URYSOHN'S LEMMA, GLUING LEMMA AND CONTRACTION* MAPPING THEOREM FOR FUZZY METRIC SPACES

E. ROJA, M. K. UMA, Salem, G. BALASUBRAMANIAN, Chennai

(Received November 11, 2006)

Abstract. In this paper the concept of a fuzzy contraction^{*} mapping on a fuzzy metric space is introduced and it is proved that every fuzzy contraction^{*} mapping on a complete fuzzy metric space has a unique fixed point.

 $Keywords:\ fuzzy\ contraction\ mapping,\ fuzzy\ continuous\ mapping$

 $MSC \ 2000 \colon \ 54A40, \ 03E72$

1. INTRODUCTION

The theory of fuzzy sets was introduced by Zadeh in 1965 [7]. Since then many authors (Zi-ke 1982 [8], Erceg 1979 [1], George and Veeramani 1994 [2], Kaleva and Seikkala 1984 [5]) have introduced the concept of a fuzzy metric space in different ways. In this paper we follow the definition of a metric space given by George and Veeramani [2] since the topology induced by the fuzzy metric according to the definition of George and Veeramani [2] is Hausdorff. Motivated by the concept of a metric space, Urysohn's lemma and gluing lemma are studied. Based on the concept of a fuzzy contraction mapping [6], the fuzzy contraction^{*} mapping theorem is established.

2. Preliminaries

Definition 1 [4]. A binary operation $*: [0,1] \times [0,1] \rightarrow [0,1]$ is a continuous *t*-norm if * satisfies the following conditions:

- 1. * is associative and commutative,
- 2. * is continuous,

- 3. a * 1 = a for all $a \in [0, 1]$,
- 4. $a * b \leq c * d$ whenever $a \leq c$ and $b \leq d$, $(a, b, c, d \in [0, 1])$.

Definition 2 [2]. The triple (X, M, *) is said to be a fuzzy metric space if X is an arbitrary set, * is a continuous t-norm and M is a fuzzy set on $X^2 \times (0, \infty)$ satisfying the following conditions:

- 1. M(x, y, t) > 0,
- 2. M(x, y, t) = 1 if and only if x = y,
- 3. M(x, y, t) = M(y, x, t),
- 4. $M(x, y, t) * M(y, z, s) \leq M(x, z, t + s), x, y, z \in X$ and t, s > 0,
- 5. $M(x, y, \cdot): X^2 \times (0, \infty) \to [0, 1]$ is continuous, $x, y, z \in X$ and t, s > 0.

Remark 1 [2]. M(x, y, t) can be thought of as the degree of nearness between x and y with respect to t. We identify x = y with M(x, y, t) = 1, for t > 0 and M(x, y, t) = 0 with $x = \infty$ or $y = \infty$.

R e m a r k 2 [2]. In a fuzzy metric space (X, M, *), whenever M(x, y, t) > 1 - r for x, y in X, t > 0, 0 < r < 1, we can find a $t_0, 0 < t_0 < 1$ such that $M(x, y, t_0) > 1 - r$.

Definition 3 [4]. A sequence $\{x_n\}$ in a fuzzy metric space (X, M, *) is said to be a Cauchy sequence if for each ε , $0 < \varepsilon < 1$ and t > 0 there exists $n_0 \in \mathbb{N}$ such that $M(x_n, x_m, t) > 1 - \varepsilon$ for all $n, m \ge n_0$.

Definition 4 [2]. Let X(X, M, *) be a fuzzy metric space. We define the open ball B(x, r, t) with centre $x \in X$ and radius r, 0 < r < 1, t > 0 as

$$B(x, r, t) = \{ y \in X \colon M(x, y, t) > 1 - r \}.$$

Definition 5 [4]. Let (X, M, *) be a fuzzy metric space. Define $T = \{A \subset X : x \in A \text{ if and only if there exist } r, t > 0, 0 < r < 1 \text{ such that } B(x, r, t) \subset A\}$. Then T is topology on X. This topology is called the topology induced by the fuzzy metric.

Then by Theorem 3.11 of (George and Veeramani 1994 [2]) we know that a sequence $x_n \to x$ (x_n converges to x) if and only if $M(x_n, x, t) \to 1$ as $n \to \infty$.

Definition 6 [2]. A fuzzy metric space is said to be complete if every Cauchy sequence is convergent.

Notation. $M_A(x, y, t)$ denotes the degree of nearness between x and y with respect to t when $x, y \in A$.

3. URYSOHN'S LEMMA AND GLUING LEMMA

Proposition 1 (Urysohn's Lemma). Let (X, M, *) be a fuzzy metric space. Let T be a topology on X induced by the fuzzy metric. Let A and B be distinct members of r. Then there exists a fuzzy continuous function $f: X \to [0, 1]$ such that f = 0 on A and f = 1 on B.

