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Abstract. A space X is C-starcompact if for every open cover U of X, there exists a
countably compact subset C of X such that St(C,U) = X. In this paper we investigate the
relations between C-starcompact spaces and other related spaces, and also study topological
properties of C-starcompact spaces.
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1. Introduction

By a space we mean a topological space. Let us recall that a space X is countably
compact if every countable open cover of X has a finite subcover. Fleischman [4]

defined a space X to be starcompact if for every open cover U of X , there exists a
finite subset F ofX such that St(F,U) = X , where St(F,U) =

⋃{U ∈ U : U∩F �= ∅}
and he proved that every countably compact space is starcompact. Conversely,

van Douwen-Reed-Roscoe-Tree [1] proved that every Hausdorff starcompact space is
countably compact, but this does not hold for T1-spaces (see [7] Example 12). As

generalizations of starcompactness, the following classes of spaces were introduced:

Definition 1.1. A space X is C-starcompact if for every open cover U of X,

there exists a countably compact subset C of X such that St(C,U) = X.

Definition 1.2 ([3], [7], [10]). A space X is L-starcompact if for every open
cover U of X, there exists a Lindelöf subset L of X such that St(L,U) = X.
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Definition 1.3 ([5], [7], [9]). A space X is K-starcompact if for every open cover
U of X, there exists a compact subset K of X such that St(K,U) = X.

From the above definitions it is not difficult to see that every K-starcompact space
is C-starcompact and every K-starcompact space is L-starcompact. In the second
section, we show the relationships between these spaces by giving some examples.

The cardinality of a set A is denoted by |A|. Let ω be the first infinite cardinal,
ω1 the first uncountable cardinal and c the cardinality of the set of all real numbers.

As usual, a cardinal is the initial ordinal and an ordinal is the set of smaller ordinals.
For each ordinals α, β with α < β we write (α, β) = {γ : α < γ < β}, (α, β] =
{γ : α < γ � β} and [α, β] = {γ : α � γ � β}. Every cardinal is often viewed as a
space with the usual order topology. Other terms and symbols that we do not define

follow [2].

2. C-starcompact spaces and related spaces

In this section we give some examples showing the relations between C-starcompact
spaces and other related spaces. The symbol β(X) means the Čech-Stone compact-
ification of a Tychonoff space X .

E x am p l e 2.1. There exists an L-starcompact Tychonoff space which is not
C-starcompact (hence, not K-starcompact).
P r o o f. Let D be a discrete space of cardinality ω. Define

X = (β(D) × (ω + 1)) \ ((β(D) \ D) × {ω}).

Then X is L-starcompact, since β(D) × ω is a Lindelöf dense subset of X .

Next, we show that X is not C-starcompact. Since |D| = ω, we can enumerate D

as {dn : n ∈ ω}. Let us consider the open cover

U = {{dn} × [n, ω] : n ∈ ω} ∪ {(β(D) \ {m ∈ ω : m � n}) × {n} : n ∈ ω}

ofX . Let C be a countably compact subset ofX . Then {n ∈ ω : C∩({dn}×[n, ω]) �=
∅} is finite. Hence, there exists an n1 ∈ ω such that

(1) C ∩ ({dn} × [n, ω]) = ∅ for each n > n1.

On the other hand, {n ∈ ω : C ∩ ((β(D) \ {m ∈ ω : m � n}) × {n}) �= ∅} is finite,
since C is countably compact, Hence, there exists an n2 ∈ ω such that

(2) C ∩ ((β(D) \ {m ∈ ω : m � n}) × {n}) = ∅ for each n > n2.
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Choose n ∈ ω such that n > max{n1, n2}. Then {dn} × [n, ω] is the only element of
U containing the point 〈dn, ω〉 and ({dn} × [n, ω]) ∩C = ∅ by (1) and (2). It follows
that 〈dn, ω〉 /∈ St(C,U), which shows that X is not C-starcompact. �

E x am p l e 2.2. There exists a C-starcompact Tychonoff space which is not L-
starcompact (hence, not K-starcompact).
P r o o f. Let X1 = c + 1 denote the usual order topology. Then X1 is compact.

