DOMINATION WITH RESPECT TO NONDEGENERATE AND HEREDITARY PROPERTIES

VLADIMIR SAMODIVKIN, Sofia

(Received October 30, 2006)

Abstract. For a graphical property \mathcal{P} and a graph G, a subset S of vertices of G is a \mathcal{P} -set if the subgraph induced by S has the property \mathcal{P} . The domination number with respect to the property \mathcal{P} , is the minimum cardinality of a dominating \mathcal{P} -set. In this paper we present results on changing and unchanging of the domination number with respect to the nondegenerate and hereditary properties when a graph is modified by adding an edge or deleting a vertex.

Keywords: domination, independent domination, acyclic domination, good vertex, bad vertex, fixed vertex, free vertex, hereditary graph property, induced-hereditary graph property, nondegenerate graph property, additive graph property

MSC 2000: 05C69

1. INTRODUCTION

All graphs considered in this article are finite, undirected, without loops or multiple edges. For the graph theory terminology not presented here, we follow Haynes et al. [8]. We denote the vertex set and the edge set of a graph G by V(G) and E(G), respectively. The subgraph induced by $S \subseteq V(G)$ is denoted by $\langle S, G \rangle$. The complement of a graph G is denoted by \overline{G} . For a vertex x of G, N(x, G) denotes the set of all neighbors of x in G and $N[x, G] = N(x, G) \cup \{x\}$. The complete graph on m vertices is denoted by K_m .

For a graph G, let $x \in X \subseteq V(G)$. A vertex y is a private neighbor of x with respect to X if $N[y,G] \cap X = \{x\}$. The private neighbor set of x with respect to X is $pn_G[x,X] = \{y: N[y,G] \cap X = \{x\}\}$.

Let \mathcal{G} denote the set of all mutually nonisomorphic graphs. A graph property is any non-empty subset of \mathcal{G} . We say that a graph G has the property \mathcal{P} whenever there exists a graph $H \in \mathcal{P}$ which is isomorphic to G. For example, we list some graph properties:

- $\mathcal{I} = \{ H \in \mathcal{G} : H \text{ is totally disconnected} \};$
- $\mathcal{C} = \{ H \in \mathcal{G} : H \text{ is connected} \};$
- $\mathcal{T} = \{ H \in \mathcal{G} : H \text{ is without isolates} \};$
- $\mathcal{F} = \{ H \in \mathcal{G} \colon H \text{ is a forest} \};$
- $\mathcal{UK} = \{ H \in \mathcal{G} : \text{ each component of } H \text{ is complete} \}.$

A graph property \mathcal{P} is called *hereditary* (*induced-hereditary*), if from the fact that a graph G has the property \mathcal{P} , it follows that all subgraphs (induced subgraphs) of G also belong to \mathcal{P} . A property is called *additive* if it is closed under taking disjoint unions of graphs. A property \mathcal{P} is called *nondegenerate* if $\mathcal{I} \subseteq \mathcal{P}$. Note that: (a) \mathcal{I} and \mathcal{F} are nondegenerate, additive and hereditary properties; (b) \mathcal{UK} is nondegenerate, additive, induced-hereditary and is not hereditary; (c) \mathcal{C} is neither additive nor induced-hereditary nor nondegenerate; (d) \mathcal{T} is additive but neither induced-hereditary nor nondegenerate.

A dominating set for a graph G is a set of vertices $D \subseteq V(G)$ such that every vertex of G is either in D or is adjacent to an element of D. A dominating set D is a minimal dominating set if no set $D' \subsetneq D$ is a dominating set. The set of all minimal dominating sets of a graph G is denoted by MDS(G). The domination number $\gamma(G)$ of a graph G is the minimum cardinality taken over all dominating sets of G. The upper domination number $\Gamma(G)$ is the maximum cardinality of a minimal dominating set of G.

Any set $S \subseteq V(G)$ such that the subgraph $\langle S, G \rangle$ possesses the property \mathcal{P} is called a \mathcal{P} -set. The concept of domination with respect to any property \mathcal{P} was introduced by Goddard et al. [7]. The domination number with respect to the property \mathcal{P} , denoted by $\gamma_{\mathcal{P}}(G)$, is the smallest cardinality of a dominating \mathcal{P} -set of G. Note that there may be no dominating \mathcal{P} -set of G at all. For example, all graphs having at least two isolated vertices are without dominating \mathcal{P} -sets, where $\mathcal{P} \in {\mathcal{C}, \mathcal{T}}$. On the other hand, if a property \mathcal{P} is nondegenerate then every maximal independent set is a \mathcal{P} -set and thus $\gamma_{\mathcal{P}}(G)$ exists. Let S be a dominating \mathcal{P} -set of a graph G. Then S is a minimal dominating \mathcal{P} -set if no set $S' \subsetneq S$ is a dominating \mathcal{P} -set. The set of all minimal dominating \mathcal{P} -sets of a graph G is denoted by $\mathrm{MD}_{\mathcal{P}}S(G)$. The upper domination number with respect to the property \mathcal{P} , denoted by $\Gamma_{\mathcal{P}}(G)$, is the maximum cardinality of a minimal dominating \mathcal{P} -set of G. Michalak [12] has considered these parameters when the property is additive and induced-hereditary. Note that:

(a) in the case $\mathcal{P} = \mathcal{G}$ we have $MD_{\mathcal{G}} S(G) = MDS(G)$, $\gamma_{\mathcal{G}}(G) = \gamma(G)$ and $\Gamma_{\mathcal{G}}(G) = \Gamma(G)$;

- (b) in the case $\mathcal{P} = \mathcal{I}$, every element of $MD_{\mathcal{I}} S(G)$ is an independent dominating set and the numbers $\gamma_{\mathcal{I}}(G)$ and $\Gamma_{\mathcal{I}}(G)$ are well known as the *independent* domination number i(G) and the *independence number* $\beta_0(G)$;
- (c) in the case $\mathcal{P} = \mathcal{C}$, every element of $MD_{\mathcal{C}}S(G)$ is a connected dominating set of G, $\gamma_{\mathcal{C}}(G)$ ($\Gamma_{\mathcal{C}}(G)$) is denoted by $\gamma_c(G)$ ($\Gamma_c(G)$) and is called the *connected* (upper connected) domination number;
- (d) in the case $\mathcal{P} = \mathcal{T}$, every element of $MD_{\mathcal{T}} S(G)$ is a total dominating set of G, $\gamma_{\mathcal{T}}(G) (\Gamma_{\mathcal{T}}(G))$ is denoted by $\gamma_t(G) (\Gamma_t(G))$ and is called the *total (upper total)* domination number;
- (e) in the case $\mathcal{P} = \mathcal{F}$, every element of $\mathrm{MD}_{\mathcal{F}} S(G)$ is an acyclic and dominating set of G, $\gamma_{\mathcal{F}}(G)$ ($\Gamma_{\mathcal{F}}(G)$) is denoted by $\gamma_a(G)$ ($\Gamma_a(G)$) and is called the *acyclic (upper acyclic) domination number*. The concept of acyclic domination in graphs was introduced by Hedetniemi et al. [10].

