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Abstract. In this paper the concept of a fuzzy contraction∗ mapping on a fuzzy metric
space is introduced and it is proved that every fuzzy contraction∗ mapping on a complete
fuzzy metric space has a unique fixed point.
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1. Introduction

The theory of fuzzy sets was introduced by Zadeh in 1965 [7]. Since then many

authors (Zi-ke 1982 [8], Erceg 1979 [1], George and Veeramani 1994 [2], Kaleva and

Seikkala 1984 [5]) have introduced the concept of a fuzzy metric space in different

ways. In this paper we follow the definition of a metric space given by George

and Veeramani [2] since the topology induced by the fuzzy metric according to the

definition of George and Veeramani [2] is Hausdorff. Motivated by the concept

of a metric space, Urysohn’s lemma and gluing lemma are studied. Based on the

concept of a fuzzy contraction mapping [6], the fuzzy contraction∗ mapping theorem

is established.

2. Preliminaries

Definition 1 [4]. A binary operation ∗ : [0, 1] × [0, 1] → [0, 1] is a continuous

t-norm if ∗ satisfies the following conditions:

1. ∗ is associative and commutative,

2. ∗ is continuous,
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3. a ∗ 1 = a for all a ∈ [0, 1],

4. a ∗ b 6 c ∗ d whenever a 6 c and b 6 d, (a, b, c, d ∈ [0, 1]).

Definition 2 [2]. The triple (X, M, ∗) is said to be a fuzzy metric space if X

is an arbitrary set, ∗ is a continuous t-norm and M is a fuzzy set on X2 × (0,∞)

satisfying the following conditions:

1. M(x, y, t) > 0,

2. M(x, y, t) = 1 if and only if x = y,

3. M(x, y, t) = M(y, x, t),

4. M(x, y, t) ∗ M(y, z, s) 6 M(x, z, t + s), x, y, z ∈ X and t, s > 0,

5. M(x, y, ·) : X2 × (0,∞) → [0, 1] is continuous, x, y, z ∈ X and t, s > 0.

R em a r k 1 [2]. M(x, y, t) can be thought of as the degree of nearness between

x and y with respect to t. We identify x = y with M(x, y, t) = 1, for t > 0 and

M(x, y, t) = 0 with x = ∞ or y = ∞.

R em a r k 2 [2]. In a fuzzy metric space (X, M, ∗), wheneverM(x, y, t) > 1−r for

x, y in X , t > 0, 0 < r < 1, we can find a t0, 0 < t0 < 1 such thatM(x, y, t0) > 1−r.

Definition 3 [4]. A sequence {xn} in a fuzzy metric space (X, M, ∗) is said to

be a Cauchy sequence if for each ε, 0 < ε < 1 and t > 0 there exists n0 ∈ N such
that M(xn, xm, t) > 1 − ε for all n, m > n0.

Definition 4 [2]. Let X(X, M, ∗) be a fuzzy metric space. We define the open

ball B(x, r, t) with centre x ∈ X and radius r, 0 < r < 1, t > 0 as

B(x, r, t) = {y ∈ X : M(x, y, t) > 1 − r}.

Definition 5 [4]. Let (X, M, ∗) be a fuzzy metric space. Define T = {A ⊂

X : x ∈ A if and only if there exist r, t > 0, 0 < r < 1 such that B(x, r, t) ⊂ A}.

Then T is topology on X . This topology is called the topology induced by the fuzzy

metric.

Then by Theorem 3.11 of (George and Veeramani 1994 [2]) we know that a se-

quence xn → x (xn converges to x) if and only if M(xn, x, t) → 1 as n → ∞.

Definition 6 [2]. A fuzzy metric space is said to be complete if every Cauchy

sequence is convergent.

N o t a t i o n. MA(x, y, t) denotes the degree of nearness between x and y with

respect to t when x, y ∈ A.
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3. Urysohn’s lemma and gluing lemma

Proposition 1 (Urysohn’s Lemma). Let (X, M, ∗) be a fuzzy metric space. Let

T be a topology on X induced by the fuzzy metric. Let A and B be distinct members

of r. Then there exists a fuzzy continuous function f : X → [0, 1] such that f = 0

on A and f = 1 on B.

P r o o f. Define a function f : X → [0, 1] by

f(x) =
1 − MA(x, x, t)

MB(x, x, t) − MA(x, x, t)
.