Let X2 = c + 1. We topologize X2 as follows: for each α < c, α is isolated and a set
U containing c is open if and only if X \ U is finite. Then X2 is compact. Let

X = (X1 × X2) \ {〈c, c〉}

be a subspace of the product of X1 and X2. Then X is C-starcompact, since c× X2

is a countably compact dense subset of X .

Now, we show that X is not L-starcompact. For each α < c, let Uα = (α, c]×{α}.
Then Uα ∩ Uα′ = ∅ for α �= α′. Let us consider the open cover

U = {Uα : α < c} ∪ {c × X2}

of X . Let L be a Lindelöf subset of X . Then Λ = {α : 〈c, α〉 ∈ L} is countable, since
{〈c, α〉 : α < c} is discrete and closed in X . Let L′ = L \ ⋃{Uα : α ∈ Λ}. If L′ = ∅,
then there exists an α0 < c such that L∩Uα0 = ∅, hence 〈c, α0〉 /∈ St(L,U), since Uα0

is the only element of U containing the point 〈c, α0〉. On the other hand, if L′ �= ∅,
since L′ is closed in L, L′ is Lindelöf and L′ ⊆ c × X2, hence π(L′) is a Lindelöf
subset of a countably compact space c, where π : c×X2 → c is the projection. Hence,

there exists α1 < c such that π(L′) ∩ (α1, c) = ∅. Choose α < c such that α > α1

and α /∈ Λ. Then 〈c, α〉 /∈ St(L,U), since Uα is the only element of U containing the
point 〈c, α〉 and Uα ∩ L = ∅, which shows that X is not L-starcompact. �

Recall from [7] that a space X is called 1 1
2 -starcompact if for every open cover

U of X there exists a finite subset V of U such that St(∪V ,U) = X. In [1], a 1 1
2 -

starcompact space is called 1-starcompact. From the above definitions, it is not
difficult to see that every K-starcompact space is 1 1

2 -starcompact. It is well-known
that every countably compact Lindelöf space is compact. The following example

shows that the result cannot be generalized to starcompact. For showing the example,
we need the following lemma from [7, Theorem 28].

Lemma 2.3. If a regular space X contains a discrete closed subspace Y such

that |X | = |Y | � ω, then X is not 1 1
2 -starcompact (hence, not K-starcompact).
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E x am p l e 2.4. There exists a C-starcompact and L-starcompact Tychonoff space
which is not K-starcompact.

P r o o f. Let S1 = (X1 × X2) \ {〈c, c〉} be the same space X as in Example 2.2.
Then S1 is not K-starcompact by Lemma 2.3.
Let S2 = ω ∪ R be the Isbell-Mrówka space [9], where R is a maximal almost

disjoint family of infinite subsets of ω with |R| = c. Then S2 is L-starcompact
because it is separable. However, S2 is not K-starcompact by Lemma 2.3.
Assume S1 ∩ S2 = ∅. Let ϕ : {c} × c → R be a bijection. Let X be the quotient

space obtained from the discrete sum S1⊕S2 by identifying the 〈c, α〉 and ϕ(〈c, α〉) for
each α < c. Let π : S1⊕S2 → X be the quotient map. Then X is not K-starcompact
by Lemma 2.3.

Now, we show that X is C-starcompact. Let U be an open cover of X . Since
π(c × X2) is a countably compact subset of π(S1), we have

π(S1) ⊆ St(π(c × X2),U).

On the other hand, since π(S2) is homeomorphic to S2, every infinite subset of

π(ω) has an accumulation point in π(S2). Hence, there exists a finite subset F1

of π(ω) such that π(ω) ⊆ St(F1,U). Indeed, if π(ω) � St(B,U) for any finite
subset B ⊆ π(ω), then, by induction, we can define a sequence {xn : n ∈ ω} in
π(ω) such that xn /∈ St({xi : i < n},U) for each n ∈ ω. By the property π(ω)
mentioned above, the sequence {xn : n ∈ ω} has a limit point x0 in π(S2). Pick
U ∈ U such that x0 ∈ U . Choose n < m < ω such that x ∈ U and xm ∈ U .

