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Abstract. We consider the half-linear second order differential equation which is viewed
as a perturbation of the so-called Riemann-Weber half-linear differential equation. We
present a comparison theorem with respect to the power of the half-linearity in the equation
under consideration. Our research is motivated by the recent results published by J. Sugie,
N.Yamaoka, Acta Math. Hungar. 111 (2006), 165–179.
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1. Introduction

The oscillation theory of half-linear second order differential equations

(1) (r(t)Φα(x′))′ + c(t)Φα(x) = 0, Φα(x) := |x|α−1x, α > 0,

has attracted considerable attention in the recent years, let us mention at least the

books [1], [4] and the references given therein. It was shown that the linear Sturmian

theory extends directly to (1) and hence this equation can be classified as oscillatory

or nonoscillatory similarly to the linear case. Elbert and Mirzov with their papers

[5] and [9] are usually regarded as pioneers of the half-linear oscillation theory.
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In the majority of oscillation criteria for (1), this equation is regarded as a per-

turbation of the (nonoscillatory) one term equation

(r(t)Φα(x′))′ = 0

and (non)oscillation criteria for (1) are formulated in terms of the asymptotic be-

havior of the function c with respect to the function r. Roughly speaking, if the

function c is “sufficiently positive” (“not too positive”) with respect to the func-

tion r, equation (1) becomes oscillatory (remains nonoscillatory). A more general

approach consists in regarding (1) as a perturbation of the equation of the same form

(2) (r(t)Φα(x′))′ + c̃(t)Φα(x) = 0

and formulating conditions for (non)oscillation in terms of the asymptotic behavior

of the function (c − c̃)hα+1, where h is a certain distinguished solution of (2); we

refer to [4, Sec. 5.2] and [3] for more details. This approach was used for the first

time in the paper of Elbert [6], where (1) with r(t) ≡ 1 is viewed as a perturbation

of the half-linear Euler equation with the critical coefficient

(3) (Φα(x′))′ + ΓαΦα(x) = 0, Γα :=
( α

α + 1

)α+1

.

The half-linear version of the classical Sturmian comparison theorem concerns a

pair of equations (1) and

(4) (R(t)Φα(x′))′ + C(t)Φα(x) = 0

and states that under the inequalities

0 < R(t) 6 r(t), c(t) 6 C(t)

(4) oscillates faster than equation (1). More precisely, between any two consecutive

zeros of a nontrivial solution of (1) there is at least one zero of any nontrivial solution

of (4). In our paper we are concerned with another type of comparison theorems,

namely, with respect to the power α in (1). The basic statement along this line is

established in [11] (in a more general setting of dynamic equations on time scales).

Under some additional assumptions (which are trivially satisfied for r(t) ≡ 1 as

treated later in this paper), it states that if β > α and (1) is oscillatory, then the

equation

(r(t)Φβ(x′))′ + c(t)Φβ(x) = 0

is also oscillatory.
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In our paper we are motivated by the results presented in the paper [13], where

the equation

(5) (Φα(x′))′ +
1

tα+1
[Γα + γαδ(t)] Φα(x) = 0, γα :=

( α

α + 1

)α

,

is compared with the equation of the same form, but with α replaced by β. We will

recall the results of [13] in more detail in the next section. We are also motivated by

the results of [2] where the equation

(6) (Φα(x′))′ +
[ Γα

tα+1
+

γα

2tα+1 lg2 t
+ c(t)

]
Φα(x) = 0

is viewed as a perturbation of the half-linear Riemann-Weber equation (sometimes

called the Euler-Weber equation)

(7) (Φα(x′))′ +
1

tα+1

[
Γα +

γα

2tα+1 lg2 t

]
Φα(x) = 0.

As the main result of our paper, we present a comparison theorem with respect to

α for equation (6).

2. Auxiliary results

First we turn our attention to Euler and Riemann-Weber half-linear differential

equations which are treated in detail in the paper of Elbert and Schneider [8]. The

half-linear Euler equation

(8) (Φα(x′))′ +
λ

tα+1
Φα(x) = 0

is oscillatory if and only if λ > Γα and the half-linear Riemann-Weber equation (7)

with a parameter λ instead of γα is oscillatory if and only if λ > γα.

The transformation of the independent variable x(t) = y(s), s = lg t, transforms

equation (6) to the equation

(9) (Φα(ẏ))̇ − αΦα(ẏ) +
[
Γα +

γα

2s2
+ c(es)

]
Φα(y) = 0, ˙=

d

ds

and the function v = Φα(ẏ/y) is a solution of the Riccati type differential equation

(10) v̇ +
γα

2s2
c(es) + Hα(v) = 0,

where

Hα(v) = α
[
|v|(α+1)/α − v +

1

α + 1

( α

α + 1

)α]
.

The following lemma plays an important role in our investigation; its proof can be

found e.g. in [4, Theorem 2.2.1].
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Lemma 1. Equation (9) is nonoscillatory if and only if there exists a continuously

differentiable function v which satisfies the Riccati inequality

(11) v̇ +
γα

2s2
c(es) + Hα(v) 6 0

for large s.