Note thatMB(x, x, t)−MA(x, x, t) 6= 0 for any x ∈ X . If x ∈ A,MA(x, x, t) = 1, then

f(x) = 0. If x ∈ B, MB(x, x, t) = 1, then f(x) = 1 − MA(x, x, t)/1 − MA(x, x, t) =

1. Since M(x, y, t) is fuzzy continuous (George and Veeramani 1994 [2]), f is fuzzy

continuous. �

Proposition 2 (Gluing Lemma). Let (X, M, ∗) and (Y, M, ∗) be two fuzzy metric

spaces. Let Ui, i ∈ I be members of fuzzy induced topology T on X such that
⋃

i∈I

Ui = X . Assume that there exists a fuzzy continuous function [3] fi : Ui → Y

for each i ∈ I with the property that fi(x) = fj(x) for all x ∈ Ui ∩ Uj and i, j ∈ I.

Then the function f : X → Y defined by f(x) = fi(x) if x ∈ Ui is well defined and

fuzzy continuous on X .

P r o o f. Let x, y ∈ X . Since fi is continuous for given r ∈ (0, 1), t > 0 we can find

r0 ∈ (0, 1), t/4 > 0 such thatM(x, y, t0) > 1−r0 impliesM(fi(x), fi(y), t/2) > 1−r.

Now M(x, y, t/4) > 1 − r0. Let x ∈ Ui, y ∈ Uj for some i 6= j. Let xi ∈ Ui ∩ Uj .

Then

M(f(x), f(y), t/2) > M(f(x), f(xi), t/4) ∗ M(f(xi), f(y), t/4)

= M(fi(x), fi(xi), t/4) ∗ M(fj(xi), fj(y), t/4)

> (1 − r) ∗ (1 − r) = 1 − r.

Therefore f is fuzzy continuous. �

181



4. Fuzzy contraction ∗ mapping

Definition 7. Let (X, M, ∗) be a fuzzy metric space. A function f : X → X is

called a fuzzy contraction∗ mapping ifM(x, y, t) > 1− (1− r2) for all 0 < 1− r2 < 1.

Then M(f(x), f(y), t) > 1 − (1 − r2
0) for each x, y ∈ X for some 1 − r2

0 < 1 − r2, 1.

E x am p l e 1. Consider the fuzzy metric space (R, M, ∗), where R is the set of all
real numbers and M(x, y, t) = t/(t + |x− y|). Let f : R → R and define f(x) = x/2.

Then M(x, y, t) = t/(t + |x − y|) > 1 − (1 − r2), t > 0, 0 < 1 − r2 < 1 where

1 − r2 > |x − y|/(t + |x − y|). Then

M(f(x), f(y), t) =
t

t + |(x/2) − (y/2)|

=
1 − (|(x/2) − (y/2)|)

t + |(x/2) − (y/2)|
> 1 − (1 − r2

0)

where

1 − r2
0 >

|(x/2) − (y/2)|

t + |(x/2) − (y/2)|
.

Further,

(1 − r2) − (1 − r2
0) >

|x − y|

t + |x − y|
−

(|(x/2) − (y/2)|)

t + |(x/2) − (y/2)|

>
|x − y|

t + |x − y|
−

1

2
|x − y|

t + 1

2
|x − y|

>
|x − y|(t + 1

2
|x − y|) − 1

2
|x − y|(t + |x − y|)

(t + |x − y|)(t + 1

2
|x − y|)

>
|x − y|t − 1

2
(|x − y|t)

(t + |x − y|)(t + 1

2
)|x − y|

>
(t/2)|x − y|

(t + |x − y|)(t + 1

2
)|x − y|

= 0,

which implies that f is a fuzzy contraction∗ by Definition 7.

Definition 8. A mapping from a fuzzy metric space X to a fuzzy metric space

Y is said to be fuzzy continuous∗ if for given 1− r2, t > 0, 0 < 1− r2 < 1 we can find

1−r2
0 ∈ (0, 1), t0 > 0 such thatM(x, y, t0) > 1−(1−r2

0) impliesM(f(x), f(y), t/2) >

1 − (1 − r2).
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Proposition 3. Every fuzzy contraction∗ mapping on a fuzzy metric space is

fuzzy continuous∗.

P r o o f. Let f : X → X be a fuzzy contraction∗ mapping. Therefore for x, y ∈

X , given 1 − r2 ∈ (0, 1), t > 0, we can find 1 − r2
0 ∈ (0, 1), t/4 > 0 such that

1 − r2 = (1 − (1 − r2
0)) ∗ (1 − (1 − r2

0)). Now M(x, y, t/4) > 1 − (1 − r2
0) implies

M(f(x), f(y), t/4) > 1− (1 − s2) > 1− (1− r2
0) where 1− s2 ∈ (0, (1− r2

0)) (since f

is a fuzzy contraction∗ mapping). Let x1 ∈ X . Then

M(f(x), f(y), t/2) > M(f(x), f(x1), t/4) ∗ M(f(x1), f(y), t/4)

> (1 − (1 − r2
0)) ∗ (1 − (1 − r2

0)) > (1 − (1 − r2), (1 − r2) ∈ (0, 1)

which implies that f is a fuzzy continuous∗ mapping. �

R em a r k 3. The converse need not be true as the following example shows.

