DOMINATION WITH RESPECT TO NONDEGENERATE AND HEREDITARY PROPERTIES

Vladimir Samodivkin, Sofia

(Received October 30, 2006)

Abstract

For a graphical property \mathcal{P} and a graph G, a subset S of vertices of G is a \mathcal{P}-set if the subgraph induced by S has the property \mathcal{P}. The domination number with respect to the property \mathcal{P}, is the minimum cardinality of a dominating \mathcal{P}-set. In this paper we present results on changing and unchanging of the domination number with respect to the nondegenerate and hereditary properties when a graph is modified by adding an edge or deleting a vertex.

Keywords: domination, independent domination, acyclic domination, good vertex, bad vertex, fixed vertex, free vertex, hereditary graph property, induced-hereditary graph property, nondegenerate graph property, additive graph property

MSC 2000: 05C69

1. Introduction

All graphs considered in this article are finite, undirected, without loops or multiple edges. For the graph theory terminology not presented here, we follow Haynes et al. [8]. We denote the vertex set and the edge set of a graph G by $V(G)$ and $E(G)$, respectively. The subgraph induced by $S \subseteq V(G)$ is denoted by $\langle S, G\rangle$. The complement of a graph G is denoted by \bar{G}. For a vertex x of $G, N(x, G)$ denotes the set of all neighbors of x in G and $N[x, G]=N(x, G) \cup\{x\}$. The complete graph on m vertices is denoted by K_{m}.

For a graph G, let $x \in X \subseteq V(G)$. A vertex y is a private neighbor of x with respect to X if $N[y, G] \cap X=\{x\}$. The private neighbor set of x with respect to X is $\mathrm{pn}_{G}[x, X]=\{y: N[y, G] \cap X=\{x\}\}$.

Let \mathcal{G} denote the set of all mutually nonisomorphic graphs. A graph property is any non-empty subset of \mathcal{G}. We say that a graph G has the property \mathcal{P} whenever
there exists a graph $H \in \mathcal{P}$ which is isomorphic to G. For example, we list some graph properties:

- $\mathcal{I}=\{H \in \mathcal{G}: H$ is totally disconnected $\}$;
- $\mathcal{C}=\{H \in \mathcal{G}: H$ is connected $\} ;$
- $\mathcal{T}=\{H \in \mathcal{G}: H$ is without isolates $\}$;
- $\mathcal{F}=\{H \in \mathcal{G}: H$ is a forest $\}$;
- $\mathcal{U K}=\{H \in \mathcal{G}$: each component of H is complete $\}$.

A graph property \mathcal{P} is called hereditary (induced-hereditary), if from the fact that a graph G has the property \mathcal{P}, it follows that all subgraphs (induced subgraphs) of G also belong to \mathcal{P}. A property is called additive if it is closed under taking disjoint unions of graphs. A property \mathcal{P} is called nondegenerate if $\mathcal{I} \subseteq \mathcal{P}$. Note that: (a) \mathcal{I} and \mathcal{F} are nondegenerate, additive and hereditary properties; (b) $\mathcal{U K}$ is nondegenerate, additive, induced-hereditary and is not hereditary; (c) \mathcal{C} is neither additive nor induced-hereditary nor nondegenerate; (d) \mathcal{T} is additive but neither induced-hereditary nor nondegenerate. Further, an additive and induced-hereditary property is always nondegenerate.

A dominating set for a graph G is a set of vertices $D \subseteq V(G)$ such that every vertex of G is either in D or is adjacent to an element of D. A dominating set D is a minimal dominating set if no set $D^{\prime} \subsetneq D$ is a dominating set. The set of all minimal dominating sets of a graph G is denoted by $\operatorname{MDS}(G)$. The domination number $\gamma(G)$ of a graph G is the minimum cardinality taken over all dominating sets of G. The upper domination number $\Gamma(G)$ is the maximum cardinality of a minimal dominating set of G.

Any set $S \subseteq V(G)$ such that the subgraph $\langle S, G\rangle$ possesses the property \mathcal{P} is called a \mathcal{P}-set. The concept of domination with respect to any property \mathcal{P} was introduced by Goddard et al. [7]. The domination number with respect to the property \mathcal{P}, denoted by $\gamma_{\mathcal{P}}(G)$, is the smallest cardinality of a dominating \mathcal{P}-set of G. Note that there may be no dominating \mathcal{P}-set of G at all. For example, all graphs having at least two isolated vertices are without dominating \mathcal{P}-sets, where $\mathcal{P} \in\{\mathcal{C}, \mathcal{T}\}$. On the other hand, if a property \mathcal{P} is nondegenerate then every maximal independent set is a \mathcal{P}-set and thus $\gamma_{\mathcal{P}}(G)$ exists. Let S be a dominating \mathcal{P}-set of a graph G. Then S is a minimal dominating \mathcal{P}-set if no set $S^{\prime} \subsetneq S$ is a dominating \mathcal{P}-set. The set of all minimal dominating \mathcal{P}-sets of a graph G is denoted by $\operatorname{MD}_{\mathcal{P}} \mathrm{S}(G)$. The upper domination number with respect to the property \mathcal{P}, denoted by $\Gamma_{\mathcal{P}}(G)$, is the maximum cardinality of a minimal dominating \mathcal{P}-set of G. Michalak [12] has considered these parameters when the property is additive and induced-hereditary. Note that:
(a) in the case $\mathcal{P}=\mathcal{G}$ we have $\operatorname{MD}_{\mathcal{G}} \mathrm{S}(G)=\operatorname{MDS}(G), \gamma_{\mathcal{G}}(G)=\gamma(G)$ and $\Gamma_{\mathcal{G}}(G)=$ $\Gamma(G) ;$
(b) in the case $\mathcal{P}=\mathcal{I}$, every element of $\mathrm{MD}_{\mathcal{I}} \mathrm{S}(G)$ is an independent dominating set and the numbers $\gamma_{\mathcal{I}}(G)$ and $\Gamma_{\mathcal{I}}(G)$ are well known as the independent domination number $i(G)$ and the independence number $\beta_{0}(G)$;
(c) in the case $\mathcal{P}=\mathcal{C}$, every element of $\mathrm{MD}_{\mathcal{C}} \mathrm{S}(G)$ is a connected dominating set of $G, \gamma_{\mathcal{C}}(G)\left(\Gamma_{\mathcal{C}}(G)\right)$ is denoted by $\gamma_{c}(G)\left(\Gamma_{c}(G)\right)$ and is called the connected (upper connected) domination number;
(d) in the case $\mathcal{P}=\mathcal{T}$, every element of $\mathrm{MD}_{\mathcal{T}} \mathrm{S}(G)$ is a total dominating set of G, $\gamma_{\mathcal{T}}(G)\left(\Gamma_{\mathcal{T}}(G)\right)$ is denoted by $\gamma_{t}(G)\left(\Gamma_{t}(G)\right)$ and is called the total (upper total) domination number;
(e) in the case $\mathcal{P}=\mathcal{F}$, every element of $\mathrm{MD}_{\mathcal{F}} \mathrm{S}(G)$ is an acyclic and dominating set of $G, \gamma_{\mathcal{F}}(G)\left(\Gamma_{\mathcal{F}}(G)\right)$ is denoted by $\gamma_{a}(G)\left(\Gamma_{a}(G)\right)$ and is called the acyclic (upper acyclic) domination number. The concept of acyclic domination in graphs was introduced by Hedetniemi et al. [10].

