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Abstract. For a connected graph G of order n > 2 and a linear ordering s : v1, v2, . . . , vn

of vertices of G, d(s) =
n−1∑

i=1

d(vi, vi+1), where d(vi, vi+1) is the distance between vi and

vi+1. The upper traceable number t+(G) of G is t+(G) = max{d(s)}, where the maximum
is taken over all linear orderings s of vertices of G. It is known that if T is a tree of order
n > 3, then 2n−3 6 t+(T ) 6 ⌊n2/2⌋−1 and t+(T ) 6 ⌊n2/2⌋−3 if T 6= Pn. All pairs n, k for
which there exists a tree T of order n and t+(T ) = k are determined and a characterization
of all those trees of order n > 4 with upper traceable number ⌊n2/2⌋ − 3 is established.
For a connected graph G of order n > 3, it is known that n − 1 6 t+(G) 6 ⌊n2/2⌋ − 1.
We investigate the problem of determining possible pairs n, k of positive integers that are
realizable as the order and upper traceable number of some connected graph.
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1. Introduction

In 1856 William Rowan Hamilton developed the Icosian Game, consisted of a

board with twenty holes and some lines between certain pairs of holes, where the

holes are designated by the twenty consonants of the English alphabet (see Figure 1).

Hamilton’s Icosian game can also be interpreted as a graph called the dodecahedron.

The problems proposed by Hamilton in his Icosian Game gave rise to major con-

cepts in graph theory. A path in a graph G that contains every vertex of G is a

Hamiltonian path of G and a cycle that contains every vertex of G is a Hamiltonian

cycle of G. A graph containing a Hamiltonian cycle is called a Hamiltonian graph,

while a graph containing a Hamiltonian path is often called traceable. As Hamilton

himself had observed, the graph of the dodecahedron is Hamiltonian. On the other

hand, Hamilton also observed that this graph had a much stronger property, that
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is, any path with five vertices in this graph can be extended to a Hamiltonian cycle.

Hamilton proposed a number of additional problems in his Icosian Game such as

showing the existence of three initial vertices that can be extended to a Hamiltonian

path but which cannot in turn be extended to a Hamiltonian cycle.
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Figure 1. Hamilton’s Icosian Game

The problems Hamilton proposed in his Icosian Game have inspired a number of

other research topics. In the late 1960s Chartrand defined a graph G to be randomly

traceable if every path in G can be extended to a Hamiltonian path in G, while

G is randomly Hamiltonian if every path in G can be extended to a Hamiltonian

cycle in G. For graphs of order 3 or more, these concepts are equivalent. Chartrand

and Kronk [4] characterized all of these graphs in 1969. In 1973 this concept was

generalized by Carsten Thomassen [11] when he studied graphs having the property

that each path lies on some Hamiltonian cycle.

In 1973 Goodman and Hedetniemi [7] introduced the concept of a Hamiltonian

walk in a connected graph G, defined as a closed spanning walk of minimum length.

Therefore, for a connected graph G of order n, the length of a Hamiltonian walk of

G is n if and only if G is Hamiltonian. During the 10-year period 1973–1983, this

concept received considerable attention. For example, Hamiltonian walks were also

studied by Asano, Nishizeki, and Watanabe [1], [2], Bermond [3], Nebeský [10], and

Vacek [12], [13]. This concept was studied from a different point of view in 2004

by Chartrand, Saenpholphat, Thomas, and Zhang, namely in terms of sequences of

vertices of a graph, as inspired by Hamilton’s original work (see [5]). In this paper,

we refer to the book [6] for graph theory notation and terminology not described

here.

For a connected graph G of order n > 3 and a cyclic ordering s : v1, v2, . . . , vn,

vn+1 = v1 of vertices of G, the number d(s) is defined in [5] as d(s) =
n
∑

i=1

d(vi, vi+1),
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where d(vi, vi+1) is the distance between vi and vi+1. The Hamiltonian number h(G)

of G is defined in [5] by h(G) = min {d(s)}, where the minimum is taken over all

cyclic orderings s of vertices of G. Thus h(G) > n for every connected graph G of

order n > 3 and h(G) = n if and only if G is Hamiltonian. The Hamiltonian number

of a connected graph G is, in fact, the length of a Hamiltonian walk in G (see [5]). A

related concept was introduced in [8]. For a connected graph G of order n > 2 and

a linear ordering s : v1, v2, . . . , vn of vertices of G, the number d(s) is defined as

(1) d(s) =

n−1
∑

i=1

d(vi, vi+1).

