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MORSE-SARD THEOREM FOR DELTA-CONVEX CURVES

D. Pavlica, Praha

(Received December 20, 2006)

Abstract. Let f : I → X be a delta-convex mapping, where I ⊂ R is an open interval
and X a Banach space. Let Cf be the set of critical points of f . We prove that f(Cf ) has
zero 1/2-dimensional Hausdorff measure.
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Let Z and X be Banach spaces, U ⊂ Z an open convex set and f : U → X a

mapping. We say that f is a delta-convex mapping (d. c. mapping) if there exists

a continuous convex function h on U such that y∗ ◦ f + h is a continuous convex

function for each y∗ ∈ Y ∗, ‖y∗‖ = 1. We say that f : U → X is locally d. c. if for

each x ∈ U there exists an open convex U ′ such that x ∈ U ′ ⊂ U and f |U ′ is d. c.

This notion of d. c. mappings between Banach spaces (see [7]) generalizes Hart-

man’s [3] notion of d. c. mappings between Euclidean spaces. Note that in this case

it is easy to see that F is d. c. if and only if all its components are d. c. (i.e., they are

differences of two convex functions).

For f : U → X we denote Cf := {x ∈ U : f ′(x) = 0}.
A special case of [2, Theorem 3.4.3] says that for a mapping f : Rm → X of class

C2, where X is a normed vector space, the set f(Cf ) has zero (m/2)-dimensional

Hausdorff measure.

We will generalize this result in the case m = 1 showing that it is sufficient to

suppose that f is d. c. on I (equivalently: f is continuous and f ′

+ is locally of bounded

variation on I).
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A similar generalization of the above mentioned result on C2 mappings holds for

m = 2 as is shown (by a completely different method) in [6] where it is proved that

f(Cf ) has zero 1-dimensional Hausdorff measure for any d. c. mapping f : R2 → X.

Whether f(Cf ) has zero (m/2)-dimensional Hausdorff measure for each d. c. map-

ping f : Rm → X for m > 3 remains open even for X Euclidean space.

We denote α-dimensional Hausdorff measure (on a metric space X) by Hα and

for each Y ⊂ X we put (see [5])

Hα
∞

(Y ) =
ωα

2α
· inf

{ ∞
∑

i=1

diamα(Mi) : Y ⊂
∞
⋃

i=1

Mi

}

,

where ωα = (Γ(1/2))α · (Γ(α/2 + 1))−1.

For an open interval I, a Banach space X , g : I → X and x ∈ I, we denote

md(g, x) := lim
r→0

‖g(x + r) − g(x)‖
|r| .

If g is Lipschitz, then md(g, x) exists a.e. on I. This fact is a special case of Kirch-

heim’s theorem [4, Theorem 2] on a.e. metric differentiability of Lipschitz mappings

(from Rn to X). In a standard way we obtain the following more general fact.

Lemma 1. Let I be an open interval, X a Banach space, and let g : I → X have

bounded variation on I. Then md(g, x) exists almost everywhere on I.

P r o o f . We may suppose I = R. Denote s(x) =
x
∨

0

g, x ∈ R. By [2, 2.5.16.]
there exists a Lipschitz mapping H : R → X such that g = H ◦s. By [4, Theorem 2],

md(H, x) exists a.e. on R. Now, changing in the obvious way the last argument of
[2, 2.9.22.], we obtain our assertion. �

Theorem 2. Let X be a Banach space, I ⊂ R an open interval and f : I → X a

locally d. c. mapping. Let C := {x ∈ I : f ′(x) = 0}. Then H1/2(f(C)) = 0.

P r o o f . Note that f is continuous on I (see [7, Proposition 1.10.]). By [7,

Theorem 2.3], f ′

+ exists and has locally bounded variation on I. Consider an ar-

bitrary interval [a, b] ⊂ I. It is clearly sufficient to prove H1/2(f(C1)) = 0, where

C1 := C ∩ (a, b).

Let N1 be the set of all isolated points of C1 and N2 := {x ∈ C1 : md(f ′

+, x) does

not exist}. Since N1 is countable, H1/2(f(N1)) = 0.

To prove H1/2(f(N2)) = 0, consider an arbitrary ε > 0. By Lemma 1, we find a

countable disjoint system of open intervals {(ai, bi) : i ∈ J} such that

N2 ⊂
⋃

i∈J

(ai, bi) ⊂ (a, b),
∑

i∈J

(bi − ai) < ε and (ai, bi) ∩ N2 6= ∅, i ∈ J.
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Clearly ‖f ′

+(x)‖ 6
bi
∨

ai

f ′

+ for each i ∈ J and x ∈ (ai, bi). Using the continuity of f

and [1, Chap. I, par. 2, Proposition 3], we obtain

diam(f((ai, bi))) 6 (bi − ai) ·
bi
∨

ai

f ′

+.