From the above definitions we immediately have

Observation 1.1. Let $\mathcal{I} \subseteq \mathcal{P}_{2} \subseteq \mathcal{P}_{1} \subseteq \mathcal{G}$ and let G be a graph. Then
(1) $[7] \gamma(G) \leqslant \gamma_{\mathcal{P}_{1}}(G) \leqslant \gamma_{\mathcal{P}_{2}}(G) \leqslant i(G)$;
(2) $[7] \Gamma(G) \geqslant \Gamma_{\mathcal{P}_{1}}(G) \geqslant \Gamma_{\mathcal{P}_{2}}(G) \geqslant \beta_{0}(G)$.

Observation 1.2. Let G be a graph, $\mathcal{P} \subseteq \mathcal{G}$ and $\mathrm{MD}_{\mathcal{P}} \mathrm{S}(G) \neq \emptyset$. A dominating \mathcal{P}-set $S \subseteq V(G)$ is a minimal dominating \mathcal{P}-set if and only if for each nonempty subset $U \subsetneq S$ at least one of the following holds:
(a) there is a vertex $v \in(V(G)-S) \cup U$ with $\emptyset \neq N[v, G] \cap S \subseteq U$;
(b) $S-U$ is no \mathcal{P}-set.

Proof. Assume first that $S \in \operatorname{MD}_{\mathcal{P}} \mathrm{S}(G), \emptyset \neq U \subsetneq S$ and $S_{U}=S-U$ is a \mathcal{P}-set of G. Hence some vertex v in $V(G)-S_{U}$ has no neighbors in S_{U}. If $v \in U$ then $\emptyset \neq N[v, G] \cap S \subseteq U$. Let $v \in V(G)-S$. Since v is not dominated by S_{U} but is dominated by S it follows that $\emptyset \neq N[v, G] \cap S \subseteq U$. In both cases, condition (a) holds.

For the converse, suppose S is a dominating \mathcal{P}-set of G and for each $U, \emptyset \neq$ $U \subsetneq S$ one of the two above stated conditions holds. Suppose to the contrary that $S \notin \mathrm{MD}_{\mathcal{P}} \mathrm{S}(G)$. Then there exists a set $U, \emptyset \neq U \subsetneq S$ such that $S_{U}=S-U$ is a dominating \mathcal{P}-set. Since S_{U} is a \mathcal{P}-set, condition (b) does not hold. Since S_{U} is a dominating set it follows that every vertex of $V(G)-S_{U}$ has at least one neighbor in S_{U}, that is, condition (a) does not hold. Thus in all cases we have a contradiction.

Corollary 1.3. Let G be a graph, $\mathcal{P} \subseteq \mathcal{G}$ be an induced-hereditary property and $\operatorname{MD}_{\mathcal{P}} \mathrm{S}(G) \neq \emptyset$. A dominating \mathcal{P}-set $S \subseteq V(G)$ is a minimal dominating \mathcal{P}-set if and only if $\mathrm{pn}_{G}[u, S] \neq \emptyset$ for each vertex $u \in S$.

This result when $\mathcal{P}=\mathcal{G}$ was proved by Ore [13].
We shall use the therm $\gamma_{\mathcal{P}}$-set for a minimal dominating \mathcal{P}-set of cardinality $\gamma_{\mathcal{P}}(G)$. Let G be a graph and $v \in V(G)$. Fricke et al. [5] defined a vertex v to be
(f) $\gamma_{\mathcal{P}}$-good, if v belongs to some $\gamma_{\mathcal{P}}$-set of G;
(g) $\gamma_{\mathcal{P}}$-bad, if v belongs to no $\gamma_{\mathcal{P}}$-set of G;

Sampathkumar and Neerlagi [16] defined a $\gamma_{\mathcal{P}}$-good vertex v to be
(h) $\gamma_{\mathcal{P}}$-fixed if v belongs to every $\gamma_{\mathcal{P}}$-set;
(i) $\gamma_{\mathcal{P}}$-free if v belongs to some $\gamma_{\mathcal{P}}$-set but not to all $\gamma_{\mathcal{P}}$-sets.

For a graph G and a property $\mathcal{P} \subseteq \mathcal{G}$ such that $\operatorname{MD}_{\mathcal{P}} \mathrm{S}(G) \neq \emptyset$ we define:
$\mathbf{G}_{\mathcal{P}}(G)=\left\{x \in V(G): x\right.$ is $\gamma_{\mathcal{P}}$-good $\} ;$
$\mathbf{B}_{\mathcal{P}}(G)=\left\{x \in V(G): x\right.$ is $\gamma_{\mathcal{P}}$-bad $\} ;$
$\mathbf{F i}_{\mathcal{P}}(G)=\left\{x \in V(G): x\right.$ is $\gamma_{\mathcal{P}}$-fixed $\} ;$
$\operatorname{Fr}_{\mathcal{P}}(G)=\left\{x \in V(G): x\right.$ is $\gamma_{\mathcal{P}}$-free $\}$.
Clearly $\left\{\mathbf{G}_{\mathcal{P}}(G), \mathbf{B}_{\mathcal{P}}(G)\right\}$ is a partition of $V(G)$, and $\left\{\boldsymbol{F i}_{\mathcal{P}}(G), \operatorname{Fr}_{\mathcal{P}}(G)\right\}$ is a partition of $\mathbf{G}_{\mathcal{P}}(G)$. If additionally $\mathrm{MD}_{\mathcal{P}} \mathrm{S}(G-v) \neq \emptyset$ for each vertex $v \in V(G)$, then we define:
$\mathbf{V}_{\mathcal{P}}^{0}(G)=\left\{x \in V(G): \gamma_{\mathcal{P}}(G-x)=\gamma_{\mathcal{P}}(G)\right\} ;$
$\mathbf{V}_{\mathcal{P}}^{-}(G)=\left\{x \in V(G): \gamma_{\mathcal{P}}(G-x)<\gamma_{\mathcal{P}}(G)\right\} ;$
$\mathbf{V}_{\mathcal{P}}^{+}(G)=\left\{x \in V(G): \gamma_{\mathcal{P}}(G-x)>\gamma_{\mathcal{P}}(G)\right\}$.
In this case $\left\{\mathbf{V}_{\mathcal{P}}^{-}(G), \mathbf{V}_{\mathcal{P}}^{0}(G), \mathbf{V}_{\mathcal{P}}^{+}(G)\right\}$ is a partition of $V(G)$.
It is often of interest to know how the value of a graph parameter is affected when a small change is made in a graph. In this connection, in this paper we consider this question in the case $\gamma_{\mathcal{P}}(G)$ when a vertex is deleted from G or an edge from \bar{G} is added to G.

2. Vertex deletion

In this section we examine the effects on $\gamma_{\mathcal{P}}$ when a graph is modified by deleting a vertex.