From the above definitions we immediately have

Observation 1.1. Let $\mathcal{I} \subseteq \mathcal{P}_2 \subseteq \mathcal{P}_1 \subseteq \mathcal{G}$ and let G be a graph. Then (1) [7] $\gamma(G) \leq \gamma_{\mathcal{P}_1}(G) \leq \gamma_{\mathcal{P}_2}(G) \leq i(G)$; (2) [7] $\Gamma(G) \geq \Gamma_{\mathcal{P}_1}(G) \geq \Gamma_{\mathcal{P}_2}(G) \geq \beta_0(G)$.

Observation 1.2. Let G be a graph, $\mathcal{P} \subseteq \mathcal{G}$ and $MD_{\mathcal{P}} S(G) \neq \emptyset$. A dominating \mathcal{P} -set $S \subseteq V(G)$ is a minimal dominating \mathcal{P} -set if and only if for each nonempty subset $U \subsetneq S$ at least one of the following holds:

- (a) there is a vertex $v \in (V(G) S) \cup U$ with $\emptyset \neq N[v, G] \cap S \subseteq U$;
- (b) S U is no \mathcal{P} -set.

Proof. Assume first that $S \in MD_{\mathcal{P}} S(G)$, $\emptyset \neq U \subsetneq S$ and $S_U = S - U$ is a \mathcal{P} -set of G. Hence some vertex v in $V(G) - S_U$ has no neighbors in S_U . If $v \in U$ then $\emptyset \neq N[v,G] \cap S \subseteq U$. Let $v \in V(G) - S$. Since v is not dominated by S_U but is dominated by S it follows that $\emptyset \neq N[v,G] \cap S \subseteq U$. In both cases, condition (a) holds.

For the converse, suppose S is a dominating \mathcal{P} -set of G and for each $U, \emptyset \neq U \subsetneq S$ one of the two above stated conditions holds. Suppose to the contrary that $S \notin \mathrm{MD}_{\mathcal{P}} S(G)$. Then there exists a set $U, \emptyset \neq U \subsetneq S$ such that $S_U = S - U$ is a dominating \mathcal{P} -set. Since S_U is a \mathcal{P} -set, condition (b) does not hold. Since S_U is a dominating set it follows that every vertex of $V(G) - S_U$ has at least one neighbor in S_U , that is, condition (a) does not hold. Thus in all cases we have a contradiction.

Corollary 1.3. Let G be a graph, $\mathcal{P} \subseteq \mathcal{G}$ be an induced-hereditary property and $\operatorname{MD}_{\mathcal{P}} S(G) \neq \emptyset$. A dominating \mathcal{P} -set $S \subseteq V(G)$ is a minimal dominating \mathcal{P} -set if and only if $\operatorname{pn}_G[u, S] \neq \emptyset$ for each vertex $u \in S$.

This result when $\mathcal{P} = \mathcal{G}$ was proved by Ore [13].

We shall use the therm $\gamma_{\mathcal{P}}$ -set for a minimal dominating \mathcal{P} -set of cardinality $\gamma_{\mathcal{P}}(G)$. Let G be a graph and $v \in V(G)$. Fricke et al. [5] defined a vertex v to be

- (f) $\gamma_{\mathcal{P}}$ -good, if v belongs to some $\gamma_{\mathcal{P}}$ -set of G;
- (g) $\gamma_{\mathcal{P}}$ -bad, if v belongs to no $\gamma_{\mathcal{P}}$ -set of G;

Sampathkumar and Neerlagi [16] defined a $\gamma_{\mathcal{P}}$ -good vertex v to be

- (h) $\gamma_{\mathcal{P}}$ -fixed if v belongs to every $\gamma_{\mathcal{P}}$ -set;
- (i) $\gamma_{\mathcal{P}}$ -free if v belongs to some $\gamma_{\mathcal{P}}$ -set but not to all $\gamma_{\mathcal{P}}$ -sets.

For a graph G and a property $\mathcal{P} \subseteq \mathcal{G}$ such that $MD_{\mathcal{P}} S(G) \neq \emptyset$ we define:

 $\mathbf{G}_{\mathcal{P}}(G) = \{ x \in V(G) \colon x \text{ is } \gamma_{\mathcal{P}}\text{-good} \};$

 $\mathbf{B}_{\mathcal{P}}(G) = \{ x \in V(G) \colon x \text{ is } \gamma_{\mathcal{P}}\text{-bad} \};$

 $\mathbf{Fi}_{\mathcal{P}}(G) = \{ x \in V(G) \colon x \text{ is } \gamma_{\mathcal{P}}\text{-fixed} \};$

 $\mathbf{Fr}_{\mathcal{P}}(G) = \{ x \in V(G) \colon x \text{ is } \gamma_{\mathcal{P}}\text{-free} \}.$

Clearly $\{\mathbf{G}_{\mathcal{P}}(G), \mathbf{B}_{\mathcal{P}}(G)\}\$ is a partition of V(G), and $\{\mathbf{Fi}_{\mathcal{P}}(G), \mathbf{Fr}_{\mathcal{P}}(G)\}\$ is a partition of $\mathbf{G}_{\mathcal{P}}(G)$. If additionally $\mathrm{MD}_{\mathcal{P}} \mathrm{S}(G-v) \neq \emptyset$ for each vertex $v \in V(G)$, then we define:

 $\mathbf{V}^{0}_{\mathcal{P}}(G) = \{ x \in V(G) \colon \gamma_{\mathcal{P}}(G-x) = \gamma_{\mathcal{P}}(G) \}; \\ \mathbf{V}^{-}_{\mathcal{P}}(G) = \{ x \in V(G) \colon \gamma_{\mathcal{P}}(G-x) < \gamma_{\mathcal{P}}(G) \}; \\ \mathbf{V}^{+}_{\mathcal{P}}(G) = \{ x \in V(G) \colon \gamma_{\mathcal{P}}(G-x) > \gamma_{\mathcal{P}}(G) \}.$

In this case $\{\mathbf{V}_{\mathcal{P}}^{-}(G), \mathbf{V}_{\mathcal{P}}^{0}(G), \mathbf{V}_{\mathcal{P}}^{+}(G)\}\$ is a partition of V(G).

It is often of interest to know how the value of a graph parameter is affected when a small change is made in a graph. In this connection, in this paper we consider this question in the case $\gamma_{\mathcal{P}}(G)$ when a vertex is deleted from G or an edge from \overline{G} is added to G.

2. Vertex deletion

In this section we examine the effects on $\gamma_{\mathcal{P}}$ when a graph is modified by deleting a vertex.

Theorem 2.1. Let G be a graph, $u, v \in V(G)$, $u \neq v$ and let $\mathcal{H} \subseteq \mathcal{G}$ be nondegenerate and closed under union with K_1 .