Then xm ∈ St({xi : i < n},U), which contradicts the definition of the sequence
{xn : n ∈ ω}. Let F = F1 ∪ π(β(D) × c). Then F is countably compact and

X = St(F,U). Hence, X is C-starcompact.
Next, we show that X is L-starcompact. Since π(ω) is a countable dense subset of

π(S2), we have π(S2) ⊆ St(π(ω),U). On the other hand, since π(c×X2) is countably
compact, there exists a finite subset F1 of π(c×X2) such that π(c×X2) ⊆ St(F1,U).
If we put L = π(ω)∪F1, then L is a countable subset of X and X = St(L,U), which
shows that X is L-starcompact. �

R em a r k 1. The author does not know if there exists a normal C-starcompact
and L-starcompact space which is not K-starcompact.
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3. Properties of C-starcompact spaces

In Example 2.2, the closed subset {c}× c of a Tychonoff C-starcompact space X is
not C-starcompact, which shows that a closed subset of a C-starcompact space need
not be C-starcompact. In the following, we show that a regular closed subspace of a
C-starcompact space need not be C-starcompact by using Example 2.4.

E x am p l e 3.1. There exists a C-starcompact Tychonoff space having a regular-
closed subset which is not C-starcompact.

P r o o f. Let X be the same space as the space X in the proof of Example 2.4.
As we proved above, X is C-starcompact. Since S2 = ω ∪ R is the Isbell-Mrówka
space, hence S2 is not K-starcompact by Lemma 2.3. By the construction of the
topology of S2, it is clear that every countably compact subset K of S2 is countable

and K ∩ R is finite, hence it is compact. Thus, S2 is not C-starcompact. So, ϕ[S2]
is a regular-closed subspace of X which is not C-starcompact, which completes the
proof. �

Since a continuous image of a countably compact space is countably compact, it
is not difficult to show the following result.

Theorem 3.2. A continuous image of an C-starcompact space is C-starcompact

Next, we turn to considering preimages. To show that the preimage of a C-
starcompact space under a closed 2-to-1 continuous map need not be C-starcompact,
we use the Alexandorff duplicate A(X) of a space X . The underlying set of A(X)
is X × {0, 1}; each point of X × {1} is isolated and a basic neighborhood of a point
〈x, 0〉 ∈ X × {0} is of the form (U × {0}) ∪ ((U × {1}) \ {〈x, 1〉}), where U is a

neighborhood of x in X .

E x am p l e 3.3. There exists a closed 2-to-1 continuous map f : X → Y such
that Y is a C-starcompact space, but X is not C-starcompact.

P r o o f. Let Y be the space X from the proof of Example 2.2. Then Y is

C-starcompact and has the infinite discrete closed subset {c+} × c. Let X be the
Alexandroff duplicate A(Y ) of Y . Then X is not C-starcompact, since F × {1} is
an infinite discrete, open and closed set in X . Let f : X → Y be the natural map.
Then f is a closed 2-to-1 continuous map, which completes the proof. �

Now, we give a positive result:
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Theorem 3.4. Let f be an open perfect map from a space X to a C-starcompact
space Y . Then X is C-starcompact.
P r o o f. Since f(X) is open and closed in Y , we may assume that f(X) = Y . Let

U be an open cover of X and let y ∈ Y . Since f−1(y) is compact, there exists a finite
subcollection Uy of U such that f−1(y) ⊆ ⋃Uy and U ∩ f−1(y) �= ∅ for each U ∈ Uy.