Theorem 2.1. Let G be a graph, $u, v \in V(G), u \neq v$ and let $\mathcal{H} \subseteq \mathcal{G}$ be nondegenerate and closed under union with K_{1}.
(i) Let $v \in \mathbf{V}_{\mathcal{H}}^{-}(G)$.
(i.1) If $u v \in E(G)$ then u is a $\gamma_{\mathcal{H}}$-bad vertex of $G-v$;
(i.2) if M is a $\gamma_{\mathcal{H}}$-set of $G-v$ then $M \cup\{v\}$ is a $\gamma_{\mathcal{H}}$-set of G and $\{v\}=$ $\mathrm{pn}_{G}[v, M \cup\{v\}] ;$
(i.3) $\gamma_{\mathcal{H}}(G-v)=\gamma_{\mathcal{H}}(G)-1$;
(ii) let $v \in \mathbf{V}_{\mathcal{H}}^{+}(G)$. Then v is a $\gamma_{\mathcal{H}}$-fixed vertex of G;
(iii) if $v \in \mathbf{V}_{\mathcal{H}}^{-}(G)$ and u is a $\gamma_{\mathcal{H}}$-fixed vertex of G then $u v \notin E(G)$;
(iv) if v is a $\gamma_{\mathcal{H}}$-bad vertex of G then $\gamma_{\mathcal{H}}(G-v)=\gamma_{\mathcal{H}}(G)$;
(v) if $v \in \mathbf{V}_{\mathcal{H}}^{-}(G)$ and $u v \in E(G)$ then $\gamma_{\mathcal{H}}(G-\{u, v\})=\gamma_{\mathcal{H}}(G)-1$.

Proof. (i.1): Let $u v \in E(G)$ and let M be a $\gamma_{\mathcal{H}}$-set of $G-v$. If $u \in M$ then M is a dominating \mathcal{H}-set of G with $|M|<\gamma_{\mathcal{H}}(G)$-a contradiction.
(i.2) and (i.3): Let M be a $\gamma_{\mathcal{H}}$-set of $G-v$. By (i.1), $M_{1}=M \cup\{v\}$ is a dominating set of G. Any vertex $u \in V(G)-M_{1}$ has a neighbor in M, hence v is isolated in M_{1} (otherwise M would dominate G) and $\{v\}=\mathrm{pn}_{G}[v, M \cup\{v\}]$. Since \mathcal{H} is closed under union with K_{1} it follows that M_{1} is a dominating \mathcal{H}-set of G and $\left|M_{1}\right|=\gamma_{\mathcal{H}}(G-v)+1 \leqslant \gamma_{\mathcal{H}}(G)$. Hence M_{1} is a $\gamma_{\mathcal{H}}$-set of G and $\gamma_{\mathcal{H}}(G-v)=\gamma_{\mathcal{H}}(G)-1$.
(ii): If M is a $\gamma_{\mathcal{H}}$-set of G and $v \notin M$ then M is a dominating \mathcal{H}-set of $G-v$. But then $\gamma_{\mathcal{H}}(G)=|M| \geqslant \gamma_{\mathcal{H}}(G-v)>\gamma_{\mathcal{H}}(G)$ and the result follows.
(iii): Let $\gamma_{\mathcal{H}}(G-v)<\gamma_{\mathcal{H}}(G)$ and let M be a $\gamma_{\mathcal{H}}$-set of $G-v$. Then by (i.2), $M \cup\{v\}$ is a $\gamma_{\mathcal{H}}$-set of G. This implies that $u \in M$ and by (i.1) we have $u v \notin E(G)$.
(iv): By (ii), $\gamma_{\mathcal{H}}(G-v) \leqslant \gamma_{\mathcal{H}}(G)$ and by (i.2), $\gamma_{\mathcal{H}}(G-v) \geqslant \gamma_{\mathcal{H}}(G)$.
(v): Immediately follows by (i) and (iv).

Let $\mathcal{P} \subseteq \mathcal{G}$ be nondegenerate and closed under union with K_{1}. Since $\gamma_{\mathcal{P}}(G-v) \leqslant$ $|V(G)|-1$ for every $v \in V(G)$ and because of Theorem 2.1 we have $\gamma_{\mathcal{P}}(G-v)=$ $\gamma_{\mathcal{P}}(G)+p$, where $p \in\{-1,0,1, \ldots,|V(G)|-2\}$. This motivated us to define for a nontrivial graph G :
$\operatorname{Fr}_{\mathcal{P}}^{-}(G)=\left\{x \in \operatorname{Fr}_{\mathcal{P}}(G): \gamma_{\mathcal{P}}(G-x)=\gamma_{\mathcal{P}}(G)-1\right\} ;$
$\operatorname{Fr}_{\mathcal{P}}^{0}(G)=\left\{x \in \operatorname{Fr}_{\mathcal{P}}(G): \gamma_{\mathcal{P}}(G-x)=\gamma_{\mathcal{P}}(G)\right\} ;$
$\mathbf{F i}_{\mathcal{P}}^{p}(G)=\left\{x \in \mathbf{F i}_{\mathcal{P}}(G): \gamma_{\mathcal{P}}(G-x)=\gamma_{\mathcal{P}}(G)+p\right\}, p \in\{-1,0,1, \ldots,|V(G)|-2\}$.
We will refine the definitions of the $\gamma_{\mathcal{P}}$-free vertex and the $\gamma_{\mathcal{P}}$-fixed vertex. Let G be a graph and let $\mathcal{P} \subseteq \mathcal{G}$ be nondegenerate and closed under union with K_{1}. A vertex $x \in V(G)$ is called
(j) $\gamma_{\mathcal{P}}^{0}$-free if $x \in \mathbf{F r}_{\mathcal{P}}^{0}(G)$;
(k) $\gamma_{\mathcal{P}}^{-}$-free if $x \in \mathbf{F r}_{\mathcal{P}}^{-}(G)$;
(l) $\gamma_{\mathcal{P}}^{q}(G)$-fixed if $x \in \mathbf{F i}_{\mathcal{P}}^{q}(G)$, where $q \in\{-1,0,1, \ldots,|V(G)|-2\}$.

Now, by Theorem 2.1 we have

Corollary 2.2. Let G be a graph of order $n \geqslant 2$ and let $\mathcal{H} \subseteq \mathcal{G}$ be nondegenerate and closed under union with K_{1}. Then
(1) $\left\{\mathbf{F r}_{\mathcal{H}}^{-}(G), \mathbf{F r}_{\mathcal{H}}^{0}(G)\right\}$ is a partition of $\mathbf{F r}_{\mathcal{H}}(G)$;
(2) $\left\{\mathbf{F i}_{\mathcal{H}}^{-1}(G), \mathbf{F i}_{\mathcal{H}}^{0}(G), \ldots, \mathbf{F i}_{\mathcal{H}}^{n-2}(G)\right\}$ is a partition of $\mathbf{F} \mathbf{i}_{\mathcal{H}}(G)$;
(3) $\left\{\mathbf{F i}_{\mathcal{H}}^{-1}(G), \mathbf{F r}_{\mathcal{H}}^{-}(G)\right\}$ is a partition of $\mathbf{V}_{\mathcal{H}}^{-}(G)$;
(4) $\left\{\mathbf{F i}_{\mathcal{H}}^{0}(G), \mathbf{F r}_{\mathcal{H}}^{0}(G), \mathbf{B}_{\mathcal{H}}(G)\right\}$ is a partition of $\mathbf{V}_{\mathcal{H}}^{0}(G)$;
(5) $\left\{\mathbf{F i}_{\mathcal{H}}^{1}(G), \mathbf{F i}_{\mathcal{H}}^{2}(G), \ldots, \mathbf{F i}_{\mathcal{H}}^{n-2}(G)\right\}$ is a partition of $\mathbf{V}_{\mathcal{H}}^{+}(G)$.

