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Abstract. Our previous research was devoted to the problem of determining the primitive
periods of the sequences (Gn mod pt)∞n=1 where (Gn)

∞

n=1 is a Tribonacci sequence defined
by an arbitrary triple of integers. The solution to this problem was found for the case of
powers of an arbitrary prime p 6= 2, 11. In this paper, which could be seen as a completion
of our preceding investigation, we find solution for the case of singular primes p = 2, 11.
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1. Introduction

Having a linear recurrence formula of order k with integer coefficients we can

construct the corresponding characteristic polynomial f(x). If f(x) has no multiple

roots then its discriminant is a non zero integer and so it is divisible by only a finite

number of prime divisors. When investigating modular periodicity of the sequences

defined by these formulas, the primes that divide the discriminant of f(x) form ex-

ceptions and have to be considered separately. The exceptional primes p correspond

to the cases of f(x) having multiple roots over the field Fp = Z/pZ of residue classes
modulo p. In this paper, which could be seen as an extension of our previous paper

[1], we focus on the Tribonacci case. It is well known, see for example [2, p. 310],

that the primes p = 2, 11 are the only primes for which the Tribonacci characteristic

polynomial g(x) = x3 − x2 − x − 1 has multiple roots.

Let us now review the notation introduced in [1]. Let (gn)∞n=1 denote a Tribonacci

sequence defined by the recurrence formula gn+3 = gn+2 +gn+1 +gn and the triple of

initial values [0, 0, 1]. Let further (Gn)∞n=1 denote the generalized Tribonacci sequence

defined by an arbitrary triple [a, b, c] of integers. We will denote the primitive peri-

ods of the sequences (gn mod m)∞n=1 and (Gn mod m)∞n=1 by h(m) and h(m)[a, b, c]
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respectively. In 1978, M.E.Waddill [3, Theorem 8] proved that for any prime p and

t ∈ N = {1, 2, 3, . . .}, we have:

(1.1) If h(p) 6= h(p2), then h(pt) = pt−1h(p).

This paper aims at determining the numbers h(pt)[a, b, c] and find the relationships

between h(pt)[a, b, c] and h(p)[a, b, c] for the primes p = 2, 11. The case of p 6= 2, 11

is solved in [1]. The methods used in proofs of this paper will mostly be based on

matrix algebra. As usual, by T we will denote the Tribonacci matrix

(1.2) T =





0 1 0

0 0 1

1 1 1



 and Tn =





gn gn−1 + gn gn+1

gn+1 gn + gn+1 gn+2

gn+2 gn+1 + gn+2 gn+3



 for n > 1.

Put x0 = [a, b, c]τ and xn = [Gn+1, Gn+2, Gn+3]
τ where τ denotes transposition.

Then the triple xn may be expressed by means of x0 as follows: xn = Tnx0. Thus

the primitive period of the sequence (Gn mod m)∞n=1 defined by a triple [a, b, c] for

an arbitrary module m > 1 is equal to the smallest number h for which Thx0 ≡ x0

(mod m). By [1, Lemma 2.1], the investigation of the primitive periods of Tribonacci

sequences modulo pt is restricted to sequences beginning with the triples [a, b, c] 6≡

[0, 0, 0] (mod p). In the opposite case, for any t ∈ N and 1 6 i 6 t, we have

h(pt)[pt−ia, pt−ib, pt−ic] = h(pi)[a, b, c]. For this reason, we will investigate only the

triples satisfying [a, b, c] 6≡ [0, 0, 0] (mod p).

2. Tribonacci modulo 2t

We can easily calculate h(2) = 4 and h(22) = 8. By (1.1) we have h(2t) =

2t−1h(2) = 2t+1 and so h(2t)[a, b, c] | 2t+1 for any [a, b, c]. For p = 2, the multiplicity

of the root α = 1 of the polynomial g(x) is greater than char(F2) = 2 and therefore

(Gn mod 2)∞n=1 cannot be expressed as Gn mod 2 = c1 + c2n + c3n
2 as usual. The

sequences (1)∞n=1, (n)∞n=1, (n2)∞n=1 are dependent over F2 and do not form a basis.