Therefore, using the Cauchy-Schwartz inequality, we obtain

H1/2
∞

(f(N2)) 6
ω1/2

21/2

∑

i∈J

(

(bi − ai) ·
bi
∨

ai

f ′

+

)1/2

6
ω1/2

21/2

(

∑

i∈J

(bi − ai)

)1/2(
∑

i∈J

bi
∨

ai

f ′

+

)1/2

6
ω1/2

21/2
ε1/2

( b
∨

a

f ′

+

)1/2

.

Since ε > 0 is arbitrary, we haveH1/2
∞ (f(N2)) = 0; consequently (see [5, Lemma 4.6.])

we obtain H1/2(f(N2)) = 0.

To complete the proof, it is sufficient to prove H1/2(f(C2)) = 0, where C2 =

C1 \ (N1 ∪ N2). Let ε > 0 be arbitrary. Clearly md(f ′

+, x) = 0 for each x ∈ C2.

Therefore, for each x ∈ C2 we can choose δx > 0 such that [x − δx, x + δx] ⊂ (a, b)

and ‖f ′

+(y)‖ 6 ε |y − x| for each y ∈ [x − δx, x + δx]. Using the continuity of f and

[1, Chap. I, par. 2, Proposition 3], we obtain diam(f([x − δx, x + δx])) 6 2ε(δx)2.

Besicovitch’s Covering Theorem (see [5]) easily implies that we can choose a count-

able set A ⊂ C2 such that

C2 ⊂
⋃

x∈A

[x − δx, x + δx] and
∑

x∈A

2δx 6 c(b − a),

where c is an absolute constant (not depending on ε). Since ε > 0 is arbitrary,

f(C2) ⊂
⋃

x∈A

f([x − δx, x + δx]),

and
∑

x∈A

(diam(f([x − δx, x + δx])))1/2 6
∑

x∈A

√
2ε δx 6

√
2ε c(b − a),

we have H1/2
∞ (f(C2)) = 0, hence H1/2(f(C2)) = 0. �

R em a r k 3. Since each C2-function on I is a locally d. c. function (see [7]),

[2, 3.4.4.] implies that the conclusion of Theorem 2 does not hold with Hα (α < 1/2)

in general.

339



References

[1] N.Bourbaki: Éléments de mathématique IX., Les structures fondamentales de l’analyse.
Livre IV: Fonctions d’une variable réelle (théorie élémentaire). Act. Sci. et Ind. vol.
1074, Hermann, Paris, 1968. zbl

[2] H.Federer: Geometric Measure Theory. Die Grundlehren der mathematischen Wis-
senschaften, Band 153, Springer, New York, 1969. zbl

[3] P.Hartman: On functions representable as a difference of convex functions. Pacific J.
Math. 9 (1959), 707–713. zbl

[4] B.Kirchheim: Rectifiable metric spaces: local structure and regularity of the Hausdorff
measure. Proc. Amer. Math. Soc. 121 (1994), 113–123. zbl

[5] P.Mattila: Geometry of Sets and Measures in Euclidean Spaces. Fractals and Rectifia-
bility. Cambridge Studies in Advanced Mathematics, 44, Cambridge University Press,
Cambridge, 1995. zbl

[6] D.Pavlica, L. Zajíček: Morse-Sard theorem for d. c. functions and mappings on R2.
Indiana Univ. Math. J. 55 (2006), 1195–1207. zbl

[7] L.Veselý, L. Zajíček: Delta-convex mappings between Banach spaces and applications.
Dissertationes Math. (Rozprawy Mat.) 289 (1989). zbl

Author’s address : D.Pavlica, Institute of Mathematics, Academy of Sciences of the
Czech Republic, Žitná 25, 115 67 Praha 1, Czech Republic, e-mail: pavlica@math.cas.cz.

340

http://www.emis.de/MATH-item?0204.37901
http://www.emis.de/MATH-item?0176.00801
http://www.emis.de/MATH-item?0093.06401
http://www.emis.de/MATH-item?0806.28004
http://www.emis.de/MATH-item?0819.28004
http://www.emis.de/MATH-item?1112.26017
http://www.emis.de/MATH-item?0685.46027