- (i) Let $v \in \mathbf{V}_{\mathcal{H}}^{-}(G)$.
 - (i.1) If $uv \in E(G)$ then u is a $\gamma_{\mathcal{H}}$ -bad vertex of G v;

- (i.2) if M is a $\gamma_{\mathcal{H}}$ -set of G v then $M \cup \{v\}$ is a $\gamma_{\mathcal{H}}$ -set of G and $\{v\} =$ $\operatorname{pn}_{C}[v, M \cup \{v\}];$
- (i.3) $\gamma_{\mathcal{H}}(G-v) = \gamma_{\mathcal{H}}(G) 1;$
- (ii) let $v \in \mathbf{V}_{\mathcal{H}}^+(G)$. Then v is a $\gamma_{\mathcal{H}}$ -fixed vertex of G;
- (iii) if $v \in \mathbf{V}_{\mathcal{H}}^{-}(G)$ and u is a $\gamma_{\mathcal{H}}$ -fixed vertex of G then $uv \notin E(G)$;
- (iv) if v is a $\gamma_{\mathcal{H}}$ -bad vertex of G then $\gamma_{\mathcal{H}}(G-v) = \gamma_{\mathcal{H}}(G)$;
- (v) if $v \in \mathbf{V}_{\mathcal{H}}^{-}(G)$ and $uv \in E(G)$ then $\gamma_{\mathcal{H}}(G \{u, v\}) = \gamma_{\mathcal{H}}(G) 1$.

Proof. (i.1): Let $uv \in E(G)$ and let M be a $\gamma_{\mathcal{H}}$ -set of G - v. If $u \in M$ then M is a dominating \mathcal{H} -set of G with $|M| < \gamma_{\mathcal{H}}(G)$ —a contradiction.

(i.2) and (i.3): Let M be a $\gamma_{\mathcal{H}}$ -set of G - v. By (i.1), $M_1 = M \cup \{v\}$ is a dominating set of G. Any vertex $u \in V(G) - M_1$ has a neighbor in M, hence v is isolated in M_1 (otherwise M would dominate G) and $\{v\} = pn_G[v, M \cup \{v\}]$. Since \mathcal{H} is closed under union with K_1 it follows that M_1 is a dominating \mathcal{H} -set of G and $|M_1| = \gamma_{\mathcal{H}}(G-v) + 1 \leqslant \gamma_{\mathcal{H}}(G)$. Hence M_1 is a $\gamma_{\mathcal{H}}$ -set of G and $\gamma_{\mathcal{H}}(G-v) = \gamma_{\mathcal{H}}(G) - 1$.

(ii): If M is a $\gamma_{\mathcal{H}}$ -set of G and $v \notin M$ then M is a dominating \mathcal{H} -set of G - v. But then $\gamma_{\mathcal{H}}(G) = |M| \ge \gamma_{\mathcal{H}}(G-v) > \gamma_{\mathcal{H}}(G)$ and the result follows.

(iii): Let $\gamma_{\mathcal{H}}(G-v) < \gamma_{\mathcal{H}}(G)$ and let M be a $\gamma_{\mathcal{H}}$ -set of G-v. Then by (i.2), $M \cup \{v\}$ is a $\gamma_{\mathcal{H}}$ -set of G. This implies that $u \in M$ and by (i.1) we have $uv \notin E(G)$. (iv): By (ii), $\gamma_{\mathcal{H}}(G-v) \leq \gamma_{\mathcal{H}}(G)$ and by (i.2), $\gamma_{\mathcal{H}}(G-v) \geq \gamma_{\mathcal{H}}(G)$. \square

(v): Immediately follows by (i) and (iv).

Let $\mathcal{P} \subseteq \mathcal{G}$ be nondegenerate and closed under union with K_1 . Since $\gamma_{\mathcal{P}}(G-v) \leq$ |V(G)| - 1 for every $v \in V(G)$ and because of Theorem 2.1 we have $\gamma_{\mathcal{P}}(G - v) =$ $\gamma_{\mathcal{P}}(G) + p$, where $p \in \{-1, 0, 1, \dots, |V(G)| - 2\}$. This motivated us to define for a nontrivial graph G:

$$\mathbf{Fr}_{\mathcal{P}}^{-}(G) = \{x \in \mathbf{Fr}_{\mathcal{P}}(G) : \gamma_{\mathcal{P}}(G-x) = \gamma_{\mathcal{P}}(G) - 1\};$$

$$\mathbf{Fr}_{\mathcal{P}}^{0}(G) = \{x \in \mathbf{Fr}_{\mathcal{P}}(G) : \gamma_{\mathcal{P}}(G-x) = \gamma_{\mathcal{P}}(G)\};$$

$$\mathbf{Fi}_{\mathcal{P}}^{p}(G) = \{x \in \mathbf{Fi}_{\mathcal{P}}(G) : \gamma_{\mathcal{P}}(G-x) = \gamma_{\mathcal{P}}(G) + p\}, p \in \{-1, 0, 1, \dots, |V(G)| - 2\}.$$

We will refine the definitions of the $\gamma_{\mathcal{P}}$ -free vertex and the $\gamma_{\mathcal{P}}$ -fixed vertex. Let G be a graph and let $\mathcal{P} \subseteq \mathcal{G}$ be nondegenerate and closed under union with K_1 . A vertex $x \in V(G)$ is called

- (j) $\gamma^0_{\mathcal{P}}$ -free if $x \in \mathbf{Fr}^0_{\mathcal{P}}(G)$;
- (k) $\gamma_{\mathcal{P}}^{-}$ -free if $x \in \mathbf{Fr}_{\mathcal{P}}^{-}(G)$;
- (1) $\gamma_{\mathcal{P}}^{q}(G)$ -fixed if $x \in \mathbf{Fi}_{\mathcal{P}}^{q}(G)$, where $q \in \{-1, 0, 1, \dots, |V(G)| 2\}$.

Now, by Theorem 2.1 we have

Corollary 2.2. Let G be a graph of order $n \ge 2$ and let $\mathcal{H} \subseteq \mathcal{G}$ be nondegenerate and closed under union with K_1 . Then

- (1) { $\mathbf{Fr}_{\mathcal{H}}^{-}(G), \mathbf{Fr}_{\mathcal{H}}^{0}(G)$ } is a partition of $\mathbf{Fr}_{\mathcal{H}}(G)$;
- (2) { $\mathbf{Fi}_{\mathcal{H}}^{-1}(G), \mathbf{Fi}_{\mathcal{H}}^{0}(G), \dots, \mathbf{Fi}_{\mathcal{H}}^{n-2}(G)$ } is a partition of $\mathbf{Fi}_{\mathcal{H}}(G)$;
- (3) { $\mathbf{Fi}_{\mathcal{H}}^{-1}(G), \mathbf{Fr}_{\mathcal{H}}^{-}(G)$ } is a partition of $\mathbf{V}_{\mathcal{H}}^{-}(G)$;
- (4) { $\mathbf{Fi}^{0}_{\mathcal{H}}(G), \mathbf{Fr}^{0}_{\mathcal{H}}(G), \mathbf{B}_{\mathcal{H}}(G)$ } is a partition of $\mathbf{V}^{0}_{\mathcal{H}}(G)$;
- (5) $\{\mathbf{Fi}_{\mathcal{H}}^{1}(G), \mathbf{Fi}_{\mathcal{H}}^{2}(G), \dots, \mathbf{Fi}_{\mathcal{H}}^{n-2}(G)\}$ is a partition of $\mathbf{V}_{\mathcal{H}}^{+}(G)$.