Despite that, for some triples [a, b, c] 6≡ [0, 0, 0] (mod 2), the numbers h(2t)[a, b, c] can

be determined using the results derived in [1]. In the first place, it is proved in [1,

Theorem 3.1] that, if (D(a, b, c), m) = 1 where D(a, b, c) is a cubic form defined by

(2.1) D(a, b, c) = a3 + 2b3 + c3 − 2abc + 2a2b + 2ab2 − 2bc2 + a2c − ac2,

then h(m)[a, b, c] = h(m) for any modulus m > 1. The following theorem is an easy

consequence of the above assertions.
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Theorem 2.1. If D(a, b, c) is an odd number, then h(2t)[a, b, c] = h(2t) = 2t+1.

Hence, we have h(2t)[a, b, c] = 2t−1 · h(2)[a, b, c].

It is easy to verify that the premise of Theorem 2.1 is true if and only if [a, b, c]

is congruent modulo 2 with some of the triples [0, 0, 1], [1, 0, 0], [1, 1, 0], [0, 1, 1].

Therefore it suffices to investigate the cases of the triple [a, b, c] being congruent

modulo 2 with some of the triples [0, 1, 0], [1, 0, 1], [1, 1, 1]. The following assertions

will be important for the proofs of the main theorems 2.4, 2.5 and 2.6.

Lemma 2.2. For any modulus of the form 2t where t > 5, the following congru-

ences hold:

g2t−1−1 ≡ −1 (mod 2t),

g2t−1 ≡ 2t−2 + 1 (mod 2t),

g2t−1+1 ≡ 0 (mod 2t),

g2t−1+2 ≡ 2t−2 (mod 2t),

g2t−1+3 ≡ 2t−1 + 1 (mod 2t).

P r o o f . Using methods of matrix algebra, we will prove all the congruences in

(2.2) simultaneously. Let us consider a Tribonacci matrix T . Due to (1.2), it suffices

to prove that for any t > 5 we have

T 2
t−1

≡





2t−2 +1 2t−2 0

0 2t−2 +1 2t−2

2t−2 2t−2 2t−1+1





≡ E + 2t−2A (mod 2t), where A =





1 1 0

0 1 1

1 1 2





and E is an identity matrix. Let us first prove the congruence for t = 5. By direct

calculation, we can verify that

T 2
4

=





1705 2632 3136

3136 4841 5768

5768 8904 10609



 ≡





23 + 1 23 0

0 23 + 1 23

23 23 24 + 1



 (mod 25).

Let us further assume that the congruence holds for t >5. Since AE =EA, we have

T 2
t

≡ (E + 2t−2A)2 ≡ E + 2t−1A (mod 2t+1), which proves (2.2). �
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Consequence 2.3. For any modulus of the form 2t where t > 3, the following

congruences hold:

g2t
−1 ≡ −1 (mod 2t), g2t ≡ 2t−1 + 1 (mod 2t),

g2t+1 ≡ 0 (mod 2t), g2t+2 ≡ 2t−1 (mod 2t),(2.3)

g2t+3 ≡ 1 (mod 2t).

P r o o f . For t = 3, (2.3) can be verified by direct calculation. For t > 4, (2.3)

follows from (2.2). �

Theorem 2.4. If [a, b, c] ≡ [0, 1, 0] (mod 2), then for t > 1 we have

(2.4) h(2t)[a, b, c] = 2t+1.

P r o o f . Clearly, it is sufficient to prove that x2t 6≡ x0 (mod 2t), that is, that 2t

is not a period. The triple [a, b, c] can be written as x0 = [2a1, 1 + 2b1, 2c1]
τ where

a1, b1, c1 ∈ Z. For t = 2 we have

T 2
2

x0 =





1 2 2

2 3 4

4 6 7









2a1

1 + 2b1

2c1



 ≡





2 + 2a1

3 + 2b1

2 + 2c1



 (mod 22).

Suppose that T 2
2

x0 ≡ x0(mod 22). Then we have

[2 + 2a1, 3 + 2b1, 2 + 2c1] ≡ [2a1, 1 + 2b1, 2c1](mod 22).

Hence [2, 3, 2] ≡ [0, 1, 0](mod 22), which is a contradiction. If t > 3, then by (2.3) we

have

T 2
t

x0 ≡





2t−1 + 1 2t−1 0

0 2t−1 + 1 2t−1

2t−1 2t−1 1









2a1

1 + 2b1

2c1



 ≡





2a1 + 2t−1

1 + 2b1 + 2t−1

2c1 + 2t−1



 (mod 2t).

Suppose that T 2
t

x0 ≡ x0 (mod 2t). Then we have

[2a1 + 2t−1, 2t−1, 2c1 + 2t−1] ≡ [2a1, 1 + 2b1, 2c1] (mod 2t).