The traceable number t(G) of G is defined in [8] as t(G) = min{d(s)}, where the

minimum is taken over all linear orderings s of vertices of G. Thus if G is a connected

graph of order n > 2, then t(G) > n− 1. Furthermore, t(G) = n− 1 if and only if G

is traceable. In fact, the traceable number of a connected graph G is the minimum

length of a spanning walk in G. The Hamiltonian number h(G) and traceable number

t(G) of a graph G provide measures of traversability for G.

For a connected graph G, the upper Hamiltonian number h+(G) is defined in [5]

as h+(G) = max {d(s)}, where the maximum is taken over all cyclic orderings s of

vertices of G. As expected, for a connected graph G, the upper traceable number

t+(G) is defined in [9] as

t+(G) = max {d(s)} ,

where d(s) is described in (1) and the maximum is taken over all linear orderings s

of vertices of G. For a connected graph G, let diam(G) denote the diameter of G

(the largest distance between two vertices of G). Consequently, for every nontrivial

connected graph G of order n,

(2) n − 1 6 t(G) 6 t+(G) 6 (n − 1) diam(G).

Both upper and lower bounds in (2) are sharp. Characterizations of all graphs

whose upper traceable number and traceable number differ by at most 1 have been

established in [9].

Theorem 1.1 [9]. Let G be a connected graph of order n > 3. Then

(a) t+(G) = t(G) if and only if G = Kn.

(b) t+(G) = t(G) + 1 if and only if G = Kn − e or G = K1,n−1.

The upper traceable numbers of some well-known classes of graphs (namely, com-

plete multipartite graphs, cycles, hypercubes) have been determined (see [9]). In

particular, a formula for the upper traceable number of a tree was established. For
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each edge e of a tree T , the component number cn(e) of e is defined in [5] as the

minimum order of a component of T − e. For example, the edge e8 of the tree T

of Figure 2(a) has component number 4 since the order of the smaller component

of T − e8 is 4. Each edge of this tree is labeled with its component number in

Figure 2(b).
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Figure 2. Component numbers of edges in a tree

The following result provides a formula for the upper traceable number of a tree

in terms of the component numbers of its edges.

Theorem 1.2 [9]. If T is a nontrivial tree, then

t+(T ) = 2
∑

e∈E(T )

cn(e) − 1.

By Theorem 1.2, the upper traceable number of a nontrivial tree is always odd.

With the aid of Theorem 1.2, sharp upper and lower bounds for the upper traceable

number of a tree were established in [9] in terms of its order, as we state now.

Theorem 1.3 [9]. Let T be a nontrivial tree of order n. Then

2n − 3 6 t+(T ) 6
⌊

n2/2
⌋

− 1.

Furthermore,

(a) t+(T ) = 2n − 3 if and only if T = K1,n−1.

(b) t+(T ) =
⌊

n2/2
⌋

− 1 if and only if T = Pn.
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2. Realization results for trees

By Theorem 1.3, if T is a nontrivial tree of order n with t+(T ) = k, then k is

an odd integer and 2n − 3 6 k 6
⌊

n2/2
⌋

− 1. In this section we show that every

pair n, k of integers for which n > 2, k is odd, and 2n − 3 6 k 6
⌊

n2/2
⌋

− 1 can

be realized as the order and upper traceable number, respectively, of some tree. In

order to do this, we present some additional definitions. A double star is a tree of

diameter 3. If T is a double star with central vertices u and v such that deg u = a

and deg v = b, then T is denoted by Sa,b. A caterpillar is a tree of order 3 or more,

the removal of whose end-vertices produces a path called the spine of the caterpillar.

For a nontrivial tree T , the component number cn(T ) of T is defined as

cn(T ) =
∑

e∈E(T )

cn(e).

Then t+(T ) = 2 cn(T ) − 1.

Theorem 2.1. For every pair n, k of integers, where n > 2 and k is an odd integer

with

2n − 3 6 k 6
⌊

n2/2
⌋

− 1,

there exists a tree T of order n for which t+(T ) = k.

P r o o f . The result is obviously true if 2 6 n 6 6. Thus we may assume that

n > 7. Let k = 2l − 1, where 6 6 n − 1 6 l 6
⌊

n2/4
⌋

. We first consider the case

where n is odd. Assume that n = 2a + 1, where a > 3. Hence 2a 6 l 6 a2 + a. We

now construct a caterpillar T of order n for which cn(T ) = l, whose construction

depends on the value of l.