A vertex v of a graph G is $\gamma_{\mathcal{P}}$ -critical if $\gamma_{\mathcal{P}}(G-v) \neq \gamma_{\mathcal{P}}(G)$. The graph G is vertex- $\gamma_{\mathcal{P}}$ -critical if all its vertices are $\gamma_{\mathcal{P}}$ -critical.

Theorem 2.3. Let G be a graph of order $n \ge 2$ and let $\mathcal{H} \subseteq \mathcal{G}$ be additive and induced-hereditary. Then G is a vertex- $\gamma_{\mathcal{H}}$ -critical graph if and only if $\gamma_{\mathcal{H}}(G-v) = \gamma_{\mathcal{H}}(G) - 1$ for all $v \in V(G)$.

Proof. Necessity is obvious. Sufficiency: Let G be a vertex- $\gamma_{\mathcal{H}}$ -critical graph. Clearly, $\gamma_{\mathcal{H}}(G-v) = \gamma_{\mathcal{H}}(G) - 1$ for every isolated vertex $v \in V(G)$. Hence if G is isomorphic to \overline{K}_n then $\gamma_{\mathcal{H}}(G-v) = \gamma_{\mathcal{H}}(G) - 1$ for all $v \in V(G)$. So, let G have a component of order at least two, say Q. Because of Theorem 2.1 (ii), (iii) and (i.3), either $\gamma_{\mathcal{H}}(Q-v) > \gamma_{\mathcal{H}}(Q)$ for all $v \in V(Q)$, or $\gamma_{\mathcal{H}}(Q-v) = \gamma_{\mathcal{H}}(Q) - 1$ for all $v \in V(Q)$. Suppose that $\gamma_{\mathcal{H}}(Q-v) > \gamma_{\mathcal{H}}(Q)$ for all $v \in V(Q)$. But then Theorem 2.1 (ii) implies that V(Q) is a $\gamma_{\mathcal{H}}$ -set of Q. This is a contradiction with $\gamma_{\mathcal{H}}(Q-v) > \gamma_{\mathcal{H}}(Q)$.

Theorem 2.3 when $\mathcal{H} \in \{\mathcal{G}, \mathcal{I}, \mathcal{F}\}$ is due to Carrington et al. [2], Ao and MacGillivray (see [9, Chapter 16]) and the present author [15], respectively. Further properties of these graphs can be found in [1], [6], [8, Chapter 5], [9, Chapter 16], [11], [14].

Now we concentrate on graphs having cut-vertices. Observe that domination and some of its variants in graphs having cut-vertices have been the topic of several studies—see for example [1], [18], [14] and [9, Chapter 16].

Let G_1 and G_2 be connected graphs, both of order at least two, and let them have a unique vertex in common, say x. Then a *coalescence* $G_1 \overset{x}{\circ} G_2$ is the graph $G_1 \cup G_2$. Clearly, x is a cut-vertex of $G_1 \overset{x}{\circ} G_2$.

Theorem 2.4. Let $G = G_1 \overset{x}{\circ} G_2$ and let $\mathcal{H} \subseteq \mathcal{G}$ be induced-hereditary and closed under union with K_1 . Then $\gamma_{\mathcal{H}}(G) \ge \gamma_{\mathcal{H}}(G_1) + \gamma_{\mathcal{H}}(G_2) - 1$.

Proof. Since \mathcal{H} is induced-hereditary and closed under union with K_1 it follows that \mathcal{H} is nondegenerate. Let M be a $\gamma_{\mathcal{H}}$ -set of G and $M_i = M \cap V(G_i)$, i = 1, 2. Since \mathcal{H} is induced-hereditary it follows that M_1 and M_2 are \mathcal{H} -sets of G_1 and G_2 , respectively. Hence there exist three possibilities:

- (a) $x \notin M$ and M_i is a dominating \mathcal{H} -set of G_i , i = 1, 2;
- (b) x ∉ M and there are i, j such that {i, j} = {1,2}, M_i is a dominating H-set of G_i and M_j is a dominating H-set of G_j − x;

(c) $x \in M$ and M_i is a dominating \mathcal{H} -set of G_i , i = 1, 2.

If (a) holds, then $\gamma_{\mathcal{H}}(G) = |M| = |M_1| + |M_2| \ge \gamma_{\mathcal{H}}(G_1) + \gamma_{\mathcal{H}}(G_2)$. If (c) holds then $\gamma_{\mathcal{H}}(G) = |M| = |M_1| + |M_2| - 1 \ge \gamma_{\mathcal{H}}(G_1) + \gamma_{\mathcal{H}}(G_2) - 1$. Finally, let (b) hold. Then $\gamma_{\mathcal{H}}(G) = |M| = |M_1| + |M_2| \ge \gamma_{\mathcal{H}}(G_i) + \gamma_{\mathcal{H}}(G_j - x)$. Now by Theorem 2.1 (i), $\gamma_{\mathcal{H}}(G) \ge \gamma_{\mathcal{H}}(G_1) + \gamma_{\mathcal{H}}(G_2) - 1$.

Thus, in all cases, $\gamma_{\mathcal{H}}(G) \ge \gamma_{\mathcal{H}}(G_1) + \gamma_{\mathcal{H}}(G_2) - 1.$

Theorem 2.5. Let $G = G_1 \circ G_2$, let $\mathcal{H} \subseteq \mathcal{G}$ be additive and induced-hereditary, and $\gamma_{\mathcal{H}}(G_1 - x) < \gamma_{\mathcal{H}}(G_1)$. Then

(a) $\gamma_{\mathcal{H}}(G) = \gamma_{\mathcal{H}}(G_1) + \gamma_{\mathcal{H}}(G_2) - 1;$

(b) if $\gamma_{\mathcal{H}}(G_2 - x) < \gamma_{\mathcal{H}}(G_2)$ then $\gamma_{\mathcal{H}}(G - x) = \gamma_{\mathcal{H}}(G) - 1$;

(c) if $\gamma_{\mathcal{H}}(G_2 - x) > \gamma_{\mathcal{H}}(G_2)$ then x is a $\gamma_{\mathcal{H}}$ -fixed vertex of G;

(d) if x is a $\gamma_{\mathcal{H}}$ -bad vertex of G_2 then x is a $\gamma_{\mathcal{H}}$ -bad vertex of G.

Proof. Since \mathcal{H} is additive and induced-hereditary it follows that \mathcal{H} is nondegenerate and closed under union with K_1 .