By matching terms, we obtain 2t−1 ≡ 0 (mod 2t) and thus a contradiction. �

It is not difficult to rephrase Theorem 2.4 to include the triples [a, b, c] ≡ [1, 0, 1].

Clearly, there is exactly one triple of the form x0 = [2(c1 − a1 − b1), 1 + 2a1, 2b1]
τ

corresponding to each triple x1 = [1+2a1, 2b1, 1+2c1]
τ . Since Tx0 = x1, the triples

x0 and x1 define sequences with identical primitive periods. By 2.4, this primitive

period equals 2t+1. This proves the following theorem.
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Theorem 2.5. If [a, b, c] ≡ [1, 0, 1] (mod 2), then for t > 1 we have

(2.5) h(2t)[a, b, c] = 2t+1.

We can also use the procedure from 2.4 to prove the following theorem:

Theorem 2.6. If [a, b, c] ≡ [1, 1, 1] (mod 2), then for t > 1 we have

(2.6) h(2t)[a, b, c] = 2t.

P r o o f . The triple [a, b, c] can be written as x0 = [1+2a1, 1+2b1, 1+2c1]
τ where

a1, b1, c1 ∈ Z. Suppose t > 5. Then by Lemma 2.2 we have T 2
t

x0 ≡ x0 (mod 2t)

and so h(2t)[a, b, c] | 2t. It is now sufficient to prove that x2t−1 6≡ x0 (mod 2t), that

is, that 2t−1 is not a period. By (2.2) we have

x2t−1 ≡ T 2
t−1

x0 ≡





2t−2 + 1 2t−2 0

0 2t−2 + 1 2t−2

2t−2 2t−2 2t−1 + 1









1 + 2a1

1 + 2b1

1 + 2c1



 (mod 2t).

It follows that

x2t−1 ≡ [1+2a1 +2t−1(1+a1+b1), 1+2b1+2t−1(1+b1+c1), 1+2c1+2t−1(a1+b1)]
τ .

Suppose x2t−1 ≡x0(mod 2t). Matching the terms yields that

2t−1(1 + a1 + b1) ≡ 0, 2t−1(1 + b1 + c1) ≡ 0, 2t−1(a1 + b1) ≡ 0 (mod 2t).

Hence 1 ≡ 0 (mod 2) and a contradiction follows. To prove the cases of t = 2, 3, 4 is

easy and can be left to the reader. �

R em a r k 2.7. Theorems 2.4, 2.5, and 2.6 are true for t > 1. In particular, for

t = 1 we have h(2)[1, 1, 1] = 1 and h(2)[0, 1, 0] = h(2)[1, 0, 1] = 2.

Corollary 2.8. If a triple [a, b, c] is congruent modulo 2 with some of the triples

[0, 1, 0], [1, 0, 1], [1, 1, 1], then for any t > 1 we have h(2t)[a, b, c] = 2t · h(2)[a, b, c].
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3. Tribonacci modulo 11t

The determination of primitive periods modulo 11t will be somewhat more com-

plicated. We can directly verify that h(11) = 110 and h(112) = 1210. Now it follows

from (1.1) that h(11t) = 10 · 11t for any t ∈ N and thus, for any triple [a, b, c], we

have h(11t)[a, b, c] | 10 · 11t. As x3 − x2 − x − 1 ≡ (x − 9)(x − 7)2 (mod 11) and

(9n)∞n=1, (7
n)∞n=1, (n7n)∞n=1 are linearly independent over F11, we have

(3.1) Gn ≡ c1 · 9
n + (c2 + c3n) · 7n (mod 11),

where the coefficients c1, c2, c3 are uniquely determined by the triple [a, b, c]. Let

ord11(ε) denote the order of ε 6≡ 0 (mod 11) in the multiplicative group of F11. It

is easy to see that ord11(9) = 5 and ord11(7) = 10. Now yields (3.1) that for any

[a, b, c] 6≡ [0, 0, 0](mod 11), h(11)[a, b, c] is equal exactly to one of the numbers 5, 10

and 110. This, together with h(11)[a, b, c] | h(11t)[a, b, c], implies that for [a, b, c] 6≡

[0, 0, 0](mod 11) the only forms of the periods h(11t)[a, b, c] are 5·11i and 10·11i where

i ∈ {0, 1, . . . , t}. Consequently, there exists no triple [a, b, c] for which h(11t)[a, b, c] =

2 · 11i. In some cases, h(11t)[a, b, c] can be determined using the form D(a, b, c).