C a s e 1. l = 2a. Let T = K1,n−1 and observe that every edge of K1,n−1 is a

pendant edge. Hence cn(K1,n−1) = 2a.

C a s e 2. 2a + 1 6 l 6 3a − 1. Let l = 2a + 1 + i, where 0 6 i 6 a − 2. Let T be

a double star S2+i,n−2−i and e the unique edge of S2+i,n−2−i that is not a pendant

edge. Since 2 + i < n − 2 − i, it follows that cn(e) = 2 + i. Hence

cn(S2+i,n−2−i) = 2 + i + (2a − 1) = 2a + 1 + i

for 0 6 i 6 a − 2.

C a s e 3. 3a 6 l 6 1
2a2 + 5

2a − 1. First consider the function

f(x) = −1
2x2 +

(

a + 1
2

)

x + 2a − 1
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defined on the set [1, a] (the set of real numbers x with 1 6 x 6 a). Observe that f

is continuous and strictly increasing on [1, a]. Let b ∈ [1, a]∩Z, where Z is the set of
integers. Note that f(b) ∈ Z and

f(1) + 1 = 3a and f(a) = 1
2a2 + 5

2a − 1.

Let

P : xb, xb−1, . . . , x1, x0 = y0, y1, y2

be a path of length b + 2. We first construct the caterpillar T ′

b of order n from P by

adding 2a − b − 2 new end-vertices, a − b of which are joined to xb−1 and a − 2 of

which are joined to y1. If b = 1, then T ′

1 = Sa,a+1 and so

cn(T ′

1) = a + (2a − 1) = f(1).

If 2 6 b 6 a, then let

N(xb−1) = {xb−2, xb, u1, u2, . . . , ua−b},

N(y1) = {y0, y2, v1, v2, . . . , va−2}.

Observe that cn(x0x1) = cn(y0y1) = a and for 1 6 i 6 b − 2,

cn(xixi+1) = a − i.

The remaining 2a − b edges are pendant edges; so

cn(T ′

b) = a +

(

a + 1

2

)

−

(

a − b + 2

2

)

+ (2a − b) = f(b).

Now, since f is strictly increasing on [1, a] and f(1) + 1 6 l 6 f(a), it follows that

there exists a unique integer b ∈ [2, a] such that

f(b − 1) + 1 6 l 6 f(b).

Since f(b − 1) + 1 = f(b) − (a − b), it follows that l = f(b) − j for some j with

0 6 j 6 a−b. We construct T ′

b,j of order n from T ′

b by (i) first deleting the j vertices

u1, u2, . . . , uj and then (ii) adding j new end-vertices w1, w2, . . . , wj and joining each

of them to xb−2. Observe that

cnT ′

b,j
(e) = cnT ′

b
(e)
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for each edge e ∈ E(T ′

b) ∩ E(T ′

b,j) − {xb−2xb−1} and

cnT ′

b,j
(xb−2xb−1) = a − b + 2 − j = cnT ′

b
(xb−2xb−1) − j.

Since the j new edges are pendant edges,

cn(T ′

b,j) = cn(T ′

b) − j = f(b) − j = l.

C a s e 4. 1
2a2 + 5

2a 6 l 6 a2 + a. First consider the function

g(x) = − 1
2x2 +

(

a + 1
2

)

x + 1
2 (a2 + a)

defined on the set [2, a] (of real numbers). Observe that g is continuous and strictly

increasing on [2, a]. Let c ∈ [2, a] ∩ Z. Note that g(c) ∈ Z and
g(2) + 1 = 1

2a2 + 5
2a and g(a) = a2 + a.

Let

Q : xa, xa−1, . . . , x1, x0 = y0, y1, . . . , yc

be a path of length a + c. We first construct the caterpillar T ′′

c of order n from Q by

joining a − c new end-vertices u1, u2, . . . , ua−c to yc−1. If c = 2, then T ′′

2 = T ′

a and

so

cn(T ′′

2 ) = f(a) = 1
2a2 + 5

2a − 1 = g(2).