Proof. Define a function $f: X \to [0, 1]$ by

$$f(x) = \frac{1 - M_A(x, x, t)}{M_B(x, x, t) - M_A(x, x, t)}$$

Note that $M_B(x, x, t) - M_A(x, x, t) \neq 0$ for any $x \in X$. If $x \in A$, $M_A(x, x, t) = 1$, then f(x) = 0. If $x \in B$, $M_B(x, x, t) = 1$, then $f(x) = 1 - M_A(x, x, t)/1 - M_A(x, x, t) = 1$. Since M(x, y, t) is fuzzy continuous (George and Veeramani 1994 [2]), f is fuzzy continuous.

Proposition 2 (Gluing Lemma). Let (X, M, *) and (Y, M, *) be two fuzzy metric spaces. Let U_i , $i \in I$ be members of fuzzy induced topology T on X such that $\bigcup_{i \in I} U_i = X$. Assume that there exists a fuzzy continuous function [3] $f_i: U_i \to Y$ for each $i \in I$ with the property that $f_i(x) = f_j(x)$ for all $x \in U_i \cap U_j$ and $i, j \in I$. Then the function $f: X \to Y$ defined by $f(x) = f_i(x)$ if $x \in U_i$ is well defined and fuzzy continuous on X.

Proof. Let $x, y \in X$. Since f_i is continuous for given $r \in (0, 1), t > 0$ we can find $r_0 \in (0, 1), t/4 > 0$ such that $M(x, y, t_0) > 1 - r_0$ implies $M(f_i(x), f_i(y), t/2) > 1 - r$. Now $M(x, y, t/4) > 1 - r_0$. Let $x \in U_i, y \in U_j$ for some $i \neq j$. Let $x_i \in U_i \cap U_j$. Then

$$\begin{split} M(f(x), f(y), t/2) &> M(f(x), f(x_i), t/4) * M(f(x_i), f(y), t/4) \\ &= M(f_i(x), f_i(x_i), t/4) * M(f_j(x_i), f_j(y), t/4) \\ &> (1-r) * (1-r) = 1-r. \end{split}$$

Therefore f is fuzzy continuous.

4. Fuzzy contraction * mapping

Definition 7. Let (X, M, *) be a fuzzy metric space. A function $f: X \to X$ is called a fuzzy contraction^{*} mapping if $M(x, y, t) \ge 1 - (1 - r^2)$ for all $0 < 1 - r^2 < 1$. Then $M(f(x), f(y), t) \ge 1 - (1 - r_0^2)$ for each $x, y \in X$ for some $1 - r_0^2 < 1 - r^2$, 1.

Example 1. Consider the fuzzy metric space $(\mathbb{R}, M, *)$, where \mathbb{R} is the set of all real numbers and M(x, y, t) = t/(t + |x - y|). Let $f \colon \mathbb{R} \to \mathbb{R}$ and define f(x) = x/2. Then $M(x, y, t) = t/(t + |x - y|) \ge 1 - (1 - r^2)$, t > 0, $0 < 1 - r^2 < 1$ where $1 - r^2 \ge |x - y|/(t + |x - y|)$. Then

$$M(f(x), f(y), t) = \frac{t}{t + |(x/2) - (y/2)|}$$

= $\frac{1 - (|(x/2) - (y/2)|)}{t + |(x/2) - (y/2)|} \ge 1 - (1 - r_0^2)$

where

$$1 - r_0^2 \ge \frac{|(x/2) - (y/2)|}{t + |(x/2) - (y/2)|}.$$

Further,

$$\begin{split} (1-r^2) - (1-r_0^2) &\geqslant \frac{|x-y|}{t+|x-y|} - \frac{(|(x/2) - (y/2)|)}{t+|(x/2) - (y/2)|} \\ &\geqslant \frac{|x-y|}{t+|x-y|} - \frac{\frac{1}{2}|x-y|}{t+\frac{1}{2}|x-y|} \\ &\geqslant \frac{|x-y|(t+\frac{1}{2}|x-y|) - \frac{1}{2}|x-y|(t+|x-y|)}{(t+|x-y|)(t+\frac{1}{2}|x-y|)} \\ &\geqslant \frac{|x-y|(t-\frac{1}{2}(|x-y|) + \frac{1}{2}|x-y|)}{(t+|x-y|)(t+\frac{1}{2})|x-y|} \\ &\geqslant \frac{(t/2)|x-y|}{(t+|x-y|)(t+\frac{1}{2})|x-y|} = 0, \end{split}$$

which implies that f is a fuzzy contraction^{*} by Definition 7.