However, there are triples for which h(11t)[a, b, c] = h(11t) and also D(a, b, c) ≡

0 (mod 11). Thus D(a, b, c) cannot be used to determine all the triples for which

h(11t)[a, b, c] = h(11t).

Lemma 3.1. Let t > 3 and h = 10 · 11t−2. Then we have the following congru-

ences:

(3.2)

gh−1 ≡ 25 · 11t−2 − 1 (mod 11t),

gh ≡ 65 · 11t−2 + 1 (mod 11t),

gh+1 ≡ 26 · 11t−2 (mod 11t),

gh+2 ≡ 116 · 11t−2 (mod 11t),

gh+3 ≡ 86 · 11t−2 + 1 (mod 11t).

P r o o f . By (1.2), it is sufficient to prove that

T 10·11
t−2

≡





65 · 11t−2 + 1 90 · 11t−2 26 · 11t−2

26 · 11t−2 91 · 11t−2 + 1 116 · 11t−2

116 · 11t−2 21 · 11t−2 86 · 11t−2 + 1



 (mod 11t),

i.e.

T 10·11
t−2

≡ E + 11t−2A (mod 11t), where A =





65 90 26

26 91 116

116 21 86



 .
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In the first induction step, we verify that the congruence is true for t = 3.

T 10·11 ≡





716 990 286

286 1002 1276

1276 231 947



 ≡ E + 11A (mod 113).

Suppose now that the assertion is true for a fixed t > 3 and let us prove it for t + 1.

Since A, E commute, using the binomial expansion we obtain that

T 10·11
t−1

≡ (E + 11t−2A)11 ≡
11
∑

i=0

(

11

i

)

(11t−2A)i

≡ E + 11t−1A + 5 · 112t−3A2 (mod 11t+1)

and A2 ≡ 0 (mod 11) proves (3.2). �

Consequence 3.2. Let t > 1 and h = 10 · 11t−1. Then for any modulus of the

form 11t the following congruences hold:

gh−1 ≡ 3 · 11t−1 − 1 (mod 11t), gh ≡ 10 · 11t−1 + 1 (mod 11t),

gh+1 ≡ 4 · 11t−1 (mod 11t), gh+2 ≡ 6 · 11t−1 (mod 11t),(3.3)

gh+3 ≡ 9 · 11t−1 + 1 (mod 11t).

P r o o f . For t = 1, (3.3) can be easily verified by direct calculation. For t > 2,

(3.3) follows from (3.2). �

Theorem 3.3. For any t ∈ N we have h(11t)[a, b, c] | 10 · 11t−1 if and only if

c ≡ 3a + 5b (mod 11). Moreover, for any t > 1, if h(11t)[a, b, c] | 10 · 11t−2 then

[a, b, c] ≡ [0, 0, 0] (mod 11).

P r o o f . Let h(11t)[a, b, c] | 10 · 11t−1. Then (3.3) implies





10 · 11t−1 + 1 2 · 11t−1 4 · 11t−1

4 · 11t−1 3 · 11t−1 + 1 6 · 11t−1

6 · 11t−1 10 · 11t−1 9 · 11t−1 + 1









a

b

c



 ≡





a

b

c



 (mod 11t).

A simple modification of the system yields





10 2 4

4 3 6

6 10 9









a

b

c



 ≡





0

0

0



 (mod 11).
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The congruences of this system are linearly dependent over F11 with the entire system

being equivalent to the single congruence 10a + 2b + 4c ≡ 0 (mod 11). Hence, we

have c ≡ 3a + 5b (mod 11).

Let h(11t)[a, b, c] | 10 · 11t−2. The validity of the implication for t = 2 is not

difficult to verify by direct calculation. If t > 3, then by (3.2) we have





65 · 11t−2 + 1 90 · 11t−2 26 · 11t−2

26 · 11t−2 91 · 11t−2 + 1 116 · 11t−2

116 · 11t−2 21 · 11t−2 86 · 11t−2 + 1









a

b

c



 ≡





a

b

c



 (mod 11t).

This system is equivalent to





65 90 26

26 91 116

116 21 86









a

b

c



 ≡





0

0

0



 (mod 112).