If 3 6 c 6 a, then observe that

cn(xixi+1) = a − i for 0 6 i 6 a − 1,

cn(yiyi+1) = a − i for 0 6 i 6 c − 2,

and the remaining a − c + 1 edges are pendant edges. Hence

cn(T ′′

c ) = 2

(

a + 1

2

)

−

(

a − c + 2

2

)

+ (a − c + 1) = g(c).

Now, since g is strictly increasing on [2, a] and g(2) + 1 6 l 6 g(a), it follows that

there exists a unique integer c ∈ [3, a] such that

g(c − 1) + 1 6 l 6 g(c).

Since g(c − 1) + 1 = g(c) − (a − c), it follows that l = g(c) − j for some j with

0 6 j 6 a − c. We construct T ′′

c,j of order n from T ′′

c by (i) first deleting the j
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vertices u1, u2, . . . , uj and then (ii) adding j new end-vertices w1, w2, . . . , wj and

joining each of them to yc−2. Observe that

cnT ′′

c,j
(e) = cnT ′′

c
(e)

for each edge e ∈ E(T ′′

c ) ∩ E(T ′′

c,j) − {yc−2yc−1} and

cnT ′′

c,j
(yc−2yc−1) = a − c + 2 − j = cnT ′′

c
(yc−2yc−1) − j.

Since the j new edges are pendant edges,

cn(T ′′

c,j) = cn(T ′′

c ) − j = g(c) − j = l.

We now consider the case when n is even. Since the argument for this case is

similar to the one employed in the case when n is odd, we only present an outline of

the proof in this case. Let n = 2a, where a > 4 is an integer. Hence 2a− 1 6 l 6 a2.

Then we apply a similar argument to the following four cases:

(i) l = 2a − 1,

(ii) 2a 6 l 6 3a − 2,

(iii) 3a − 1 6 l 6 1
2a2 + 5

2a − 3, and

(iv) 1
2a2 + 5

2a − 2 6 l 6 a2,

where the corresponding functions f(x) and g(x) are defined as

f(x) = − 1
2x2 +

(

a + 1
2

)

x + 2a − 3 for x ∈ [1, a],

g(x) = − 1
2x2 +

(

a + 1
2

)

x + 1
2 (a2 − a) for x ∈ [3, a].

Hence for each odd integer k = 2l − 1 with 2n − 3 6 k 6
⌊

n2/2
⌋

− 1, there exists

a tree T for which cn(T ) = l and so

t+(T ) = 2l − 1 = k,

providing the desired result. �

We now illustrate the proof of Theorem 2.1 for n = 11 (so a = 5). Since 19 6 k =

2l − 1 6 59, it follows that 10 6 l 6 30. In this case,

f(x) = − 1
2x2 + 11

2 x + 9 and g(x) = − 1
2x2 + 11

2 x + 15.

b 1 2 3 4 5
f(b) 14 18 21 23 24

c 2 3 4 5
g(c) 24 27 29 30

There are four cases.
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C a s e 1. l = 2a = 10. Let T = K1,10.

C a s e 2. 2a+1 6 l 6 3a−1, that is, 11 6 l 6 14. For l = 11+ i, where 0 6 i 6 3,

let T = S2+i,11−2−i = S2+i,9−i. Thus, in this case, T ∈ {S2,9, S3,8, S4,7, S5,6}.

C a s e 3. 3a 6 l 6 1
2a2 + 5

2a− 1, that is, 15 6 l 6 24. In this case, b ∈ {2, 3, 4, 5}.

If b = 2, then f(2) − 3 6 l 6 f(2) and so the possible values of l are

l = 15 = f(2) − 3 (and so T = T ′

2,3);

l = 16 = f(2) − 2 (and so T = T ′

2,2);

l = 17 = f(2) − 1 (and so T = T ′

2,1);

l = 18 = f(2) (and so T = T ′

2 = T ′

2,0).

If b = 3, then f(3) − 2 6 l 6 f(3) and so the possible values of l are

l = 19 = f(3) − 2 (and so T = T ′

3,2);

l = 20 = f(3) − 1 (and so T = T ′

3,1);

l = 21 = f(3) (and so T = T ′

3 = T ′

3,0).

If b = 4, then f(4) − 1 6 l 6 f(4) and so the possible values of l are

l = 22 = f(4) − 1 (and so T = T ′

4,1);

l = 23 = f(4) (and so T = T ′

4 = T ′

4,0).

If b = 5, then l = 24 = f(5) and T = T ′

5 = T ′

5,0.