We will also need the following statement concerning asymptotics of solutions of

Riccati inequalities. It is taken from [12].

Lemma 2. Suppose that a differentiable function ξ satisfies the inequality

(12) ξ̇(s) + Hα(ξ(s)) 6 0 for large t.

Then ξ is nonincreasing and tends to γα as s → ∞.

Now we recall the concept of the principal solution of a nonoscillatory half-linear

equation and the concept of the minimal solution of the associated Riccati equation

(13) w′ + c(t) + α(r(t))−1/α|w|(α+1)/α = 0

as introduced in [10] and later independently in [7]. Nonoscillation of (1) implies that

there exists a solution of (13) which is defined on some interval [T,∞) and among

all such solutions there exists a minimal one w̃, minimal in the sense that any other

solution of (13) satisfies w(t) > w̃(t) for large t. The principal solution of (1) is then

defined as the associated solution of (1), i.e., it is given by the formula

x̃(t) = exp

{∫ t

Φ−1
α

( w̃(s)

r(s)

)
ds

}
,

where Φ−1
α is the inverse function of Φα.

The next statement is the comparison theorem for minimal solutions of a pair of

Riccati equations. Its proof can be found in [7], see also [4, Theorem 4.2.2].

Lemma 3. Consider the pair of half-linear equations (1), (2). Let c̃(t) > c(t) for

large t, suppose that (2) is nonoscillatory and denote by w̃, ũ the minimal solutions

of (13) and of

u′ + c̃(t) + α(r(t))−1/α|u|(α+1)/α = 0,

respectively. Then ũ(t) > w̃(t) for large t.

We conclude this section with the main results of [13] which served as motivation

for our paper. In these statements, δ(t) is a continuous function which is positive for

large t.
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Proposition 1. Let 0 < α < β.

(i) If equation (5) is nonoscillatory, then the equation

(14) (Φβ(x′))′ +
1

tβ+1
[Γβ + γβδ(t)] Φβ(x) = 0

is also nonoscillatory.

(ii) If the equation

(15) (Φβ(x′))′ +
1

tβ+1
[Γβ + νδ(t)] Φβ(x) = 0

is nonoscillatory for some ν > γβ, then (5) is also nonoscillatory.

3. A power comparison theorem

In this section we present the main result of our paper—a comparison theorem

with respect to the power α in the perturbed Riemann-Weber half-linear differential

equation.

Theorem 1. Let 0 < α < β and suppose that the equation

(16) (Φβ (x′))
′

+
1

tβ+1

[
Γβ +

γβ

2 lg2 t
+ νδ(t)

]
Φβ (x) = 0

is nonoscillatory for some ν > γβ . Then the equation

(17) (Φα (x′))
′

+
1

tα+1

[
Γα +

µ

lg2 t
+ γαδ(t)

]
Φα (x) = 0

is nonoscillatory for

µ < µ∗ :=
γα(2γβν − γ2

β)

2ν2
.

P r o o f. The transformation of the independent variable x(t) = y(s), s = lg t,

transforms (17) and (16) to the equations

(18) (Φβ(ẏ))˙− βΦβ(ẏ) +
[
Γβ +

γβ

2s2
+ νδ(es)

]
Φβ (y) = 0

and

(19) (Φα(ẏ))˙− αΦα(ẏ) +
[
Γα +

µ

s2
+ γαδ(es)

]
Φα (y) = 0.
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The Riccati equation associated with (18) is (with ξ = Φβ(ẏ/y))

(20) ξ̇ + Hβ(ξ) +
γβ

2s2
+ νδ(es) = 0,

where

Hβ(ξ) = β
[
|ξ|

(β+1)/β
− ξ +

1

β + 1

( β

β + 1

)β]
.

We will show that solvability of (20) for large s, which is equivalent to nonoscillation

of (17), implies solvability of the Riccati inequality

(21) η̇ + Hα(η) +
µ

s2
+ γαδ(es) 6 0

provided µ < µ∗. Hence, suppose that µ < µ∗ and denote

ε =
2ν2(µ∗ − µ)

γαγβ(ν − γβ)
.

There exist ε1 > 0, ε2 > 0 such that (1 − ε1) (1 − ε2)
2

= 1 − ε. Denote further

ε̂ =
ε1(ν − γβ)

2γαγβ
, ε̃ = ε2γβ , c =

ν

γα

and consider the function η(s) = (ξ (s) + ν − γβ)/c. We will show that this function

satisfies inequality (21). We have ξ = cη − ν + γβ and hence

η̇ =
1

c
ξ̇ = −

1

c

[ γβ

2s2
+ Hβ(cη − ν + γβ) + νδ(es)

]

= −
γαγβ

2νs2
− γαδ(es) − Hα(η) −

1

c
Hβ(cη − ν + γβ) + Hα(η).

We will estimate the last two terms in the previous computation as follows. Denote

F (η) :=
1

c
Hβ(cη − ν + γβ) − Hα(η).

