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Abstract. In this paper the definition of Hermite-Hermite matrix polynomials is intro-
duced starting from the Hermite matrix polynomials. An explicit representation, a matrix
recurrence relation for the Hermite-Hermite matrix polynomials are given and differential
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1. Introduction and preliminaries

Orthogonal matrix polynomials form an emergent field whose development is

reaching important results from both the theoretical and practical points of view.

Some recent results in this field can be found in [1], [6], [10]. Important connections

between orthogonal matrix polynomials and matrix differential equations appear in

[1], [2], [4], [7], [11]. Special functions, as a branch of mathematics are of utmost im-

portance to scientists and engineers in many areas of applications [8], [12]. Theory of

special functions plays an important role in the formalism of mathematical physics.

Hermite and Chebyshev polynomials in [9] are among the most important special

functions, with very diverse applications to physics, engineering and mathematical

physics ranging from abstract number theory to problems of physics and engineer-

ing. Recently, the Hermite matrix polynomials have been introduced and studied in

a number of papers [1], [5], [7], [10]. For the most part the relations with which we

deal here are included because they are amusing or particularly pretty. It would be

unwise, however, to pass up the subject as one of other value. The symbolic notation
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also suggests the study of some interesting polynomials which may not otherwise be

noticed [8], [9].

This paper deals with the introduction and study of Hermite matrix polynomials

taking advantage of those recently treated in [1], [2]. The organization of the paper

is as follows. In Section 2 Hermite-Hermite matrix polynomials are defined, the

three terms matrix recurrence relations are proved, their connections with differential

equations are shown and the expansions of Hermite-Hermite matrix polynomials

into series are established. Finally, we study the case relevant to mixed matrix

polynomials with the type Hermite-Hermite matrix polynomials that are defined

here in Section 3.

If D0 is the complex plane cut along the negative real axis and log(z) denotes the

principal logarithm of z, then z
1

2 represents exp(1
2 log(z)). If A is a matrix in C N×N,

its two-norm denoted by ‖A‖2 is defined by ‖A‖2 = ‖Ax‖2/‖x‖2, where for a vector

y in C N, ‖y‖2 denotes the usual Euclidean norm of y, ‖y‖2 = (yT y)
1

2 . The set of all

eigenvalues of A is denoted by σ(A). If f(z) and g(z) are holomorphic functions of

the complex variable z, which are defined in an open set Ω of the complex plane, and

if A is a matrix in C N×N such that σ(A) ⊂ Ω, then the matrix functional calculus

yields that

(1.1) f(A)g(A) = g(A)f(A).

If A is a matrix with σ(A) ⊂ D0, then A
1

2 =
√

A = exp(1
2 log(A)) denotes the image

by z
1

2 =
√

z = exp( 1
2 log(z)) of the matrix functional calculus acting on the matrix A.

We say that A is a positive stable matrix [3], [5], [7] if

(1.2) Re(z) > 0 for all z ∈ σ(A).

If A(k, n) and B(k, n) are matrices on C N×N for n > 0, k > 0, it follows in an

analogous way to the proof of Lemma 11 of [9] that

(1.3)

∞∑

n=0

∞∑

k=0

A(k, n) =

∞∑

n=0

[ 1
2

n]∑

k=0

A(k, n − 2k),

∞∑

n=0

∞∑

k=0

B(k, n) =

∞∑

n=0

n∑

k=0

B(k, n − k).

Similarly to (1.3), we can write

(1.4)

∞∑

n=0

[ 1
2

n]∑

k=0

A(k, n) =

∞∑

n=0

∞∑

k=0

A(k, n + 2k),

∞∑

n=0

n∑

k=0

B(k, n) =
∞∑

n=0

∞∑

k=0

B(k, n + k).
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1.1. On Hermite matrix polynomials. We consider the Hermite matrix poly-

nomials Hn(x, A) defined by the generating function [1], [6]

(1.5)
∞∑

n=0

tn

n!
Hn(x, A) = exp

(
xt
√

2A − t2I
)
.

The polynomials Hn(x, A) are explicitly expressed as

(1.6) Hn(x, A) = n!

[ 1
2
n]∑

k=0

(−1)k
(
x
√

2A
)n−2k

k!(n − 2k)!
, n > 0.

It is clear that

H−1(x, A) = 0, H0(x, A) = I, H1(x, A) = x
√

2A

and Hn(−x, A) = (−1)nHn(x, A).

Their recurrence properties can be derived either from (1.5) or from (1.6). It is easy

to prove that

(1.7)
d

dx
Hn(x, A) = n

√
2AHn−1(x, A),

Hn+1(x, A) =
[
x
√

2A − 2√
2A

d

dx

]
Hn(x, A).