C a s e 4. 1
2a2 + 5

2a 6 l 6 a2 + a, that is, 25 6 l 6 30. In this case, c ∈ {3, 4, 5}.

If c = 3, then g(3) − 2 6 l 6 g(3) and so the possible values of l are

l = 25 = g(3) − 2 (and so T = T ′′

3,2);

l = 26 = g(3) − 1 (and so T = T ′′

3,1);

l = 27 = g(3) (and so T = T ′′

3 = T ′′

3,0).

If c = 4, then g(4) − 1 6 l 6 g(4) and so the possible values of l are

l = 28 = g(4) − 1 (and so T = T ′′

4,1);

l = 29 = g(4) (and so T = T ′′

4 = T ′′

4,0).

If c = 5, then l = 30 = g(5) and T = T ′′

5 = T ′′

5,0 = P11.

By Theorems 1.3 and 2.1, we have the following corollary.

Corollary 2.2. A pair n, k of integers is realizable as the order and upper trace-

able number of a nontrivial tree if and only if n > 2, k is odd, and 2n − 3 6 k 6
⌊

n2/2
⌋

− 1.

It was shown in [9] that if T is a nontrivial tree, then

(3) h+(T ) = t+(T ) + 1 = 2
∑

e∈E(T )

cn(e).

Thus the upper Hamiltonian number of a nontrivial tree is always even. Furthermore,

if T is a nontrivial tree of order n, then

(4) 2n − 2 6 h+(T ) 6
⌊

n2/2
⌋

.

397



The following corollary is a consequence of (3), (4), and Theorem 2.1.

Corollary 2.3. A pair n, k of integers is realizable as the order and upper

Hamiltonian number of a nontrivial tree if and only if n > 3, k is even, and

2n − 2 6 k 6
⌊

n2/2
⌋

.

3. A characterization

By Theorem 1.3, if T is a nontrivial tree of order n, then t+(T ) 6
⌊

n2/2
⌋

− 1

and t+(T ) =
⌊

n2/2
⌋

− 1 if and only if T = Pn. For each positive integer n > 4, the

integer
⌊

n2/2
⌋

− 2 is even. By Theorem 1.2, there is no tree T of order n > 4 such

that t+(T ) =
⌊

n2/2
⌋

− 2. Therefore, if T is a tree of order n > 4 and T 6= Pn, then

t+(T ) 6
⌊

n2/2
⌋

− 3.

In this section, we characterize all trees of order n > 4 whose upper traceable number

is
⌊

n2/2
⌋

− 3. In order to do this, we first establish a useful lemma. For a vertex v

and an edge e = uw in a nontrivial connected graph G, the distance between v and

e is defined as

d(v, e) = min{d(v, u), d(v, w)}.

Lemma 3.1. Let T be a nontrivial tree of order at least 3 with diam(T ) = d.

Then there exists an end-vertex v of T such that

1 6 cn(T ) − cn(T − v) 6 ⌈d/2⌉ .

P r o o f . Assume that T is a tree of order n > 3. LetM = max{cn(e) : e ∈ E(T )}

and choose an edge f ∈ E(T ) such that cn(f) = M . If M = 1, then T and T − v are

stars for every end-vertex v of T . Hence d = 2 and cn(T ) − cn(T − v) = 1, so the

result holds. Thus we assume that M > 2. Let U be the set of end-vertices of T and

l = min{d(v, f) : v ∈ U}.

Choose a vertex u ∈ U such that d(u, f) = l. Note that 1 6 l 6 ⌊(d − 1)/2⌋. Let

P : u = v0, v1, v2, . . . , vl, vl+1 be the path of length l + 1 that has the initial vertex

u and terminal edge f = vlvl+1. Let X = E(P ) − {uv1}, Y = E(T ) − E(P ), and

T ′ = T − u. (Hence E(T ′) = X ∪ Y and |X| = l.)
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We first show that if e ∈ X , then 0 6 cnT (e) − cnT ′(e) 6 1. Let G1 and G2 be

the two components of T − e such that u belongs to G1. If |V (G1)| > |V (G2)|, then

cnT (e) = |V (G2)| = cnT ′(e). If |V (G1)| 6 |V (G2)|, then cnT (e) = |V (G1)| and

cnT ′(e) = |V (G1)| − 1 = cnT (e) − 1.

Hence 0 6 cnT (e) − cnT ′(e) 6 1 for each edge e ∈ X.