Definition 8. A mapping from a fuzzy metric space X to a fuzzy metric space Y is said to be fuzzy continuous^{*} if for given $1 - r^2$, t > 0, $0 < 1 - r^2 < 1$ we can find $1 - r_0^2 \in (0, 1)$, $t_0 > 0$ such that $M(x, y, t_0) > 1 - (1 - r_0^2)$ implies $M(f(x), f(y), t/2) > 1 - (1 - r^2)$.

Proposition 3. Every fuzzy contraction^{*} mapping on a fuzzy metric space is fuzzy continuous^{*}.

Proof. Let $f: X \to X$ be a fuzzy contraction^{*} mapping. Therefore for $x, y \in X$, given $1 - r^2 \in (0, 1), t > 0$, we can find $1 - r_0^2 \in (0, 1), t/4 > 0$ such that $1 - r^2 = (1 - (1 - r_0^2)) * (1 - (1 - r_0^2))$. Now $M(x, y, t/4) > 1 - (1 - r_0^2)$ implies $M(f(x), f(y), t/4) > 1 - (1 - s^2) > 1 - (1 - r_0^2)$ where $1 - s^2 \in (0, (1 - r_0^2))$ (since f is a fuzzy contraction^{*} mapping). Let $x_1 \in X$. Then

$$\begin{split} M(f(x), f(y), t/2) &> M(f(x), f(x_1), t/4) * M(f(x_1), f(y), t/4) \\ &> (1 - (1 - r_0^2)) * (1 - (1 - r_0^2)) > (1 - (1 - r^2), (1 - r^2) \in (0, 1)) \end{split}$$

which implies that f is a fuzzy continuous^{*} mapping.

Remark 3. The converse need not be true as the following example shows.

E x a m p l e 2. Consider the fuzzy metric space $(\mathbb{R}, M, *)$ [2] where \mathbb{R} is the set of all real numbers and

$$M(x, y, t) = \frac{t}{t + |x - y|}$$

Let $f: \mathbb{R} \to \mathbb{R}$ and define $f(x) = x^2$. Then

$$M(x, y, t) = \frac{t}{t + |x - y| \ge 1 - (1 - r^2)}$$

where $(1 - r^2) \ge |x - y|/(t + |x - y|)$. Then

$$\begin{split} M(f(x), f(y), t/2) &= \frac{(t/2)}{(t/2) + |x^2 - y^2|} = \frac{t}{t + 2(|x^2 - y^2|)} \\ &\geqslant 1 - (1 - r_0^2) \text{ where } 1 - r_0^2 \geqslant \frac{2|x^2 - y^2|}{t + 2(|x^2 - y^2|)} \end{split}$$

which implies that f is a fuzzy continuous^{*} mapping. However, $M(f(x), f(y), t) = t/(t + |x^2 - y^2|) \ge 1 - (1 - s^2)$ where $1 - s^2 \ge |x^2 - y^2|/(t + |x^2 - y^2|)$ since

$$\begin{aligned} (1-s^2) - (1-r^2) &\ge \frac{|x^2 - y^2|}{t + |x^2 - y^2|} - \frac{|x - y|}{t + |x - y|} \\ &\ge \frac{(t + |x - y|)|x^2 - y^2| - (t + |x^2 - y^2|)|x - y|}{(t + |x^2 - y^2|)(t + |x - y|)} \\ &\ge \frac{t(|x^2 - y^2| - |x - y|)}{(t + |x^2 - y^2|)(t + |x - y|)} \begin{cases} &\ge 0 \text{ if } x, y \text{ are integers} \\ &\leqslant 0 \text{ if } x, y \text{ are not integers} \end{cases} \end{aligned}$$

and consequently, f is not a fuzzy contraction^{*} mapping.

Proposition 4. Every fuzzy contraction^{*} mapping on a complete fuzzy metric space [2] has a unique fixed point.

Proof. Let f be a fuzzy contraction^{*} mapping on a complete fuzzy metric space (X, M, *).

 $\operatorname{Uniqueness}$ part. If possible let $x_0\neq y_0$ be two fixed points of f. Then we have

$$\begin{aligned} x_0 &= f^1(x_0) = f^2(x_0) = f^3(x_0) = \dots = f^n(x_0), \\ y_0 &= f^1(y_0) = f^2(y_0) = f^3(y_0) = \dots = f^n(y_0) & \text{for each } n \in \mathbb{N}. \end{aligned}$$

Now

$$M(x_0, y_0, t) = M(f^n(x_0), f^n(y_0)t) \ge 1 - (1 - r^2)/k^n$$

> $M(x_0, y_0, t) \ (= 1 - (1 - r^2))$

where k > 1, a contradiction, hence $x_0 = y_0$. Therefore the fixed points are unique.