E x am p l e 2. Consider the fuzzy metric space (R, M, ∗) [2] where R is the set of
all real numbers and

M(x, y, t) =
t

t + |x − y|
.

Let f : R → R and define f(x) = x2. Then

M(x, y, t) =
t

t + |x − y| > 1 − (1 − r2)

where (1 − r2) > |x − y|/(t + |x − y|). Then

M(f(x), f(y), t/2) =
(t/2)

(t/2) + |x2 − y2|
=

t

t + 2(|x2 − y2|)

> 1 − (1 − r2
0) where 1 − r2

0 >
2|x2 − y2|

t + 2(|x2 − y2|)

which implies that f is a fuzzy continuous∗ mapping. However, M(f(x), f(y), t) =

t/(t + |x2 − y2|) > 1 − (1 − s2) where 1 − s2 > |x2 − y2|/(t + |x2 − y2|) since

(1 − s2) − (1 − r2) >
|x2 − y2|

t + |x2 − y2|
−

|x − y|

t + |x − y|

>
(t + |x − y|)|x2 − y2| − (t + |x2 − y2|)|x − y|

(t + |x2 − y2|)(t + |x − y|)

>
t(|x2 − y2| − |x − y|)

(t + |x2 − y2|)(t + |x − y|)

{

> 0 if x, y are integers

6 0 if x, y are not integers

and consequently, f is not a fuzzy contraction∗ mapping.
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Proposition 4. Every fuzzy contraction∗ mapping on a complete fuzzy metric

space [2] has a unique fixed point.

P r o o f. Let f be a fuzzy contraction∗ mapping on a complete fuzzy metric

space (X, M, ∗). �

Un i q u e n e s s part. If possible let x0 6= y0 be two fixed points of f . Then we

have

x0 = f1(x0) = f2(x0) = f3(x0) = . . . = fn(x0),

y0 = f1(y0) = f2(y0) = f3(y0) = . . . = fn(y0) for each n ∈ N.

Now

M(x0, y0, t) = M(fn(x0), f
n(y0)t) > 1 − (1 − r2)/kn

> M(x0, y0, t) (= 1 − (1 − r2))

where k > 1, a contradiction, hence x0 = y0. Therefore the fixed points are unique.

E x i s t e n c e p a r t. Let x1 = f(x0), x2 = f(x1), . . . , xn = f(xn−1) = fn−1(x1).

Then

M(xn, xn+1, t) = M(fn−1(x1), f
n−1(x2), t) > 1 − (1 − r2)/kn−1

> 1 −
1

1 − s2
for some

1

1 − s2
∈ (0, 1).

Therefore,

(A) M(xn, xn+1, t) > 1 −
1

1 − s2
.

For a given t′ = (m − n)t > 0, ε > 0, choose n0 such that 1/n0 < ε. Then for

m > n > n0,

M(xn, xm, t′) > M(xn, xn+1, t) ∗ M(xn+1, xn+2, t) ∗ . . . ∗ M(xm−1, xm, t)

>
(

1 − (1 − s2)−1
)

∗
(

1 − (1 − s2)−1
)

∗ . . . ∗
(

1 − (1 − s2)−1
)

> 1 −
1

n
for some

1

n
∈ (0, 1) > 1 − ε

and hence {xn} is a Cauchy sequence. Since X is a complete metric space, this

sequence converges to, say, z0 ∈ X . Now we assert that z0 is a fixed point of f .

Consider n ∈ N for 0 < 1 − r2 < 1, t > 0. Then we have

M(f(z0), z0, t) > M(f(z0), f(x0), t/n + 1) ∗ M(f(x0), f
2(x0), t/n + 1) ∗ . . .

∗ M(fn(x0), z0, t/n + 1),
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and since f is a fuzzy contraction∗ mapping, this is for k > 1 and 1/(1− s2
n) ∈ (0, 1)

greater than or equal to

(1 − (1 − s2
n)) ∗ (1 − (1 − r2)) ∗ (1 − (1 − r2)/k) ∗ . . .

∗ (1 − (1 − r2)/kn−1) ∗ M(fn(x0), z0, t/n + 1)

> (1 − (1 − r2)/kn+p) ∗ M(fn(x0), z0, t/n + 1)

for some p ∈ N. Taking limit on both sides as n → ∞ we obtain

lim
n→∞

M(f(z0), z0, t) > lim
n→∞

(1 − (1 − r2)/kn+p) ∗ lim
n→∞

M(fn(x0), z0, t/n + 1)

⇒ M(f(z0), z0, t) > 1 ∗ 1 ⇒ f(z0) = z0.

A c k n ow l e d g em e n t . The authors thank the referee for his/her comments

and suggestions.
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