Next we show that if e ∈ Y , then cnT (e)−cnT ′(e) = 0. Let e ∈ Y and suppose that

G1 and G2 are the two components of T − e. Necessarily, one of G1 and G2 contains

the entire P , say G1 does. If |V (G1)| > |V (G2)|, then cnT (e) = |V (G2)| = cnT ′(e).

Otherwise, |V (G1)| 6 |V (G2)| and so cnT (e) = |V (G1)|. Let H1 and H2 be the two

components of T − f . Then one of H1 and H2 contains the entire G2 and the edge

e, say H2 does. Then |V (H2)| > |V (G2)| + 1 and so

|V (H1)| = n − |V (H2)| 6 n − (|V (G2)| + 1) = |V (G1)| − 1.

This implies that

cnT (f) 6 |V (H1)| < |V (G1)| = cnT (e),

a contradiction. Hence cnT (e) − cnT ′(e) = 0 for every edge e ∈ Y .

Now observe that

cn(T ) = cnT (uv1) +
∑

e∈X

cnT (e) +
∑

e∈Y

cnT (e) = 1 +
∑

e∈X

cnT (e) +
∑

e∈Y

cnT ′(e)

and

cn(T ′) =
∑

e∈X

cnT ′(e) +
∑

e∈Y

cnT ′(e) 6
∑

e∈X

cnT (e) +
∑

e∈Y

cnT ′(e).

Thus cn(T ) − cn(T ′) > 1 and

cn(T ) − cn(T ′) = 1 +
∑

e∈X

[cnT (e) − cnT ′(e)] 6 1 + |X| 6 1 + ⌊(d − 1)/2⌋ = ⌈d/2⌉ ,

completing the proof. �

For each integer n > 4, let Tn be the caterpillar of order n and diam(Tn) = n − 2

such that the vertex of degree ∆(Tn) = 3 is adjacent to two of the three end-vertices.

The caterpillar Tn is shown in Figure 3 for n = 7. Next, we show that for each

integer n > 4, the caterpillar Tn is the only tree of order n whose upper traceable

number is
⌊

n2/2
⌋

− 3.

u

v

Figure 3. The caterpillar Tn for n = 7
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Theorem 3.2. Let T be a tree of order n > 4. Then

t+(T ) =
⌊

n2/2
⌋

− 3 if and only if T = Tn.

P r o o f . The result follows immediately for 4 6 n 6 6, so we may assume that

n > 7. We first show that t+(Tn) =
⌊

n2/2
⌋

− 3. We consider two cases, according

to the parity of n.

C a s e 1. n is odd. Then n = 2k + 1 for some integer k > 3. Observe that

Tn contains three edges with component number 1 and one edge with component

number 2. Moreover, for each integer i with 3 6 i 6 k, there are two edges with

component number i. Therefore,

cn(Tn) = 2

(

k + 1

2

)

− 1 = k2 + k − 1

and so

t+(Tn) = 2 cn(Tn) − 1 =
⌊

(2k + 1)2/2
⌋

− 3.

C a s e 2. n is even. Then n = 2k for some integer k > 4. Observe that Tn contains

three edges with component number 1, one edge with component number 2, and one

edge with component number k. Moreover, for each integer i with 3 6 i 6 k − 1,

there are two edges with component number i. Therefore,

cn(Tn) = 2

(

k

2

)

− 1 + k = k2 − 1

and so

t+(Tn) = 2 cn(Tn) − 1 =
⌊

(2k)2/2
⌋

− 3.

For the converse, let T be a tree of order n > 7 having t+(T ) =
⌊

n2/2
⌋

− 3. Then

T 6= Pn and cn(T ) =
⌊

n2/4
⌋

−1. We first show that diam(T ) = n−2. Assume, to the

contrary, that d = diam(T ) 6 n− 3. Then T − v 6= Pn−1 for each end-vertex v of T .

Hence t+(T − v) 6
⌊

(n − 1)2/2
⌋

− 3 and consequently cn(T − v) 6
⌊

(n − 1)2/4
⌋

− 1.

Let u be an end-vertex of T such that 1 6 cn(T )− cn(Tn) 6 ⌈d/2⌉. If n is odd, then

n = 2k + 1 for some integer k > 3 and

cn(T ) − cn(T − u) 6 ⌈d/2⌉ 6 ⌈(n − 3)/2⌉ = k − 1.