Existence part. Let $x_1 = f(x_0), x_2 = f(x_1), \dots, x_n = f(x_{n-1}) = f^{n-1}(x_1)$. Then

$$M(x_n, x_{n+1}, t) = M(f^{n-1}(x_1), f^{n-1}(x_2), t) \ge 1 - (1 - r^2)/k^{n-1}$$
$$\ge 1 - \frac{1}{1 - s^2} \quad \text{for some } \frac{1}{1 - s^2} \in (0, 1).$$

Therefore,

(A)
$$M(x_n, x_{n+1}, t) \ge 1 - \frac{1}{1 - s^2}$$

For a given t' = (m - n)t > 0, $\varepsilon > 0$, choose n_0 such that $1/n_0 < \varepsilon$. Then for $m \ge n \ge n_0$,

$$M(x_n, x_m, t') \ge M(x_n, x_{n+1}, t) * M(x_{n+1}, x_{n+2}, t) * \dots * M(x_{m-1}, x_m, t)$$

$$\ge (1 - (1 - s^2)^{-1}) * (1 - (1 - s^2)^{-1}) * \dots * (1 - (1 - s^2)^{-1})$$

$$\ge 1 - \frac{1}{n} \quad \text{for some } \frac{1}{n} \in (0, 1) \ge 1 - \varepsilon$$

and hence $\{x_n\}$ is a Cauchy sequence. Since X is a complete metric space, this sequence converges to, say, $z_0 \in X$. Now we assert that z_0 is a fixed point of f. Consider $n \in \mathbb{N}$ for $0 < 1 - r^2 < 1$, t > 0. Then we have

$$M(f(z_0), z_0, t) \ge M(f(z_0), f(x_0), t/n + 1) * M(f(x_0), f^2(x_0), t/n + 1) * \dots$$

* $M(f^n(x_0), z_0, t/n + 1),$

184

and since f is a fuzzy contraction^{*} mapping, this is for k > 1 and $1/(1 - s_n^2) \in (0, 1)$ greater than or equal to

$$(1 - (1 - s_n^2)) * (1 - (1 - r^2)) * (1 - (1 - r^2)/k) * \dots$$

* $(1 - (1 - r^2)/k^{n-1}) * M(f^n(x_0), z_0, t/n + 1)$
 $\ge (1 - (1 - r^2)/k^{n+p}) * M(f^n(x_0), z_0, t/n + 1)$

for some $p \in \mathbb{N}$. Taking limit on both sides as $n \to \infty$ we obtain

$$\lim_{n \to \infty} M(f(z_0), z_0, t) \ge \lim_{n \to \infty} (1 - (1 - r^2)/k^{n+p}) * \lim_{n \to \infty} M(f^n(x_0), z_0, t/n + 1)$$

$$\Rightarrow M(f(z_0), z_0, t) \ge 1 * 1 \Rightarrow f(z_0) = z_0.$$

A c k n o w l e d g e m e n t. The authors thank the referee for his/her comments and suggestions.

References

- [1] M. A. Erceg: Metric spaces in fuzzy set theory. J. Math. Anal. Appl. 69 (1979), 205–230. zbl
- [2] A. George, P. Veeramani: On some results in fuzzy metric spaces. Fuzzy Sets Syst. 64 (1994), 395–399.
- [3] A. George, P. Veeramani: Some theorems in fuzzy metric spaces. J. Fuzzy Math. 3 (1995), 933–940.
- [4] A. George, P. Veeramani: On some results of analysis for fuzzy metric spaces. Fuzzy Sets Syst. 90 (1997), 365–368.
- [5] O. Kaleva, S. Seikkala: On fuzzy metric spaces. Fuzzy Sets Syst. 12 (1984), 215–229. zbl
- [6] G. Rajendran, G. Balasubramanian: Fuzzy contraction mapping theorem for fuzzy metric spaces. Bull. Calcutta Math. Soc. 94 (2002), 453–458.
- [7] L. A. Zadeh: Fuzzy sets. Inform and Control 8 (1965), 338–353.
- [8] Zi-Ke, Deng: Fuzzy pseudo metric spaces. J. Math. Anal. Appl. 86 (1982), 74–95.

Authors' addresses: E. Roja, M. K. Uma, Department of Mathematics, Sri Sarada College for Women, Salem-636 016, Tamilnadu, Indie, e-mail: rpbalan@sancharnet.in; G. Balasubramanian, Ramanujan Institute for Advanced Study in Mathematics, University of Madras, Chennai-600 005, Tamilnadu, Indie.

 \mathbf{zbl}

 $\frac{\mathrm{zbl}}{\mathrm{zbl}}$