A vertex v of a graph G is $\gamma_{\mathcal{P}}$-critical if $\gamma_{\mathcal{P}}(G-v) \neq \gamma_{\mathcal{P}}(G)$. The graph G is vertex- $\gamma_{\mathcal{P}}$-critical if all its vertices are $\gamma_{\mathcal{P}}$-critical.

Theorem 2.3. Let G be a graph of order $n \geqslant 2$ and let $\mathcal{H} \subseteq \mathcal{G}$ be additive and induced-hereditary. Then G is a vertex- $\gamma_{\mathcal{H}}$-critical graph if and only if $\gamma_{\mathcal{H}}(G-v)=$ $\gamma_{\mathcal{H}}(G)-1$ for all $v \in V(G)$.

Proof. Necessity is obvious. Sufficiency: Let G be a vertex- $\gamma_{\mathcal{H}}$-critical graph. Clearly, $\gamma_{\mathcal{H}}(G-v)=\gamma_{\mathcal{H}}(G)-1$ for every isolated vertex $v \in V(G)$. Hence if G is isomorphic to \bar{K}_{n} then $\gamma_{\mathcal{H}}(G-v)=\gamma_{\mathcal{H}}(G)-1$ for all $v \in V(G)$. So, let G have a component of order at least two, say Q. Because of Theorem 2.1 (ii), (iii) and (i.3), either $\gamma_{\mathcal{H}}(Q-v)>\gamma_{\mathcal{H}}(Q)$ for all $v \in V(Q)$, or $\gamma_{\mathcal{H}}(Q-v)=\gamma_{\mathcal{H}}(Q)-1$ for all $v \in V(Q)$. Suppose that $\gamma_{\mathcal{H}}(Q-v)>\gamma_{\mathcal{H}}(Q)$ for all $v \in V(Q)$. But then Theorem 2.1 (ii) implies that $V(Q)$ is a $\gamma_{\mathcal{H}}$-set of Q. This is a contradiction with $\gamma_{\mathcal{H}}(Q-v)>\gamma_{\mathcal{H}}(Q)$.

Theorem 2.3 when $\mathcal{H} \in\{\mathcal{G}, \mathcal{I}, \mathcal{F}\}$ is due to Carrington et al. [2], Ao and MacGillivray (see [9, Chapter 16]) and the present author [15], respectively. Further properties of these graphs can be found in [1], [6], [8, Chapter 5], [9, Chapter 16], [11], [14].

Now we concentrate on graphs having cut-vertices. Observe that domination and some of its variants in graphs having cut-vertices have been the topic of several studies - see for example [1], [18], [14] and [9, Chapter 16].

Let G_{1} and G_{2} be connected graphs, both of order at least two, and let them have a unique vertex in common, say x. Then a coalescence $G_{1} \stackrel{x}{\circ} G_{2}$ is the graph $G_{1} \cup G_{2}$. Clearly, x is a cut-vertex of $G_{1}{ }^{\circ}{ }_{\circ} G_{2}$.

Theorem 2.4. Let $G=G_{1}{ }^{\circ}{ }_{\circ} G_{2}$ and let $\mathcal{H} \subseteq \mathcal{G}$ be induced-hereditary and closed under union with K_{1}. Then $\gamma_{\mathcal{H}}(G) \geqslant \gamma_{\mathcal{H}}\left(G_{1}\right)+\gamma_{\mathcal{H}}\left(G_{2}\right)-1$.

Proof. Since \mathcal{H} is induced-hereditary and closed under union with K_{1} it follows that \mathcal{H} is nondegenerate. Let M be a $\gamma_{\mathcal{H}}$-set of G and $M_{i}=M \cap V\left(G_{i}\right), i=1,2$. Since \mathcal{H} is induced-hereditary it follows that M_{1} and M_{2} are \mathcal{H}-sets of G_{1} and G_{2}, respectively. Hence there exist three possibilities:
(a) $x \notin M$ and M_{i} is a dominating \mathcal{H}-set of $G_{i}, i=1,2$;
(b) $x \notin M$ and there are i, j such that $\{i, j\}=\{1,2\}, M_{i}$ is a dominating \mathcal{H}-set of G_{i} and M_{j} is a dominating \mathcal{H}-set of $G_{j}-x$;
(c) $x \in M$ and M_{i} is a dominating \mathcal{H}-set of $G_{i}, i=1,2$.

If (a) holds, then $\gamma_{\mathcal{H}}(G)=|M|=\left|M_{1}\right|+\left|M_{2}\right| \geqslant \gamma_{\mathcal{H}}\left(G_{1}\right)+\gamma_{\mathcal{H}}\left(G_{2}\right)$. If (c) holds then $\gamma_{\mathcal{H}}(G)=|M|=\left|M_{1}\right|+\left|M_{2}\right|-1 \geqslant \gamma_{\mathcal{H}}\left(G_{1}\right)+\gamma_{\mathcal{H}}\left(G_{2}\right)-1$. Finally, let (b) hold. Then $\gamma_{\mathcal{H}}(G)=|M|=\left|M_{1}\right|+\left|M_{2}\right| \geqslant \gamma_{\mathcal{H}}\left(G_{i}\right)+\gamma_{\mathcal{H}}\left(G_{j}-x\right)$. Now by Theorem 2.1 (i), $\gamma_{\mathcal{H}}(G) \geqslant \gamma_{\mathcal{H}}\left(G_{1}\right)+\gamma_{\mathcal{H}}\left(G_{2}\right)-1$.

Thus, in all cases, $\gamma_{\mathcal{H}}(G) \geqslant \gamma_{\mathcal{H}}\left(G_{1}\right)+\gamma_{\mathcal{H}}\left(G_{2}\right)-1$.

Theorem 2.5. Let $G=G_{1} \stackrel{x}{\circ} G_{2}$, let $\mathcal{H} \subseteq \mathcal{G}$ be additive and induced-hereditary, and $\gamma_{\mathcal{H}}\left(G_{1}-x\right)<\gamma_{\mathcal{H}}\left(G_{1}\right)$. Then
(a) $\gamma_{\mathcal{H}}(G)=\gamma_{\mathcal{H}}\left(G_{1}\right)+\gamma_{\mathcal{H}}\left(G_{2}\right)-1$;
(b) if $\gamma_{\mathcal{H}}\left(G_{2}-x\right)<\gamma_{\mathcal{H}}\left(G_{2}\right)$ then $\gamma_{\mathcal{H}}(G-x)=\gamma_{\mathcal{H}}(G)-1$;
(c) if $\gamma_{\mathcal{H}}\left(G_{2}-x\right)>\gamma_{\mathcal{H}}\left(G_{2}\right)$ then x is a $\gamma_{\mathcal{H}}$-fixed vertex of G;
(d) if x is a $\gamma_{\mathcal{H}}$-bad vertex of G_{2} then x is a $\gamma_{\mathcal{H}}$-bad vertex of G.