Pick an open neighborhood Vy of y in Y such that f−1(Vy) ⊆ ⋃{U : U ∈ Uy}; we
can assume that

(1) Vy ⊆
⋂

{f(U) : U ∈ Uy},

because f is open. Taking such an open set Vy for each y ∈ Y , we have an open cover
V = {Vy : y ∈ Y } of Y . Let C be a countably compact subset of the C-starcompact
space Y such that St(C,V) = Y . Since f is perfect, the set f−1(C) is a countably
compact subset of X . To show that St(f−1(C),V) = X , let x ∈ X . Then there

exists y ∈ Y such that f(x) ∈ Vy and Vy ∩ C �= ∅. Since

x ∈ f−1(Vy) ⊆
⋃

{U : U ∈ Uy},

we can choose U ∈ Uy with x ∈ U . Then Vy ⊆ f(U) by (1), and hence U∩f−1(C) �= ∅.
Therefore, x ∈ St(f−1(C),U). Consequently , we have that St(f−1(C),U) = X . �

By Theorem 3.4 we have the following corollary.

Corollary 3.5. Let X be a C-starcompact space and Y a compact space. Then

X × Y is C-starcompact.
In [1, Example 3.3.3], Song gave an example showing that the product of a count-

ably compact space X and a Lindelöf space Y is not L-starcompact. Now, we show
that the product X × Y is not C-starcompact:
E x am p l e 3.6. There exist a countably compact space X and a Lindelöf space

Y such that X × Y is not C-starcompact.
P r o o f. Let X = ω1 with the usual order topology. Let Y = ω1 + 1 with the

following topology: each point α with α < ω1 is isolated and a set U containing ω1

is open if and only if Y \ U is countable. Then X is countably compact and Y is

Lindelöf. Now, we show that X × Y is not C-starcompact. For each α < ω1, let
Uα = [0, α] × [α, ω1] and Vα = (α, ω1) × {α}. Consider the open cover

U = {Uα : α < ω1} ∪ {Vα : α < ω1}

of X×Y and let C be a countably compact subset of X×Y . Then πY (C∩(ω1×ω1))
is a countably compact subset of Y , where πY : X × Y → Y is the projection. By
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the definition of the topology of Y , we have that πY (C ∩ (ω1 × ω1)) is finite, thus
there exists β < ω1 such that

π(C ∩ (ω1 × ω1)) ∩ (β, ω1) = ∅.

Pick α0 > β. Then 〈α0, β〉 /∈ St(C,U) since Vα0 is the only element of U containing
〈α0, β0〉 and Vα0 ∩ C = ∅. Hence, X × Y is not C-starcompact, which completes the
proof. �

In [10], Song gave an example showing that the product of two countably compact
spaces is not L-starcompact. In the following, we show that the product of two
countably compact spaces is not C-starcompact by using his example. Here we give
the proof roughly for the sake of completeness (see 10, Example 3.10.19).

E x am p l e 3.7. There exist countably compact spaces X and Y such that X×Y

is not C-starcompact.
P r o o f. Consider ω with the discrete topology. We can define X =

⋃
α<ω1

Eα,

Y =
⋃

α<ω1

Fα, where Eα and Fα are the subsets of β(ω) which are defined inductively

so as to satisfy the following conditions (1), (2) and (3):
(1) Eα ∩ Fβ = D if α �= β;
(2) |Eα| � c and |Fα| � c;

(3) every infinite subset of Eα or Fα has an accumulation point in Eα+1 or Fα+1,
respectively.

The sets Eα and Fα are well-defined since every infinite closed set in β(ω) has
cardinality 2c (see [2]). Then X × Y is not C-starcompact, because the diagonal
{〈n, n〉 : n ∈ ω} is a discrete open and closed subset of X ×Y with cardinality ω and
C-starcompactness is preserved by open and closed subsets. �

Theorem 3.8. Every Tychonoff space can be embedded in a C-starcompact
Tychonoff space as a closed subspace.

P r o o f. Let X be a Tychonoff space. If we put

Z = (β(X) × (ω1 + 1)) \ ((β(X) × {ω1}),

then X = X × {ω1} is a closed subset of Z which is homeomorphic to X . Since
β(X) × ω1 is a countably compact dense subset of Z, we conclude that Z is C-
starcompact, which completes the proof. �

R em a r k. The author does not know if a Tychonoff space can be embedded in
a C-starcompact Tychonoff space as a Gδ-closed subspace.
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