(a): Let U_1 be a $\gamma_{\mathcal{H}}$ -set of $G_1 - x$ and let U_2 be a $\gamma_{\mathcal{H}}$ -set of G_2 . Then $U = U_1 \cup U_2$ is a dominating set of G. It follows by Theorem 2.1(i.2) that $\langle U, G \rangle$ has two components, namely $\langle U_1, G \rangle$ and $\langle U_2, G \rangle$. Since \mathcal{H} is additive, U is an \mathcal{H} -set of G. Thus U is a dominating \mathcal{H} -set of G. Hence $\gamma_{\mathcal{H}}(G) \leq |U_1 \cup U_2| = \gamma_{\mathcal{H}}(G_1 - x) + \gamma_{\mathcal{H}}(G_2) = \gamma_{\mathcal{H}}(G_1) + \gamma_{\mathcal{H}}(G_2) - 1$. Now the result follows by Theorem 2.4.

(b): By Theorem 2.1 (i.3) we have $\gamma_{\mathcal{H}}(G-x) = \gamma_{\mathcal{H}}(G_1-x) + \gamma_{\mathcal{H}}(G_2-x) = \gamma_{\mathcal{H}}(G_1) + \gamma_{\mathcal{H}}(G_2) - 2$. Hence by (a), $\gamma_{\mathcal{H}}(G-x) = \gamma_{\mathcal{H}}(G) - 1$.

(c): $\gamma_{\mathcal{H}}(G-x) = \gamma_{\mathcal{H}}(G_1-x) + \gamma_{\mathcal{H}}(G_2-x) = \gamma_{\mathcal{H}}(G_1) - 1 + \gamma_{\mathcal{H}}(G_2-x) = \gamma_{\mathcal{H}}(G) + \gamma_{\mathcal{H}}(G_2-x) - \gamma_{\mathcal{H}}(G_2) > \gamma_{\mathcal{H}}(G)$. The result now follows by Theorem 2.1 (ii).

(d): Let M be a $\gamma_{\mathcal{H}}$ -set of G and $M_i = M \cap V(G_i)$, i = 1, 2. Suppose $x \in M$. Hence M_i is a dominating \mathcal{H} -set of G_i , i = 1, 2 and then $\gamma_{\mathcal{H}}(G_i) \leq |M_i|$. Since x belongs to no $\gamma_{\mathcal{H}}$ -set of G_2 we have $|M_2| > \gamma_{\mathcal{H}}(G_2)$. Hence $\gamma_{\mathcal{H}}(G) = |M| = |M_1| + |M_2| - 1 \geq \gamma_{\mathcal{H}}(G_1) + \gamma_{\mathcal{H}}(G_2)$ —a contradiction with (a).

Theorem 2.6. Let $\mathcal{H} \subseteq \mathcal{G}$ be additive and induced-hereditary and let $G = G_1 \overset{x}{\circ} G_2$, where G_1, G_2 are both vertex- $\gamma_{\mathcal{H}}$ -critical. Then G is vertex- $\gamma_{\mathcal{H}}$ -critical and $\gamma_{\mathcal{H}}(G) = \gamma_{\mathcal{H}}(G_1) + \gamma_{\mathcal{H}}(G_2) - 1$.

Proof. By Theorem 2.5(b) it follows that $\gamma_{\mathcal{H}}(G) - 1 = \gamma_{\mathcal{H}}(G-x)$. Let without loss of generality $y \in V(G_2 - x)$. If $G_2 - y$ is connected then $G - y = G_1 \circ^x (G_2 - y)$ and

by Theorem 2.5(a), $\gamma_{\mathcal{H}}(G-y) = \gamma_{\mathcal{H}}(G_1) + \gamma_{\mathcal{H}}(G_2-y) - 1 = \gamma_{\mathcal{H}}(G_1) + \gamma_{\mathcal{H}}(G_2) - 2 = \gamma_{\mathcal{H}}(G) - 1.$

So, assume $G_2 - y$ is not connected and let Q be the component of $G_2 - y$ which contains x. By Theorem 2.1 (i), $V(Q) \neq \{x\}$. Now, by Theorem 2.5 (a), $\gamma_{\mathcal{H}}(G_1 \overset{x}{\circ} Q) = \gamma_{\mathcal{H}}(G_1) + \gamma_{\mathcal{H}}(Q) - 1$ and then $\gamma_{\mathcal{H}}(G - y) = \gamma_{\mathcal{H}}(G_1 \overset{x}{\circ} Q) + \gamma_{\mathcal{H}}(G_2 - (V(Q) \cup \{y\})) = \gamma_{\mathcal{H}}(G_1) + \gamma_{\mathcal{H}}(G_2 - y) - 1 = \gamma_{\mathcal{H}}(G_1) + \gamma_{\mathcal{H}}(G_2) - 2 = \gamma_{\mathcal{H}}(G) - 1.$

3. Edge addition

Here we present results on changing and unchanging of $\gamma_{\mathcal{P}}(G)$ when an edge from \overline{G} is added to G. Recall that if a property \mathcal{P} is hereditary and closed under union with K_1 then \mathcal{P} is nondegenerate and hence all graphs have a domination number with respect to \mathcal{P} .

Theorem 3.1. Let x and y be two different and nonadjacent vertices in a graph G. Let $\mathcal{H} \subseteq \mathcal{G}$ be hereditary and closed under union with K_1 . If $\gamma_{\mathcal{H}}(G+xy) < \gamma_{\mathcal{H}}(G)$ then $\gamma_{\mathcal{H}}(G+xy) = \gamma_{\mathcal{H}}(G) - 1$. Moreover, $\gamma_{\mathcal{H}}(G+xy) = \gamma_{\mathcal{H}}(G) - 1$ if and only if at least one of the following holds:

- (i) $x \in \mathbf{V}_{\mathcal{H}}^{-}(G)$ and y is a $\gamma_{\mathcal{H}}$ -good vertex of G x;
- (ii) x is a $\gamma_{\mathcal{H}}$ -good vertex of G y and $y \in \mathbf{V}_{\mathcal{H}}^{-}(G)$.

Proof. Let $\gamma_{\mathcal{H}}(G + xy) < \gamma_{\mathcal{H}}(G)$ and let M be a $\gamma_{\mathcal{H}}$ -set of G + xy. Since \mathcal{H} is hereditary, M is an \mathcal{H} -set of G. Further, $|\{x, y\} \cap M| = 1$, otherwise M would be a dominating \mathcal{H} -set of G, a contradiction. Let without loss of generality $x \notin M$ and $y \in M$. Since M is an \mathcal{H} -set of G it follows that M is no dominating set of G, which implies $M \cap N(x, G) = \emptyset$. Hence $M_1 = M \cup \{x\}$ is a dominating \mathcal{H} -set of G with $|M_1| = \gamma_{\mathcal{H}}(G + xy) + 1$, which implies $\gamma_{\mathcal{H}}(G) = \gamma_{\mathcal{H}}(G + xy) + 1$. Since M is a dominating \mathcal{H} -set of G - x we have $\gamma_{\mathcal{H}}(G - x) \leq \gamma_{\mathcal{H}}(G + xy)$. Hence $\gamma_{\mathcal{H}}(G) \geq \gamma_{\mathcal{H}}(G - x) + 1$ and Theorem 2.1 implies $\gamma_{\mathcal{H}}(G) = \gamma_{\mathcal{H}}(G - x) + 1$. Thus x is in $\mathbf{V}^-_{\mathcal{H}}(G)$ and M is a $\gamma_{\mathcal{H}}$ -set of G - x. Since $y \in M$, y is a $\gamma_{\mathcal{H}}$ -good vertex of G - x.