However,

cn(T ) − cn(T − u) > (k2 + k − 1) − (k2 − 1) = k,
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a contradiction. If n is even, then n = 2k for some integer k > 4 and

cn(T ) − cn(T − u) 6 ⌈d/2⌉ 6 ⌈(n − 3)/2⌉ = k − 2.

On the other hand,

cn(T ) − cn(T − u) > (k2 − 1) − (k2 − k − 1) = k,

a contradiction.

Hence diam(T ) = n − 2 and so T is a caterpillar with three end-vertices obtained

from a path P : v1, v2, . . . , vn−1 of order n − 1 by joining a new vertex u to vi for

some i with 2 6 i 6 n − 2. By symmetry, we may assume that 2 6 i 6 ⌊n/2⌋.

C a s e 1. n is odd. Then n = 2k + 1 for some integer k > 3. Observe that T

contains three edges with component number 1, one edge with component number i,

and for each integer j with 2 6 j 6 k and j 6= i, there are two edges with component

number j. Hence

cn(T ) = 2

(

k + 1

2

)

+ 1 − i = k2 + k + 1 − i

and so i = 2, that is, T = Tn.

C a s e 2. n is even. Then n = 2k for some integer k > 4. Observe that T contains

three edges with component number 1. If i = k, then for each j with 2 6 j 6 k − 1,

there are two edges with component number j. Hence

cn(T ) = 2

(

k

2

)

+ 1 = k2 − k + 1,

which is a contradiction since k2−1 = k2−k+1 only when k = 2. Hence 2 6 i 6 k−1.

Then T contains one edge with component number i, one edge with component

number k, and for each integer j with 2 6 j 6 k − 1 and j 6= i, there are two edges

with component number j. Hence

cn(T ) = 2

(

k

2

)

+ 1 + k − i = k2 + 1 − i

and so i = 2, that is, T = Tn. �

The following is an immediate consequence of Theorems 1.3 and 3.2.
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Corollary 3.3. Let T be a tree of order n > 5. Then

2n − 3 6 t+(T ) 6
⌊

n2/2
⌋

− 5 if and only if T /∈ {Pn, Tn}.

4. Some results for general graphs

If G is a connected graph and H is a connected spanning subgraph of G, then

dG(u, v) 6 dH(u, v) for all u, v ∈ V (G) = V (H) and so dG(s) 6 dH(s) for every linear

ordering s of vertices of G (or H). Therefore, we have the following observation.

Observation 4.1. If H is a connected spanning subgraph of a nontrivial graph G,

then t+(G) 6 t+(H). In particular, if T is a spanning tree of G, then t+(G) 6 t+(T ).

With the aid of Observation 4.1 and Theorem 1.3, we are able to establish sharp

upper and lower bounds for t+(G) for a connected graph G in terms of its order. In

order to do this, we first present a formula for the upper traceable number of a cycle

in terms of its order (see [9]). For each integer n > 3,

(5) t+(Cn) =
⌈

(n − 1)2/2
⌉

.

Theorem 4.2. If G is a connected graph of order n > 3, then

(6) n − 1 6 t+(G) 6
⌊

n2/2
⌋

− 1.

Furthermore,

(a) t+(G) = n − 1 if and only if G = Kn.

(b) t+(G) =
⌊

n2/2
⌋

− 1 if and only if G = Pn.

P r o o f . The inequalities in (6) and (a) follow by Theorems 1.1 and 1.3 and

Observation 4.1. Thus, it remains only to verify (b). If G = Pn, then t+(G) =
⌊

n2/2
⌋

− 1 by Theorem 1.3. For the converse, let G be a connected graph of order

n > 3 such that t+(G) =
⌊

n2/2
⌋

− 1. If G is a tree, then by Theorem 1.3, it follows

that G = Pn. Now suppose that G is not a tree and let T be a spanning tree of G.

By Observation 4.1,

t+(G) 6 t+(T ) 6
⌊

n2/2
⌋

− 1.

Thus t+(T ) =
⌊

n2/2
⌋

− 1, implying that T = Pn. That is, every spanning tree of G

is isomorphic to Pn, implying that G = Cn. It follows by (5) that

⌊

n2/2
⌋

− 1 = t+(G) =
⌈

(n − 1)2/2
⌉

.