Proof. Since \mathcal{H} is additive and induced-hereditary it follows that \mathcal{H} is nondegenerate and closed under union with K_{1}.
(a): Let U_{1} be a $\gamma_{\mathcal{H}}$-set of $G_{1}-x$ and let U_{2} be a $\gamma_{\mathcal{H}}$-set of G_{2}. Then $U=U_{1} \cup U_{2}$ is a dominating set of G. It follows by Theorem 2.1(i.2) that $\langle U, G\rangle$ has two components, namely $\left\langle U_{1}, G\right\rangle$ and $\left\langle U_{2}, G\right\rangle$. Since \mathcal{H} is additive, U is an \mathcal{H}-set of G. Thus U is a dominating \mathcal{H}-set of G. Hence $\gamma_{\mathcal{H}}(G) \leqslant\left|U_{1} \cup U_{2}\right|=\gamma_{\mathcal{H}}\left(G_{1}-x\right)+\gamma_{\mathcal{H}}\left(G_{2}\right)=$ $\gamma_{\mathcal{H}}\left(G_{1}\right)+\gamma_{\mathcal{H}}\left(G_{2}\right)-1$. Now the result follows by Theorem 2.4.
(b): By Theorem 2.1 (i.3) we have $\gamma_{\mathcal{H}}(G-x)=\gamma_{\mathcal{H}}\left(G_{1}-x\right)+\gamma_{\mathcal{H}}\left(G_{2}-x\right)=$ $\gamma_{\mathcal{H}}\left(G_{1}\right)+\gamma_{\mathcal{H}}\left(G_{2}\right)-2$. Hence by (a), $\gamma_{\mathcal{H}}(G-x)=\gamma_{\mathcal{H}}(G)-1$.
(c): $\gamma_{\mathcal{H}}(G-x)=\gamma_{\mathcal{H}}\left(G_{1}-x\right)+\gamma_{\mathcal{H}}\left(G_{2}-x\right)=\gamma_{\mathcal{H}}\left(G_{1}\right)-1+\gamma_{\mathcal{H}}\left(G_{2}-x\right)=$ $\gamma_{\mathcal{H}}(G)+\gamma_{\mathcal{H}}\left(G_{2}-x\right)-\gamma_{\mathcal{H}}\left(G_{2}\right)>\gamma_{\mathcal{H}}(G)$. The result now follows by Theorem 2.1 (ii).
(d): Let M be a $\gamma_{\mathcal{H}}$-set of G and $M_{i}=M \cap V\left(G_{i}\right), i=1,2$. Suppose $x \in M$. Hence M_{i} is a dominating \mathcal{H}-set of $G_{i}, i=1,2$ and then $\gamma_{\mathcal{H}}\left(G_{i}\right) \leqslant\left|M_{i}\right|$. Since x belongs to no $\gamma_{\mathcal{H}}$-set of G_{2} we have $\left|M_{2}\right|>\gamma_{\mathcal{H}}\left(G_{2}\right)$. Hence $\gamma_{\mathcal{H}}(G)=|M|=$ $\left|M_{1}\right|+\left|M_{2}\right|-1 \geqslant \gamma_{\mathcal{H}}\left(G_{1}\right)+\gamma_{\mathcal{H}}\left(G_{2}\right)$-a contradiction with (a).

Theorem 2.6. Let $\mathcal{H} \subseteq \mathcal{G}$ be additive and induced-hereditary and let $G=$ $G_{1} \stackrel{x}{\circ} G_{2}$, where G_{1}, G_{2} are both vertex- $\gamma_{\mathcal{H}}$-critical. Then G is vertex- $\gamma_{\mathcal{H}}$-critical and $\gamma_{\mathcal{H}}(G)=\gamma_{\mathcal{H}}\left(G_{1}\right)+\gamma_{\mathcal{H}}\left(G_{2}\right)-1$.

Proof. By Theorem 2.5(b) it follows that $\gamma_{\mathcal{H}}(G)-1=\gamma_{\mathcal{H}}(G-x)$. Let without loss of generality $y \in V\left(G_{2}-x\right)$. If $G_{2}-y$ is connected then $G-y=G_{1}{ }^{x}\left(G_{2}-y\right)$ and
by Theorem 2.5(a), $\gamma_{\mathcal{H}}(G-y)=\gamma_{\mathcal{H}}\left(G_{1}\right)+\gamma_{\mathcal{H}}\left(G_{2}-y\right)-1=\gamma_{\mathcal{H}}\left(G_{1}\right)+\gamma_{\mathcal{H}}\left(G_{2}\right)-2=$ $\gamma_{\mathcal{H}}(G)-1$.

So, assume $G_{2}-y$ is not connected and let Q be the component of $G_{2}-y$ which contains x. By Theorem 2.1 (i), $V(Q) \neq\{x\}$. Now, by Theorem $2.5(\mathrm{a}), \gamma_{\mathcal{H}}\left(G_{1}{ }^{x} Q\right)=$ $\gamma_{\mathcal{H}}\left(G_{1}\right)+\gamma_{\mathcal{H}}(Q)-1$ and then $\gamma_{\mathcal{H}}(G-y)=\gamma_{\mathcal{H}}\left(G_{1}{ }^{x}{ }^{x} Q\right)+\gamma_{\mathcal{H}}\left(G_{2}-(V(Q) \cup\{y\})\right)=$ $\gamma_{\mathcal{H}}\left(G_{1}\right)+\gamma_{\mathcal{H}}\left(G_{2}-y\right)-1=\gamma_{\mathcal{H}}\left(G_{1}\right)+\gamma_{\mathcal{H}}\left(G_{2}\right)-2=\gamma_{\mathcal{H}}(G)-1$.

3. Edge addition

Here we present results on changing and unchanging of $\gamma_{\mathcal{P}}(G)$ when an edge from \bar{G} is added to G. Recall that if a property \mathcal{P} is hereditary and closed under union with K_{1} then \mathcal{P} is nondegenerate and hence all graphs have a domination number with respect to \mathcal{P}.

Theorem 3.1. Let x and y be two different and nonadjacent vertices in a graph G. Let $\mathcal{H} \subseteq \mathcal{G}$ be hereditary and closed under union with K_{1}. If $\gamma_{\mathcal{H}}(G+x y)<\gamma_{\mathcal{H}}(G)$ then $\gamma_{\mathcal{H}}(G+x y)=\gamma_{\mathcal{H}}(G)-1$. Moreover, $\gamma_{\mathcal{H}}(G+x y)=\gamma_{\mathcal{H}}(G)-1$ if and only if at least one of the following holds:
(i) $x \in \mathbf{V}_{\mathcal{H}}^{-}(G)$ and y is a $\gamma_{\mathcal{H}}$-good vertex of $G-x$;
(ii) x is a $\gamma_{\mathcal{H}}$-good vertex of $G-y$ and $y \in \mathbf{V}_{\mathcal{H}}^{-}(G)$.