For the converse let without loss of generality (i) hold. Then there is a $\gamma_{\mathcal{H}}$ -set M of G - x with $y \in M$. Certainly M is a dominating \mathcal{H} -set of G + xy and consequently $\gamma_{\mathcal{H}}(G + xy) \leq |M| = \gamma_{\mathcal{H}}(G - x) = \gamma_{\mathcal{H}}(G) - 1 \leq \gamma_{\mathcal{H}}(G + xy)$.

Corollary 3.2. Let x and y be two different and nonadjacent vertices in a graph G, let $\mathcal{H} \subseteq \mathcal{G}$ be hereditary and closed under union with K_1 , and let $x \in \mathbf{V}_{\mathcal{H}}^-(G)$. Then $\gamma_{\mathcal{H}}(G) - 1 \leq \gamma_{\mathcal{H}}(G + xy) \leq \gamma_{\mathcal{H}}(G)$.

Proof. Let M be a $\gamma_{\mathcal{H}}$ -set of G-x. If $y \in \mathbf{G}_{\mathcal{H}}(G-x)$ then Theorem 3.1 yields $\gamma_{\mathcal{H}}(G) - 1 = \gamma_{\mathcal{H}}(G+xy)$. So, let $y \in \mathbf{B}_{\mathcal{H}}(G-x)$. By Theorem 2.1, $M_1 = M \cup \{x\}$

is a $\gamma_{\mathcal{H}}$ -set of G and $M_1 \cap N(x, G) = \emptyset$. Hence M_1 is a dominating \mathcal{H} -set of G + xyand $\gamma_{\mathcal{H}}(G + xy) \leq |M_1| = \gamma_{\mathcal{H}}(G - x) + 1 = \gamma_{\mathcal{H}}(G)$.

We need the following lemma:

Lemma 3.3. Let $\mathcal{H} \subseteq \mathcal{G}$ be nondegenerate and closed under union with K_1 and let x be a $\gamma^0_{\mathcal{H}}$ -fixed vertex of a graph G. Then $N(x, G) \subseteq \mathbf{B}_{\mathcal{H}}(G-x) \cap (\mathbf{V}^0_{\mathcal{H}}(G) \cup \mathbf{Fi}^1_{\mathcal{H}}(G))$ and for each $y \in N(x, G)$, $\gamma_{\mathcal{H}}(G - \{x, y\}) = \gamma_{\mathcal{H}}(G)$.

Proof. Let M be a $\gamma_{\mathcal{H}}$ -set of G - x and $y \in N(x, G)$. If $y \in M$ then M is a dominating \mathcal{H} -set of G of cardinality $|M| = \gamma_{\mathcal{H}}(G - x) = \gamma_{\mathcal{H}}(G)$ —a contradiction with $x \in \mathbf{Fi}_{\mathcal{H}}(G)$. Thus $N(x, G) \subseteq \mathbf{B}_{\mathcal{H}}(G - x)$. Now by Theorem 2.1 (iv), $\gamma_{\mathcal{H}}(G - \{x, y\}) = \gamma_{\mathcal{H}}(G - x) = \gamma_{\mathcal{H}}(G)$. Further, Theorem 2.1(iii) implies $y \notin \mathbf{V}^-_{\mathcal{H}}(G)$. If $y \notin \mathbf{V}^0_{\mathcal{H}}(G)$, from Corollary 2.2(5) it follows that $y \in \mathbf{Fi}^p_{\mathcal{H}}(G)$ for some $p \ge 1$. Assume $p \ge 2$. Since M is a dominating \mathcal{H} -set of G - x and $M \cap N(x, G) = \emptyset$ it follows that $M_2 = M \cup \{x\}$ is a dominating \mathcal{H} -set of G and $y \notin M_2$. Hence M_2 is a dominating \mathcal{H} -set of G - y and $y = |M| + 1 = \gamma_{\mathcal{H}}(G - x) + 1 = \gamma_{\mathcal{H}}(G) + 1$, a contradiction.

It is a well known fact that $\gamma(G + e) \leq \gamma(G)$ for any edge $e \in \overline{G}$. In general, for $\gamma_{\mathcal{P}}$ this is not valid.

Theorem 3.4. Let x and y be two different and nonadjacent vertices in a graph G and let $\mathcal{H} \subseteq \mathcal{G}$ be hereditary and closed under union with K_1 . Then $\gamma_{\mathcal{H}}(G+xy) > \gamma_{\mathcal{H}}(G)$ if and only if no $\gamma_{\mathcal{H}}$ -set of G is an \mathcal{H} -set of G + xy and one of the following holds:

(1) x is a $\gamma_{\mathcal{H}}^p$ -fixed vertex of G and y is a $\gamma_{\mathcal{H}}^q$ -fixed vertex of G for some $p, q \ge 1$;

(2) $x \in \mathbf{Fi}^0_{\mathcal{H}}(G)$ and $y \in \mathbf{Fi}^1_{\mathcal{H}}(G) \cap \mathbf{B}_{\mathcal{H}}(G-x);$

(3) $x \in \mathbf{Fi}^{1}_{\mathcal{H}}(G) \cap \mathbf{B}_{\mathcal{H}}(G-y)$ and $y \in \mathbf{Fi}^{0}_{\mathcal{H}}(G)$;

(4) $x, y \in \mathbf{Fi}^0_{\mathcal{H}}(G), x \in \mathbf{B}_{\mathcal{H}}(G-y) \text{ and } y \in \mathbf{B}_{\mathcal{H}}(G-x).$

Proof. Let $\gamma_{\mathcal{H}}(G + xy) > \gamma_{\mathcal{H}}(G)$. By Corollary 3.2 we have $x, y \in \mathbf{V}^{0}_{\mathcal{H}}(G) \cup \mathbf{V}^{+}_{\mathcal{H}}(G)$. Assume to the contrary that (without loss of generality) $x \notin \mathbf{Fi}_{\mathcal{H}}(G)$. Hence there is a $\gamma_{\mathcal{H}}$ -set M of G with $x \notin M$. But then M is a dominating \mathcal{H} -set of G + xy and $|M| = \gamma_{\mathcal{H}}(G) < \gamma_{\mathcal{H}}(G + xy)$ —a contradiction. Thus both x and y are $\gamma_{\mathcal{H}}$ -fixed vertices of G. This implies that each $\gamma_{\mathcal{H}}$ -set M of G is a dominating set of G + xy but not an \mathcal{H} -set of G + xy.