Then by a direct computation we have (see also [13])

F (γα) = 0 = F ′(γα) and F ′′(γα) =
ν − γb

γαγβ
.

Hence,

1

c
Hβ(cη − ν + γβ) − Hα(η) >

(ν − γβ

2γαγβ
− ε̂

)
(η − γα)2(22)

=
ν − γβ

2γαγβ
(1 − ε1) (η − γα)

2
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for large s since η(s) → γα as s → ∞. Next we estimate the difference η−γα. To this

end, we estimate the difference ξ − γβ . By Lemma 2 we have ξ(s) ց γβ as s → ∞

and the comparison theorem for minimal solutions of Riccati equations (Lemma 3)

yields ξ (s) > u (s) for large s, where u is the minimal solution of the equation

u̇ + Hβ(u) +
γβ

2s2
= 0.

We have u (s) = (ż (s) /z (s))
β
, where z is the principal solution of the equation

(Φβ(ż))˙− βΦβ(ż) +
[
Γβ +

γβ

2s2

]
Φβ (y) = 0

and it is known (see [8]) that

u (s) = γβ +
γβ

s
+ o

(1

s

)
as s → ∞.

Hence

ξ (s) − γβ > u (s) − γβ >
γβ − ε̃

s
=

γβ

s
(1 − ε2)

for large s. Consequently,

η − γα =
γα

ν
(ξ − γα) >

γαγβ

νs

(
1 −

ε̃

γβ

)
=

γαγβ

νs
(1 − ε2) .

Using this estimate and (22) we obtain

1

c
Hβ(cη − ν + γβ) − Hα(η) >

ν − γβ

2γαγβ
(1 − ε1)

γ2
αγ2

β

ν2s2
(1 − ε2)

2

=
(ν − γβ) γαγβ

2ν2s2
(1 − ε)

for large s.

Therefore,

η̇ = −γαδ(es) −
γαγβ

2νs2
− Hα(η) −

1

c
Hβ(cη − ν + γβ) + Hα(η)

< −γαδ(es) − Hα(η) −
1

s2

γαγβ

2ν

[
1 +

ν − γβ

ν
(1 − ε)

]

= −γαδ(es) − Hα(η) −
1

s2

γαγβ

2ν

2ν − γβ − ε (ν − γβ)

ν

= −γαδ(es) − Hα(η) −
γαγβ

2ν

2ν − γβ

s2
+

ε (ν − γβ) γαγβ

2ν2s2

= −γαδ(es) − Hα(η) −
µ∗ + (µ − µ∗)

s2

= −γαδ(es) − Hα(η) −
µ

s2
,

and hence η really satisfies (21) which means that (19) and so also (16) are nonoscil-

latory. �
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4. Remarks

(i) Part (i) of Proposition 1 can be directly extended to a more general situation

than that treated in Theorem 1. Consider the half-linear differential equation

L(α)
n (x) := (Φα(x′))

′

+
1

tα+1

[
Γα +

γα

2

n∑

k=1

1

lg2
1 t lg2

2 t . . . lg2
k t

]
Φα(x) = 0,

where lg1 t = lg t, lgk+1 t = lg(lgk t). The Euler equation (3) and the Riemann-Weber

equation (7) are special cases of (4) with n = 0 and n = 1, respectively. It is konwn

that the equation L
(α)
n (x) = 0 is nonoscillatory and that the constants Γα and

1
2γα

are optimal in the sense that if we repalce one of them by a greater constant, then

the equation becomes oscillatory. Based on this observation, part (i) of Proposition 1

can be reformulated as follows.

Let 0 < α < β and consider the pair of equations

L(α)
n (x) + γαδ(t)Φα(x) = 0,(23)

L(β)
n (x) + γβδ(t)Φβ(x) = 0,(24)

where δ is a nonnegative function. If equation (23) is nonoscillatory, then (24) is also

nonoscillatory.

The proof of this statement easily follows from Proposition 1 (i) since (23) can be

written in the form

(Φα(x′))
′

+
1

tα+1
[Γα + γαδ̃(t)]Φα(x) = 0,

where

δ̃(t) =
1

2

n∑

k=1

1

lg2
1 lg2

2 . . . lg2
k t

+ δ(t),

and equation (24) can be rewritten in the same way.

(ii) An important part of the proof of Theorem 1 is the estimate ξ(s) − γβ =

γβ/s + o(s−2) which we have used for the asymptotic formula

(25)
1

c
Hβ(cη(s) − ν + γβ) − Hα(η(s)) =

ε(ν − γβ)γαγβ

2ν2s2
+ o(s−2)

as s → ∞. If we do apply this asymptotic formula and use the mere fact that

the left-hand side of (25) is nonnegative (similarly as in [13]), we may reformulate

Theorem 1 as follows:
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Let 0 < α < β and suppose that the equation

L(β)
n (x) + νδΦβ(x) = 0

is nonoscillatory for some ν > γβ. Then the equation

L(α)
n (x) +

[ γα(γβ − ν)

2νtα+1 lg2 t
+ γαδ(t)

]
Φα(x) = 0

is also nonoscillatory.
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