Proof. Let $\gamma_{\mathcal{H}}(G+x y)<\gamma_{\mathcal{H}}(G)$ and let M be a $\gamma_{\mathcal{H}}$-set of $G+x y$. Since \mathcal{H} is hereditary, M is an \mathcal{H}-set of G. Further, $|\{x, y\} \cap M|=1$, otherwise M would be a dominating \mathcal{H}-set of G, a contradiction. Let without loss of generality $x \notin M$ and $y \in M$. Since M is an \mathcal{H}-set of G it follows that M is no dominating set of G, which implies $M \cap N(x, G)=\emptyset$. Hence $M_{1}=M \cup\{x\}$ is a dominating \mathcal{H} set of G with $\left|M_{1}\right|=\gamma_{\mathcal{H}}(G+x y)+1$, which implies $\gamma_{\mathcal{H}}(G)=\gamma_{\mathcal{H}}(G+x y)+1$. Since M is a dominating \mathcal{H}-set of $G-x$ we have $\gamma_{\mathcal{H}}(G-x) \leqslant \gamma_{\mathcal{H}}(G+x y)$. Hence $\gamma_{\mathcal{H}}(G) \geqslant \gamma_{\mathcal{H}}(G-x)+1$ and Theorem 2.1 implies $\gamma_{\mathcal{H}}(G)=\gamma_{\mathcal{H}}(G-x)+1$. Thus x is in $\mathbf{V}_{\mathcal{H}}^{-}(G)$ and M is a $\gamma_{\mathcal{H}}$-set of $G-x$. Since $y \in M, y$ is a $\gamma_{\mathcal{H}}$-good vertex of $G-x$.

For the converse let without loss of generality (i) hold. Then there is a $\gamma_{\mathcal{H}}$-set M of $G-x$ with $y \in M$. Certainly M is a dominating \mathcal{H}-set of $G+x y$ and consequently $\gamma_{\mathcal{H}}(G+x y) \leqslant|M|=\gamma_{\mathcal{H}}(G-x)=\gamma_{\mathcal{H}}(G)-1 \leqslant \gamma_{\mathcal{H}}(G+x y)$.

Corollary 3.2. Let x and y be two different and nonadjacent vertices in a graph G, let $\mathcal{H} \subseteq \mathcal{G}$ be hereditary and closed under union with K_{1}, and let $x \in \mathbf{V}_{\mathcal{H}}^{-}(G)$. Then $\gamma_{\mathcal{H}}(G)-1 \leqslant \gamma_{\mathcal{H}}(G+x y) \leqslant \gamma_{\mathcal{H}}(G)$.

Proof. Let M be a $\gamma_{\mathcal{H}}$-set of $G-x$. If $y \in \mathbf{G}_{\mathcal{H}}(G-x)$ then Theorem 3.1 yields $\gamma_{\mathcal{H}}(G)-1=\gamma_{\mathcal{H}}(G+x y)$. So, let $y \in \mathbf{B}_{\mathcal{H}}(G-x)$. By Theorem 2.1, $M_{1}=M \cup\{x\}$
is a $\gamma_{\mathcal{H}}$-set of G and $M_{1} \cap N(x, G)=\emptyset$. Hence M_{1} is a dominating \mathcal{H}-set of $G+x y$ and $\gamma_{\mathcal{H}}(G+x y) \leqslant\left|M_{1}\right|=\gamma_{\mathcal{H}}(G-x)+1=\gamma_{\mathcal{H}}(G)$.

We need the following lemma:

Lemma 3.3. Let $\mathcal{H} \subseteq \mathcal{G}$ be nondegenerate and closed under union with K_{1} and let x be a $\gamma_{\mathcal{H}}^{0}$-fixed vertex of a graph G. Then $N(x, G) \subseteq \mathbf{B}_{\mathcal{H}}(G-x) \cap\left(\mathbf{V}_{\mathcal{H}}^{0}(G) \cup \mathbf{F i}_{\mathcal{H}}^{1}(G)\right)$ and for each $y \in N(x, G), \gamma_{\mathcal{H}}(G-\{x, y\})=\gamma_{\mathcal{H}}(G)$.

Proof. Let M be a $\gamma_{\mathcal{H}}$-set of $G-x$ and $y \in N(x, G)$. If $y \in M$ then M is a dominating \mathcal{H}-set of G of cardinality $|M|=\gamma_{\mathcal{H}}(G-x)=\gamma_{\mathcal{H}}(G)$-a contradiction with $x \in \mathbf{F i}_{\mathcal{H}}(G)$. Thus $N(x, G) \subseteq \mathbf{B}_{\mathcal{H}}(G-x)$. Now by Theorem 2.1 (iv), $\gamma_{\mathcal{H}}(G-$ $\{x, y\})=\gamma_{\mathcal{H}}(G-x)=\gamma_{\mathcal{H}}(G)$. Further, Theorem 2.1(iii) implies $y \notin \mathbf{V}_{\mathcal{H}}^{-}(G)$. If $y \notin \mathbf{V}_{\mathcal{H}}^{0}(G)$, from Corollary 2.2(5) it follows that $y \in \mathbf{F i}_{\mathcal{H}}^{p}(G)$ for some $p \geqslant 1$. Assume $p \geqslant 2$. Since M is a dominating \mathcal{H}-set of $G-x$ and $M \cap N(x, G)=\emptyset$ it follows that $M_{2}=M \cup\{x\}$ is a dominating \mathcal{H}-set of G and $y \notin M_{2}$. Hence M_{2} is a dominating \mathcal{H}-set of $G-y$. This implies $\gamma_{\mathcal{H}}(G)+p=\gamma_{\mathcal{H}}(G-y) \leqslant\left|M_{2}\right|=|M|+1=$ $\gamma_{\mathcal{H}}(G-x)+1=\gamma_{\mathcal{H}}(G)+1$, a contradiction.

It is a well known fact that $\gamma(G+e) \leqslant \gamma(G)$ for any edge $e \in \bar{G}$. In general, for $\gamma_{\mathcal{P}}$ this is not valid.

Theorem 3.4. Let x and y be two different and nonadjacent vertices in a graph G and let $\mathcal{H} \subseteq \mathcal{G}$ be hereditary and closed under union with K_{1}. Then $\gamma_{\mathcal{H}}(G+x y)>$ $\gamma_{\mathcal{H}}(G)$ if and only if no $\gamma_{\mathcal{H}}$-set of G is an \mathcal{H}-set of $G+x y$ and one of the following holds:
(1) x is a $\gamma_{\mathcal{H}}^{p}$-fixed vertex of G and y is a $\gamma_{\mathcal{H}}^{q}$-fixed vertex of G for some $p, q \geqslant 1$;
(2) $x \in \mathbf{F i}_{\mathcal{H}}^{0}(G)$ and $y \in \mathbf{F} \mathbf{i}_{\mathcal{H}}^{1}(G) \cap \mathbf{B}_{\mathcal{H}}(G-x)$;
(3) $x \in \mathbf{F} \mathbf{i}_{\mathcal{H}}^{1}(G) \cap \mathbf{B}_{\mathcal{H}}(G-y)$ and $y \in \mathbf{F i}_{\mathcal{H}}^{0}(G)$;
(4) $x, y \in \mathbf{F i}_{\mathcal{H}}^{0}(G), x \in \mathbf{B}_{\mathcal{H}}(G-y)$ and $y \in \mathbf{B}_{\mathcal{H}}(G-x)$.