Let x be $\gamma_{\mathcal{H}}^p$ -fixed, let y be $\gamma_{\mathcal{H}}^q$ -fixed and without loss of generality, $q \ge p \ge 0$. Assume (1) does not hold. Hence p = 0. Let M_1 be a $\gamma_{\mathcal{H}}$ -set of G - x. Then $|M_1| = \gamma_{\mathcal{H}}(G - x) = \gamma_{\mathcal{H}}(G) < \gamma_{\mathcal{H}}(G + xy)$ and $y \notin M_1$, for otherwise M_1 would be a dominating \mathcal{H} -set of G + xy; thus y is a $\gamma_{\mathcal{H}}$ -bad vertex of G - x. By Lemma 3.3, $N(x,G) \cap M_1 = \emptyset$. Then $M_1 \cup \{x\}$ is a dominating \mathcal{H} -set of G + xy, which implies $\gamma_{\mathcal{H}}(G+xy) = \gamma_{\mathcal{H}}(G) + 1$. Since $y \notin M_1 \cup \{x\}$ it follows that $M_1 \cup \{x\}$ is a dominating \mathcal{H} -set of G - y and then $\gamma_{\mathcal{H}}(G) + 1 = |M_1 \cup \{x\}| \ge \gamma_{\mathcal{H}}(G - y) = \gamma_{\mathcal{H}}(G) + q$. So, $q \in \{0,1\}$. If q = 1 then (2) holds. If q = 0 then, by symmetry, it follows that x is a $\gamma_{\mathcal{H}}$ -bad vertex of G - y and hence (4) holds.

For the converse, let no $\gamma_{\mathcal{H}}$ -set of G be an \mathcal{H} -set of G + xy and let one of the conditions (1), (2), (3) and (4) hold. Assume to the contrary that $\gamma_{\mathcal{H}}(G + xy) \leq \gamma_{\mathcal{H}}(G)$. By Theorem 3.1, $\gamma_{\mathcal{H}}(G + xy) = \gamma_{\mathcal{H}}(G)$. Let M_2 be a $\gamma_{\mathcal{H}}$ -set of G + xy. Hence $|M_2 \cap \{x, y\}| = 1$ —otherwise M_2 would be a $\gamma_{\mathcal{H}}$ -set of G. Let without loss of generality $x \notin M_2$. Then M_2 is a dominating \mathcal{H} -set of G - x, which implies $\gamma_{\mathcal{H}}(G - x) \leq |M_2| = \gamma_{\mathcal{H}}(G + xy) = \gamma_{\mathcal{H}}(G)$. Thus $\gamma_{\mathcal{H}}(G - x) = \gamma_{\mathcal{H}}(G + xy) = \gamma_{\mathcal{H}}(G)$ and then M_2 is a $\gamma_{\mathcal{H}}$ -set of G - x. Hence x is a $\gamma_{\mathcal{H}}^0$ -fixed vertex of G and y is a $\gamma_{\mathcal{H}}$ -good vertex of G - x, which is a contradiction with each of (1)–(4).

By Theorem 3.1 and Theorem 3.4 we immediately obtain:

Theorem 3.5. Let x and y be two different and nonadjacent vertices in a graph G. Let $\mathcal{H} \subseteq \mathcal{G}$ be hereditary and closed under union with K_1 . Then $\gamma_{\mathcal{H}}(G+xy) = \gamma_{\mathcal{H}}(G)$ if and only if at least one of the following holds:

- (1) $x \in \mathbf{V}_{\mathcal{H}}^{-}(G) \cap \mathbf{B}_{\mathcal{H}}(G-y)$ and $y \in \mathbf{V}_{\mathcal{H}}^{-}(G) \cap \mathbf{B}_{\mathcal{H}}(G-x)$;
- (2) $x \in \mathbf{V}_{\mathcal{H}}^{-}(G)$ and $y \in \mathbf{B}_{\mathcal{H}}(G-x) \mathbf{V}_{\mathcal{H}}^{-}(G);$
- (3) $x \in \mathbf{B}_{\mathcal{H}}(G-y) \mathbf{V}_{\mathcal{H}}^{-}(G)$ and $y \in \mathbf{V}_{\mathcal{H}}^{-}(G)$;
- (4) $x, y \notin \mathbf{V}_{\mathcal{H}}^{-}(G)$ and $|\{x, y\} \cap \mathbf{Fi}_{\mathcal{H}}(G)| \leq 1$;
- (5) $x \in \mathbf{Fi}^0_{\mathcal{H}}(G)$ and $y \in \mathbf{Fi}^s_{\mathcal{H}}(G) \cap \mathbf{G}_{\mathcal{H}}(G-x)$ for some $s \in \{0,1\}$;
- (6) $x \in \mathbf{Fi}^s_{\mathcal{H}}(G) \cap \mathbf{G}_{\mathcal{H}}(G-y)$ and $y \in \mathbf{Fi}^0_{\mathcal{H}}(G)$ for some $s \in \{0,1\}$;
- (7) $x \in \mathbf{Fi}^0_{\mathcal{H}}(G)$ and $y \in \mathbf{Fi}^q_{\mathcal{H}}(G)$ for some $q \ge 2$;
- (8) $x \in \mathbf{Fi}_{\mathcal{H}}^q(G)$ and $y \in \mathbf{Fi}_{\mathcal{H}}^0(G)$ for some $q \ge 2$;
- (9) there is a $\gamma_{\mathcal{H}}$ -set of G which is an \mathcal{H} -set of G + xy and one of the conditions (1), (2), (3) and (4) stated in Theorem 3.4 holds.

Corollary 3.6. Let x and y be two different and nonadjacent vertices in a graph G. Let $\mathcal{H} \subseteq \mathcal{G}$ be hereditary and closed under union with K_1 . If $x \in \mathbf{B}_{\mathcal{H}}(G)$ then $\gamma_{\mathcal{H}}(G + xy) = \gamma_{\mathcal{H}}(G)$.

Proof. By Theorem 2.1 (iv), $x \notin \mathbf{V}_{\mathcal{H}}^{-}(G)$. If $y \notin \mathbf{V}_{\mathcal{H}}^{-}(G)$ then the result follows by Theorem 3.5(4). If $y \in \mathbf{V}_{\mathcal{H}}^{-}(G)$ then by Theorem 2.1 (i.2) we have $x \in \mathbf{B}_{\mathcal{H}}(G-y)$ and the result now follows by Theorem 3.5(3).

Let $\mu \in \{\gamma, \gamma_c, i\}$. A graph G is edge- μ -critical if $\mu(G + e) < \mu(G)$ for every edge e not belonging to G. These concepts were introduced by Sumner and Blitch [17], Xue-Gang Chen et al. [3] and Ao and MacGillivray [9, Chapter 16], respectively.