The last system has exactly 121 non-congruent solutions over Z/112Z that can be
written as [11r, 11s, 11(3r + 5s)] where r, s are integers. �

R em a r k 3.4. It follows from 3.3 that, if t > 1 and [a, b, c] 6≡ [0, 0, 0] (mod 11),

then h(11t)[a, b, c] is equal to some of the numbers 5 · 11t−1, 10 · 11t−1, 5 · 11t, 10 · 11t.

The following lemmas will help us to determine which of the cases will occur for a

given [a, b, c]. We will also prove that there exists no triple for which h(11t)[a, b, c] =

5 · 11t.

Lemma 3.5. For any t ∈ N we have
(3.4) T 5·11

t

≡ A (mod 11) where A =





7 4 6

6 2 10

10 5 1



 .

Moreover, A2t ≡ E (mod 11).

P r o o f . For t = 1, (3.4) is true since

T 55=





35731770264967 55158741162067 65720971788709

65720971788709 101452742053676 120879712950776

120879712950776 186600684739485 222332455004452



≡





7 4 6

6 2 10

10 5 1



.

Let now (3.4) be true for a fixed t > 1. Then T 5·11
t+1

= (T 5·11
t

)11 ≡ A11(mod 11)

and it suffices to prove that A11 ≡ A (mod 11). Since A2 ≡ E (mod 11), we have

A2t ≡ (A2)t ≡ Et ≡ E (mod 11) for any t ∈ N . Consequently, A11 ≡ A (mod 11),

which proves 3.5. �
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Lemma 3.6. For any t ∈ N we have det(T 5·11
t

− E) ≡ 0 (mod 11t+1).

P r o o f . If t = 1, then

det(T 55 − E) = 2 · 112 · 397 · 3742083511 ≡ 0 (mod 112).

Let the assertion be true for a fixed t > 1. First, it is evident that T 5·11
t+1

− E can

be written as

(3.5) T 5·11
t+1

− E = (T 5·11
t

− E) · (E + T 5·11
t

+ T 2·5·11
t

+ . . . + T 10·5·11
t

).

Now it follows from the induction hypothesis, from (3.5) and from Cauchy’s theorem

that it suffices to prove that

det(E + T 5·11
t

+ T 2·5·11
t

+ . . . + T 10·5·11
t

) ≡ 0 (mod 11).

From (3.4) it follows that

E +T 5·11
t

+T 2·5·11
t

+ . . . +T 10·5·11
t

≡ E +A+ A2 + . . . +A10 ≡ 6E +5A (mod 11).

As congruent matrices have congruent determinants, we have

det(E + T 5·11
t

+ T 2·5·11
t

+ . . . + T 10·5·11
t

) ≡ det(6E + 5A) = 132 ≡ 0 (mod 11).

This proves 3.6. �

Theorem 3.7. For any t ∈ N , the system of congruences
(3.6) (T 5·11

t

− E)x ≡ 0 (mod 11t+1)

has exactly 11t+1 solutions and the number of solutions satisfying x 6≡ 0 (mod 11) is

equal to 10 · 11t. Moreover, if αt+1 is a solution of g(x) ≡ 0 (mod 11t+1), then each

solution of (3.6) can be expressed as [q, qαt+1, qα
2
t+1], where q ∈ Z.

P r o o f . Put W = T 5·11
t

− E (mod 11t+1). From (3.4) it follows that all the

entries of W , except for w33, are units of the ring Z/11t+1Z. Since 11 - det [ 6 4

6 1

]

,

there are coefficients r, s that are also units of the ring Z/11t+1Z, for which
r(w11, w12) + s(w21, w22) ≡ (w31, w32) (mod 11t+1).

385



Thus there is a linear combination of the first and second rows of W transforming

Wx ≡ 0 (mod 11t+1) to an equivalent form

(3.7)





w11 w12 w13

w21 w22 w23

0 0 w′

33









a

b

c



 ≡





0

0

0



 (mod 11t+1).

Let us now prove that w′

33 ≡ 0 (mod 11t+1). Multiplying the first row in (3.7) by a

suitable unit and, subsequently, adding it to the second row yields

(3.8)





w11 w12 w13

0 w′

22 w′

23

0 0 w′

33









a

b

c



 ≡





0

0

0



 (mod 11t+1).

