∑
1

fi ⊗ ei, it follows that f1, f2, . . . , fn ∈ B(R̃m
n )

and f =
n∑

i=1

gifi, which completes the proof. �

Proposition 16. The domain Rm
n , defined in Example 8, contains the point

p =
(
0, 0, . . . , 0, 1

3

(
1 + 1

10 + . . . + 1
10m−1

))
with #π−1(p) > m and the ideal Jp(R

m
n )

is generated by n functions in B(Rm
n ).

P r o o f. This is just a combination of Claim 11 and Lemma 9 together with

Remark 10. �
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