Here we define a graph G to be $edge - \gamma_{\mathcal{P}} - critical$ if $\gamma_{\mathcal{P}}(G + e) \neq \gamma_{\mathcal{P}}(G)$ for every edge e of \overline{G} , where $\mathcal{P} \subseteq \mathcal{G}$ is hereditary and closed under union with K_1 . Relating edge addition and vertex removal, Sumner and Blitch [17] and Ao and MacGillivray showed that $\mathbf{V}^+_{\mathcal{P}}(G)$ is empty for $\mathcal{P} \in \{\mathcal{G}, \mathcal{I}\}$, respectively. Furthermore, Favaron et al. [4] showed that if $\mathbf{V}^0_{\mathcal{G}}(G) \neq \emptyset$ then $\langle \mathbf{V}^0_{\mathcal{G}}(G), G \rangle$ is complete. In general, for edge- $\gamma_{\mathcal{P}}$ -critical graphs the following holds.

Theorem 3.7. Let $\mathcal{H} \subseteq \mathcal{G}$ be hereditary and closed under union with K_1 and let G be an edge- $\gamma_{\mathcal{H}}$ -critical graph. Then

(1) $V(G) = \mathbf{Fi}_{\mathcal{H}}^{-1}(G) \cup \mathbf{Fr}_{\mathcal{H}}(G)$ and if $\mathbf{Fr}_{\mathcal{H}}^{0}(G) \neq \emptyset$ then $\langle \mathbf{Fr}_{\mathcal{H}}^{0}(G), G \rangle$ is complete; (2) $\gamma_{\mathcal{H}}(G+e) < \gamma_{\mathcal{H}}(G)$ for every edge e not belonging to G.

Proof. (1) If $x, y \in \mathbf{Fr}^0_{\mathcal{H}}(G)$ and $xy \notin E(G)$ then Theorem 3.5(4) implies $\gamma_{\mathcal{H}}(G+xy) = \gamma_{\mathcal{H}}(G)$, a contradiction. If $x \in \mathbf{B}_{\mathcal{H}}(G)$ then Corollary 3.6 implies N[x,G] = V(G) and hence $\{x\}$ is a $\gamma_{\mathcal{H}}$ -set of G—a contradiction. Assume $x \in$ $\mathbf{Fi}_{\mathcal{H}}^{q}(G) \text{ for some } q \ge 0. \text{ Let } M \text{ be any } \gamma_{\mathcal{H}} \text{-set of } G. \text{ By Corollary 1.3, } \mathrm{pn}_{G}[x, M] \neq \emptyset.$ If $\operatorname{pn}_G[x, M] = \{x\}$ then $M - \{x\}$ dominates G - x, so $x \in \mathbf{V}_{\mathcal{H}}^-(G)$ —a contradiction. Hence there is $y \in pn_G[x, M] - \{x\}$. Since $pn_G[x, M] \cap \mathbf{V}_{\mathcal{H}}^-(G) = \emptyset$ (by Theorem 2.1 (iii)), $\mathbf{B}_{\mathcal{H}}(G) = \emptyset$ and $y \notin M$, it follows that $y \in \mathbf{Fr}^0_{\mathcal{H}}(G)$. Let M_1 be a $\gamma_{\mathcal{H}}$ -set of G and $y \in M_1$. Then there is $z \in (\operatorname{pn}_G[x, M_1] - \{x\}) \cap \operatorname{Fr}^0_{\mathcal{H}}(G)$. Hence $y, z \in \operatorname{Fr}^0_{\mathcal{H}}(G)$ and $yz \notin E(G)$ —a contradiction. Thus $\mathbf{Fi}_{\mathcal{H}}(G) = \mathbf{Fi}_{\mathcal{H}}^{-1}(G)$ and the result follows.

(2) This immediately follows by (1) and Theorem 3.4.

References

[1]	R. C. Brigham, P. Z. Chinn, R. D. Dutton: Vertex domination-critical graphs. Networks	
	18 (1988), 173–179.	$^{\mathrm{zbl}}$
[2]	J. R. Carrington, F. Harary, T. W. Haynes: Changing and unchanging the domination	
	number of a graph. J. Combin. Math. Combin. Comput. 9 (1991), 57–63.	$^{\mathrm{zbl}}$
[3]	Xue-Gang Chen, Liang Sun, De-Xiang Ma: Connected domination critical graphs. Appl.	
	Math. Letters 17 (2004), 503–507.	$^{\mathrm{zbl}}$
[4]	O. Favaron, D. Sumner, E. Wojcicka: The diameter of domination k-critical graphs. J.	
	Graph Theory 18 (1994), 723–734.	$^{\mathrm{zbl}}$
[5]	G. H. Fricke, T. W. Haynes, S. M. Hedetniemi, S. T. Hedetniemi, R. C. Laskar: Excellent	
	trees. Bull. Inst. Comb. Appl. 34 (2002), 27–38.	$^{\mathrm{zbl}}$
[6]	J. Fulman, D. Hanson, G. MacGillivray: Vertex domination-critical graphs. Networks 25	
	(1995), 41-43.	$^{\mathrm{zbl}}$
[7]	W. Goddard, T. Haynes, D. Knisley: Hereditary domination and independence parame-	
	ters. Discuss. Math. Graph Theory. 24 (2004), 239–248.	$^{\mathrm{zbl}}$
[8]	T. W. Haynes, S. T. Hedetniemi, P. J. Slater: Domination in Graphs. Marcel Dekker,	
	Inc., New York, NY, 1998.	$^{\mathrm{zbl}}$
[9]	T. W. Haynes, S. T. Hedetniemi, P. J. Slater: Domination in Graphs: Advanced Topics.	
	Marcel Dekker, Inc., New York, NY, 1998.	$^{\mathrm{zbl}}$

[10]	S. M. Hedetniemi, S. T. Hedetniemi, D. F. Rall: Acyclic domination. Discrete Math. 222
	(2000), 151–165. zbl
[11]	T. W. Haynes, M. A. Henning: Changing and unchanging domination: a classification.
	Discrete Math. 272 (2003), 65–79. zbl
[12]	D. Michalak: Domination, independence and irredundance with respect to additive in-
	duced-hereditary properties. Discrete Math. 286 (2004), 141–146.
[13]	O. Ore: Theory of Graphs. Amer. Math. Soc. Providence, RI, 1962.
[14]	V. D. Samodivkin: Minimal acyclic dominating sets and cut-vertices. Math. Bohem. 130
	(2005), 81–88. zbl
[15]	V. D. Samodivkin: Partitioned graphs and domination related parameters. Annuaire
	Univ. Sofia Fac. Math. Inform. 97 (2005), 89–96.
[16]	E. Sampathkumar, P. S. Neeralagi: Domination and neighborhood critical fixed, free and
	totally free points. Sankhyā 54 (1992), 403–407. zbl
[17]	D. P. Sumner, P. Blitch: Domination critical graphs. J. Combin. Theory Ser. B 34 (1983),
	65–76. zbl
[18]	P. D. Vestergaard, B. Zelinka: Cut-vertices and domination in graphs. Math. Bohem. 120
	(1995), 135–143. zbl

Author's address: Vladimir Samodivkin, Department of Mathematics, University of Architecture, Civil Engineering and Geodesy, Hristo Smirnenski 1 Blv., 1046 Sofia, Bulgaria, e-mail: vlsam_fte@uacg.bg.