Proof. Let $\gamma_{\mathcal{H}}(G+x y)>\gamma_{\mathcal{H}}(G)$. By Corollary 3.2 we have $x, y \in \mathbf{V}_{\mathcal{H}}^{0}(G) \cup$ $\mathbf{V}_{\mathcal{H}}^{+}(G)$. Assume to the contrary that (without loss of generality) $x \notin \mathbf{F i}_{\mathcal{H}}(G)$. Hence there is a $\gamma_{\mathcal{H}}$-set M of G with $x \notin M$. But then M is a dominating \mathcal{H}-set of $G+x y$ and $|M|=\gamma_{\mathcal{H}}(G)<\gamma_{\mathcal{H}}(G+x y)$-a contradiction. Thus both x and y are $\gamma_{\mathcal{H}}$-fixed vertices of G. This implies that each $\gamma_{\mathcal{H}}$-set M of G is a dominating set of $G+x y$ but not an \mathcal{H}-set of $G+x y$.

Let x be $\gamma_{\mathcal{H}}^{p}$-fixed, let y be $\gamma_{\mathcal{H}}^{q}$-fixed and without loss of generality, $q \geqslant p \geqslant 0$. Assume (1) does not hold. Hence $p=0$. Let M_{1} be a $\gamma_{\mathcal{H}}$-set of $G-x$. Then $\left|M_{1}\right|=\gamma_{\mathcal{H}}(G-x)=\gamma_{\mathcal{H}}(G)<\gamma_{\mathcal{H}}(G+x y)$ and $y \notin M_{1}$, for otherwise M_{1} would be a dominating \mathcal{H}-set of $G+x y$; thus y is a $\gamma_{\mathcal{H}}$-bad vertex of $G-x$. By Lemma 3.3,
$N(x, G) \cap M_{1}=\emptyset$. Then $M_{1} \cup\{x\}$ is a dominating \mathcal{H}-set of $G+x y$, which implies $\gamma_{\mathcal{H}}(G+x y)=\gamma_{\mathcal{H}}(G)+1$. Since $y \notin M_{1} \cup\{x\}$ it follows that $M_{1} \cup\{x\}$ is a dominating \mathcal{H}-set of $G-y$ and then $\gamma_{\mathcal{H}}(G)+1=\left|M_{1} \cup\{x\}\right| \geqslant \gamma_{\mathcal{H}}(G-y)=\gamma_{\mathcal{H}}(G)+q$. So, $q \in\{0,1\}$. If $q=1$ then (2) holds. If $q=0$ then, by symmetry, it follows that x is a $\gamma_{\mathcal{H}}$-bad vertex of $G-y$ and hence (4) holds.

For the converse, let no $\gamma_{\mathcal{H}}$-set of G be an \mathcal{H}-set of $G+x y$ and let one of the conditions (1), (2), (3) and (4) hold. Assume to the contrary that $\gamma_{\mathcal{H}}(G+x y) \leqslant$ $\gamma_{\mathcal{H}}(G)$. By Theorem 3.1, $\gamma_{\mathcal{H}}(G+x y)=\gamma_{\mathcal{H}}(G)$. Let M_{2} be a $\gamma_{\mathcal{H}}$-set of $G+x y$. Hence $\left|M_{2} \cap\{x, y\}\right|=1$-otherwise M_{2} would be a $\gamma_{\mathcal{H}}$-set of G. Let without loss of generality $x \notin M_{2}$. Then M_{2} is a dominating \mathcal{H}-set of $G-x$, which implies $\gamma_{\mathcal{H}}(G-x) \leqslant\left|M_{2}\right|=\gamma_{\mathcal{H}}(G+x y)=\gamma_{\mathcal{H}}(G)$. Thus $\gamma_{\mathcal{H}}(G-x)=\gamma_{\mathcal{H}}(G+x y)=\gamma_{\mathcal{H}}(G)$ and then M_{2} is a $\gamma_{\mathcal{H}}$-set of $G-x$. Hence x is a $\gamma_{\mathcal{H}}^{0}$-fixed vertex of G and y is a $\gamma_{\mathcal{H}}$-good vertex of $G-x$, which is a contradiction with each of $(1)-(4)$.

By Theorem 3.1 and Theorem 3.4 we immediately obtain:

Theorem 3.5. Let x and y be two different and nonadjacent vertices in a graph G. Let $\mathcal{H} \subseteq \mathcal{G}$ be hereditary and closed under union with K_{1}. Then $\gamma_{\mathcal{H}}(G+x y)=\gamma_{\mathcal{H}}(G)$ if and only if at least one of the following holds:
(1) $x \in \mathbf{V}_{\mathcal{H}}^{-}(G) \cap \mathbf{B}_{\mathcal{H}}(G-y)$ and $y \in \mathbf{V}_{\mathcal{H}}^{-}(G) \cap \mathbf{B}_{\mathcal{H}}(G-x)$;
(2) $x \in \mathbf{V}_{\mathcal{H}}^{-}(G)$ and $y \in \mathbf{B}_{\mathcal{H}}(G-x)-\mathbf{V}_{\mathcal{H}}^{-}(G)$;
(3) $x \in \mathbf{B}_{\mathcal{H}}(G-y)-\mathbf{V}_{\mathcal{H}}^{-}(G)$ and $y \in \mathbf{V}_{\mathcal{H}}^{-}(G)$;
(4) $x, y \notin \mathbf{V}_{\mathcal{H}}^{-}(G)$ and $\left|\{x, y\} \cap \mathbf{F i}_{\mathcal{H}}(G)\right| \leqslant 1$;
(5) $x \in \mathbf{F} \mathbf{i}_{\mathcal{H}}^{0}(G)$ and $y \in \mathbf{F i}_{\mathcal{H}}^{s}(G) \cap \mathbf{G}_{\mathcal{H}}(G-x)$ for some $s \in\{0,1\}$;
(6) $x \in \mathbf{F i}_{\mathcal{H}}^{s}(G) \cap \mathbf{G}_{\mathcal{H}}(G-y)$ and $y \in \mathbf{F i}_{\mathcal{H}}^{0}(G)$ for some $s \in\{0,1\}$;
(7) $x \in \mathbf{F i}_{\mathcal{H}}^{0}(G)$ and $y \in \mathbf{F i}_{\mathcal{H}}^{q}(G)$ for some $q \geqslant 2$;
(8) $x \in \mathbf{F i}_{\mathcal{H}}^{q}(G)$ and $y \in \mathbf{F i}_{\mathcal{H}}^{0}(G)$ for some $q \geqslant 2$;
(9) there is a $\gamma_{\mathcal{H}}$-set of G which is an \mathcal{H}-set of $G+x y$ and one of the conditions (1), (2), (3) and (4) stated in Theorem 3.4 holds.

Corollary 3.6. Let x and y be two different and nonadjacent vertices in a graph G. Let $\mathcal{H} \subseteq \mathcal{G}$ be hereditary and closed under union with K_{1}. If $x \in \mathbf{B}_{\mathcal{H}}(G)$ then $\gamma_{\mathcal{H}}(G+x y)=\gamma_{\mathcal{H}}(G)$.

Proof. By Theorem 2.1 (iv), $x \notin \mathbf{V}_{\mathcal{H}}^{-}(G)$. If $y \notin \mathbf{V}_{\mathcal{H}}^{-}(G)$ then the result follows by Theorem 3.5(4). If $y \in \mathbf{V}_{\mathcal{H}}^{-}(G)$ then by Theorem 2.1 (i.2) we have $x \in \mathbf{B}_{\mathcal{H}}(G-y)$ and the result now follows by Theorem 3.5(3).