The determinant of the matrix of (3.8) is w11w
′

22w
′

33 and, by Lemma 3.6, we have

w11w
′

22w
′

33 ≡ 0 (mod 11t+1). Now it follows from (3.4) that w11 and w′

22 are units

of Z/pt+1Z and thus w′

33 ≡ 0 (mod 11t+1). This implies that the system Wx ≡ 0

(mod 11t+1) is equivalent to the system

(3.9)
w11a + w12b + w13c ≡ 0 (mod 11t+1),

w21a + w22b + w23c ≡ 0 (mod 11t+1),

in which all the coefficients are units of Z/pt+1Z. As no subdeterminant of the
system matrix of (3.9) is divisible by 11, any of the unknowns a, b, c can be chosen as

a parameter to express the other unknowns in a unique manner. Thus, each solution

of Wx ≡ 0 (mod 11t+1) can be written as [qu1, qu2, qu3] for a fixed triple of units

u1, u2, u3 and a parameter q ∈ Z. Therefore the number of non-congruent solutions
to (3.6) is equal to the number of elements of the ring Z/11t+1Z, which is 11t+1, and

the number of solutions of the form x 6≡ 0 (mod 11) is equal to the number of units

of this ring, which is 10 · 11t.

Let us now prove that the solutions to (3.6) are exactly the triples [q, qαt+1, qα
2
t+1]

where q ∈ Z. As the number of non-congruent triples [q, qαt+1, qα
2
t+1] is equal

to 11t+1, it suffices to show that h(11t+1)[q, qαt+1, qα
2
t+1] | 5 · 11t. As α = 9 is

a simple root of g(x) ≡ 0 (mod 11), we obtain by Hensel’s lemma, that for each

t ∈ N there is αt, which is uniquely determined modulo 11t, satisfying g(x) ≡

0 (mod 11t) and such that α1 = α and αt ≡ αt−1 (mod 11t−1). Let ord11t(ε) for

ε 6≡ 0 (mod 11) denote the order of ε in the multiplicative group of Z/11tZ. Clearly,
h(11t+1)[q, qαt+1, qα

2
t+1] = ord11t+1(αt+1) for any q ∈ Z where q 6≡ 0 (mod 11).

From ord11(α1) = 5 and αt+1 ≡ α1 (mod 11) it now follows α5
t+1 ≡ 1 (mod 11) for

any t ∈ N and thus α5·11
t

t+1 ≡ 1 (mod 11t+1). Hence ord11t+1(αt+1) | 5 · 11t. �
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According to Theorem 3.7, the set of all non-congruent solutions to (3.6) can be

written as E(αt+1) = {[q, qαt+1, qα
2
t+1], q ∈ Z/pt+1Z} and viewed as the eigenspace

associated with the eigenvalue αt+1.

R em a r k 3.8. The equality ord11t(αt) = 5 · 11t−1 is a non-trivial consequence of

3.3 and 3.7 for each t ∈ N . See also Lemma 4.6 in [1].
Lemma 3.9. There exists no triple [a, b, c] for which h(11t)[a, b, c] = 5 · 11t.

P r o o f . It suffices to prove that the systems (T 5·11
t−1

−E)x ≡ 0 (mod 11t) and

(T 5·11
t

− E)x ≡ 0 (mod 11t) have identical solution sets for any t > 1. Denote by

X the set of all solutions of (T 5·11
t−1

− E)x ≡ 0 (mod 11t) and by Y the set of all

solutions of (T 5·11
t

−E)x ≡ 0 (mod 11t). The inclusion X ⊆ Y follows immediately

from the equality

T 5·11
t

− E = (E + T 5·11
t−1

+ T 2·5·11
t−1

+ . . . + T 10·5·11
t−1

) · (T 5·11
t−1

− E).

Modifying the proof of 3.7, we can determine that (T 5·11
t

− E)x ≡ 0 (mod 11t) has

11t solutions, thus the same number as (T 5·11
t−1

−E)x ≡ 0 (mod 11t). The equality

of the sets X and Y follows from their finiteness. �

Now we can summarize our results in the main theorem:

Theorem 3.10. For any triple [a, b, c] 6≡ [0, 0, 0] (mod 11), we have:

If [a, b, c] 6∈ E(αt) and c ≡ 3a + 5b (mod 11), then h(11t)[a, b, c] = 10 · 11t−1.

If [a, b, c] 6∈ E(αt) and c 6≡ 3a + 5b (mod 11), then h(11t)[a, b, c] = 10 · 11t.

If [a, b, c] ∈ E(αt), then h(11t)[a, b, c] = ord11t(αt) = 5 · 11t−1.
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