However, this equality holds only for n = 2, a contradiction. Hence G = Pn is the

only connected graph of order n > 3 for which t+(G) =
⌊

n2/2
⌋

− 1. �
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By Theorem 4.2, if G is a connected graph of order n with t+(G) = k, then

n − 1 6 k 6
⌊

n2/2
⌋

− 1. The following result shows that there are pairs n, k of

integers with n > 3 and n − 1 6 k 6
⌊

n2/2
⌋

− 1 that are not realizable as the order

and upper traceable number of any connected graph.

Proposition 4.3. For each integer n > 4, there is no connected graph of order n

whose upper traceable number is
⌊

n2/2
⌋

− 2.

P r o o f . Assume, to the contrary, that there exists a connected graph G of order

n > 4 for which t+(G) =
⌊

n2/2
⌋

− 2. Since
⌊

n2/2
⌋

− 2 is even, it follows that G is

not a tree by Theorem 1.2. Let T be a spanning tree of G. By Observation 4.1,

t+(G) 6 t+(T ) 6
⌊

n2/2
⌋

− 1.

Thus t+(T ) =
⌊

n2/2
⌋

− 1 and so T = Pn. That is, every spanning tree of G is

isomorphic to Pn. Since G is not a tree, it follows that G = Cn. By (5),

⌊

n2/2
⌋

− 2 = t+(G) = t+(Cn) =
⌈

(n − 1)2/2
⌉

.

However, this equality holds only for n = 3, which is a contradiction. �

We are prepared to show that there is no graph G of order n > 6 whose upper

traceable number is
⌊

n2/2
⌋

− 4.

Proposition 4.4. For each integer n > 6, there is no graph of order n whose

upper traceable number is
⌊

n2/2
⌋

− 4.

P r o o f . Assume, to the contrary, that there exists a graph G of order n for

which t+(G) =
⌊

n2/2
⌋

− 4. Then G 6= Pn. In fact, since
⌊

n2/2
⌋

− 4 is even, G is not

a tree. Hence G contains a spanning subgraph Hn of size n. Observe that Hn 6= Cn

since otherwise

⌊

n2/2
⌋

− 4 = t+(G) 6 t+(Hn) =
⌈

(n − 1)2/2
⌉

,

which holds only for n 6 5. Also, since every spanning tree T ofGmust be isomorphic

to either Pn or Tn by Corollary 3.3, it follows that Hn must be the graph obtained

from a path P : v1, v2, . . . , vn of order n by joining vn−2 and vn. Moreover, G = Hn

since otherwise G contains a spanning tree that is neither Pn nor Tn. If n = 2k + 1

for some integer k > 3, then t+(G) = 2k2 + 2k − 4. Consider the linear ordering

s1 : vk+2, v1, v2k+1, v2, v2k, v3, v2k−1, . . . , vk−1, vk+3, vk, vk+1
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of vertices of G and observe that

t+(G) > d(s1) = 2k2 + 2k − 3,

which is a contradiction. If n = 2k for some integer k > 3, then t+(G) = 2k2 − 4.

Consider the linear ordering

s2 : vk+1, v1, v2k, v2, v2k−1, v3, v2k−2, . . . , vk−1, vk+2, vk

of vertices of G and observe that

t+(G) > d(s2) = 2k2 − 3,

again, which is a contradiction. Hence there is no graph of order n whose upper

traceable number is
⌊

n2/2
⌋

− 4. �

The proof of Proposition 4.4 actually shows that the graph Hn described in the

proof is the only graph of order n that is not a tree and has upper traceable number
⌊

n2/2
⌋

− 3. Therefore, we obtain the following.

Theorem 4.5. If G is a nontrivial connected graph of order n > 6, then

(a) t+(G) =
⌊

n2/2
⌋

− 1 if and only if G = Pn.

(b) t+(G) =
⌊

n2/2
⌋

− 3 if and only if G ∈ {Tn, Hn}.

(c) If G /∈ {Pn, Tn, Hn}, then n − 1 6 t+(G) 6
⌊

n2/2
⌋

− 5.

We conclude with the following question:

Problem 4.6. Which pairs n, k of integers with n > 3 and n−1 6 k 6
⌊

n2/2
⌋

−1

are realizable as the order and upper traceable number, respectively, of some con-

nected graph?

A c k n ow l e d gm e n t s. We are grateful to Professor Gary Chartrand for sug-

gesting the concepts of traceable number and upper traceable number to us and

kindly providing useful information on this topic. Also, we appreciate the sugges-

tions of a referee that resulted in an improved paper.
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