Let $\mu \in\left\{\gamma, \gamma_{c}, i\right\}$. A graph G is edge- μ-critical if $\mu(G+e)<\mu(G)$ for every edge e not belonging to G. These concepts were introduced by Sumner and Blitch [17], Xue-Gang Chen et al. [3] and Ao and MacGillivray [9, Chapter 16], respectively.

Here we define a graph G to be edge- $\gamma_{\mathcal{P}}$-critical if $\gamma_{\mathcal{P}}(G+e) \neq \gamma_{\mathcal{P}}(G)$ for every edge e of \bar{G}, where $\mathcal{P} \subseteq \mathcal{G}$ is hereditary and closed under union with K_{1}. Relating edge addition and vertex removal, Sumner and Blitch [17] and Ao and MacGillivray showed that $\mathbf{V}_{\mathcal{P}}^{+}(G)$ is empty for $\mathcal{P} \in\{\mathcal{G}, \mathcal{I}\}$, respectively. Furthermore, Favaron et al. [4] showed that if $\mathbf{V}_{\mathcal{G}}^{0}(G) \neq \emptyset$ then $\left\langle\mathbf{V}_{\mathcal{G}}^{0}(G), G\right\rangle$ is complete. In general, for edge- $\gamma_{\mathcal{P}}$-critical graphs the following holds.

Theorem 3.7. Let $\mathcal{H} \subseteq \mathcal{G}$ be hereditary and closed under union with K_{1} and let G be an edge- $\gamma_{\mathcal{H}}$-critical graph. Then
(1) $V(G)=\mathbf{F i}_{\mathcal{H}}^{-1}(G) \cup \mathbf{F r}_{\mathcal{H}}(G)$ and if $\mathbf{F r}_{\mathcal{H}}^{0}(G) \neq \emptyset$ then $\left\langle\mathbf{F r}_{\mathcal{H}}^{0}(G), G\right\rangle$ is complete;
(2) $\gamma_{\mathcal{H}}(G+e)<\gamma_{\mathcal{H}}(G)$ for every edge e not belonging to G.

Proof. (1) If $x, y \in \operatorname{Fr}_{\mathcal{H}}^{0}(G)$ and $x y \notin E(G)$ then Theorem 3.5(4) implies $\gamma_{\mathcal{H}}(G+x y)=\gamma_{\mathcal{H}}(G)$, a contradiction. If $x \in \mathbf{B}_{\mathcal{H}}(G)$ then Corollary 3.6 implies $N[x, G]=V(G)$ and hence $\{x\}$ is a $\gamma_{\mathcal{H}}$-set of G-a contradiction. Assume $x \in$ $\mathbf{F i}_{\mathcal{H}}^{q}(G)$ for some $q \geqslant 0$. Let M be any $\gamma_{\mathcal{H}}$-set of G. By Corollary 1.3, $\mathrm{pn}_{G}[x, M] \neq \emptyset$. If $\mathrm{pn}_{G}[x, M]=\{x\}$ then $M-\{x\}$ dominates $G-x$, so $x \in \mathbf{V}_{\mathcal{H}}^{-}(G)$-a contradiction. Hence there is $y \in \operatorname{pn}_{G}[x, M]-\{x\}$. Since $\operatorname{pn}_{G}[x, M] \cap \mathbf{V}_{\mathcal{H}}^{-}(G)=\emptyset$ (by Theorem 2.1 (iii)), $\mathbf{B}_{\mathcal{H}}(G)=\emptyset$ and $y \notin M$, it follows that $y \in \mathbf{F r}_{\mathcal{H}}^{0}(G)$. Let M_{1} be a $\gamma_{\mathcal{H}}$-set of G and $y \in M_{1}$. Then there is $z \in\left(\mathrm{pn}_{G}\left[x, M_{1}\right]-\{x\}\right) \cap \mathbf{F r}_{\mathcal{H}}^{0}(G)$. Hence $y, z \in \mathbf{F r}_{\mathcal{H}}^{0}(G)$ and $y z \notin E(G)$-a contradiction. Thus $\mathbf{F i}_{\mathcal{H}}(G)=\mathbf{F i}_{\mathcal{H}}^{-1}(G)$ and the result follows.
(2) This immediately follows by (1) and Theorem 3.4.

References

[1] R. C. Brigham, P. Z. Chinn, R. D. Dutton: Vertex domination-critical graphs. Networks 18 (1988), 173-179.
[2] J. R. Carrington, F. Harary, T. W. Haynes: Changing and unchanging the domination number of a graph. J. Combin. Math. Combin. Comput. 9 (1991), 57-63.
zbl
[3] Xue-Gang Chen, Liang Sun, De-Xiang Ma: Connected domination critical graphs. Appl. Math. Letters 17 (2004), 503-507.
zbl
[4] O. Favaron, D. Sumner, E. Wojcicka: The diameter of domination k-critical graphs. J. Graph Theory 18 (1994), 723-734.
zbl
[5] G. H. Fricke, T. W.Haynes, S. M. Hedetniemi, S. T. Hedetniemi, R. C. Laskar: Excellent trees. Bull. Inst. Comb. Appl. 34 (2002), 27-38.
[6] J. Fulman, D. Hanson, G. MacGillivray: Vertex domination-critical graphs. Networks 25 (1995), 41-43.
[7] W. Goddard, T. Haynes, D. Knisley: Hereditary domination and independence parameters. Discuss. Math. Graph Theory. 24 (2004), 239-248.
[8] T. W. Haynes, S. T. Hedetniemi, P. J. Slater: Domination in Graphs. Marcel Dekker, Inc., New York, NY, 1998.
[9] T. W. Haynes, S. T. Hedetniemi, P. J. Slater: Domination in Graphs: Advanced Topics. Marcel Dekker, Inc., New York, NY, 1998.
[10] S. M. Hedetniemi, S. T. Hedetniemi, D. F. Rall: Acyclic domination. Discrete Math. 222 (2000), 151-165.
[11] T. W. Haynes, M. A. Henning: Changing and unchanging domination: a classification. Discrete Math. 272 (2003), 65-79.
[12] D. Michalak: Domination, independence and irredundance with respect to additive in-duced-hereditary properties. Discrete Math. 286 (2004), 141-146.
[13] O. Ore: Theory of Graphs. Amer. Math. Soc. Providence, RI, 1962.
[14] V. D. Samodivkin: Minimal acyclic dominating sets and cut-vertices. Math. Bohem. 130 (2005), 81-88.
[15] V. D. Samodivkin: Partitioned graphs and domination related parameters. Annuaire Univ. Sofia Fac. Math. Inform. 97 (2005), 89-96.
[16] E. Sampathkumar, P.S. Neeralagi: Domination and neighborhood critical fixed, free and totally free points. Sankhyā 54 (1992), 403-407.
[17] D. P. Sumner, P. Blitch: Domination critical graphs. J. Combin. Theory Ser. B 34 (1983), 65-76.
[18] P. D. Vestergaard, B. Zelinka: Cut-vertices and domination in graphs. Math. Bohem. 120 (1995), 135-143.
zbl

Author's address: Vladimir Samodivkin, Department of Mathematics, University of Architecture, Civil Engineering and Geodesy, Hristo Smirnenski 1 Blv., 1046 Sofia, Bulgaria, e-mail: vlsam_fte@uacg.bg.