The differential equation satisfied by Hn(x, A) can be straightforwardly deduced by

introducing the shift operators

(1.8) P̂ =
1√
2A

d

dx
,

M̂ = x
√

2A − 2√
2A

d

dx

which act on Hn(x, A) according to the rules

(1.9) P̂Hn(x, A) = nHn−1(x, A),

M̂Hn(x, A) = Hn+1(x, A).

Using the identity

(1.10) M̂P̂Hn(x,A) = nHn(x, A)
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from (1.10), we find that Hn(x, A) satisfies the following ordinary differential equa-

tion of second order [4], [10], [11]:

(1.11)
[ d2

dx2
− x

2

(√
2A

)2 d

dx
+

n

2

(√
2A

)2
]
Hn(x, A) = 0.

We consider the operational definition of Hermite matrix polynomials [1] in the form

(1.12) Hn(x, A) = exp
(
− 1

(
√

2A)2
d2

dx2

)(
x
√

2A
)n

.

Our aim is to prove some known properties as well as new expansions formulae related

to these Hermite matrix polynomials. In the following, we will apply the above results

to Hermite-Hermite matrix polynomials and we will see that the results, summarized

in this section, can be exploited to state quite general results.

2. On Hermite-Hermite matrix polynomials

The Hermite-Hermite matrix polynomials are defined by the series

(2.1) HHn(x, A) = n!

[ 1
2
n]∑

k=0

(−1)k
(√

2A
)n−2k

Hn−2k(x, A)

k!(n − 2k)!
.

It is clear that

HH−1(x, A) = 0, HH0(x, A) = I, HH1(x, A) = 2xA.

Using (1.4), (1.5) and (2.1), we arrange the series in the form

∞∑

n=0

HHn(x, A)tn

n!
=

∞∑

n=0

[ 1
2
n]∑

k=0

(−1)k
(√

2A
)n−2k

Hn−2k(x, A)

k!(n − 2k)!
tn

=

∞∑

n=0

∞∑

k=0

(−1)k
(√

2A
)n

Hn(x, A)

k!n!
tn+2k

=

∞∑

n=0

(√
2A

)n
Hn(x, A)

n!
tn

∞∑

k=0

(−1)k

k!
t2kI

= exp
(
xt

(√
2A

)2 −
(
t
√

2A
)2)

exp(−t2I)

= exp
(
xt

(√
2A

)2 − t2
((√

2A
)2

+ I
))

.
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We obtain an explicit representation for the Hermite-Hermite matrix polynomials by

the generating function in the form

(2.3) F (x, t, A) =

∞∑

n=0

HHn(x, A)tn

n!
= exp

(
xt

(√
2A

)2 − t2
((√

2A
)2

+ I
))

; |t| < ∞

where F (x, t,A) regarded as a function of the complex variable t is an entire matrix,

therefore has the Taylor series about t = 0 and the series obtained converges for

all values of x and t. Clearly, HHn(x, A) is a matrix polynomial of degree n in x.

Replacing x by −x and t by −t in (2.3), the left-hand side does not change. Therefore

HHn(−x, A) = (−1)n
HHn(x, A).

2.1. Recurrence relations. Some recurrence relations will be established for the

Hermite matrix polynomials. First, we obtain

Theorem 2.1. The Hermite-Hermite matrix polynomials HHn(x, A) satisfy the

relations

(2.4)
dr

dxr HHn(x, A) =

(√
2A

)2r
n!

(n − r)!
HHn−r(x, A), 0 6 r 6 n.

P r o o f . Differentiating the identity (2.2) with respect to x yields

(2.5)
∞∑

n=0

tn

n!

d

dx
HHn(x, A) = t

(√
2A

)2
exp

(
xt

(√
2A

)2 − t2
(
(
√

2A
)2

+ I
))

From (2.5) and (2.2) we have

∞∑

n=0

1

n!

d

dx
HHn(x, A)tn =

(√
2A

)2
∞∑

n=0

1

n!
HHn(x, A)tn+1.

Hence, identifying the coefficients at tn, we obtain

(2.6)
d

dx
HHn(x, A) = n

(√
2A

)2
HHn−1(x, A), n > 1.

Iteration (2.6) for 0 6 r 6 n implies (2.4). Therefore, the expression (2.4) is estab-

lished and the proof of Theorem 2.1 is completed. The above three-terms recurrence

relation will be used in the following theorem.
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Theorem 2.2. Let A be a matrix in C N×N satisfying (1.2). Then we have

(2.7) HHn(x, A) = x
(√

2A
)2

HHn−1(x, A) − 2(n − 1) HHn−2(x, A), n > 2.

P r o o f . Differentiating (2.3) with respect to x and t, we find respectively

∂

∂x
F (x, t,A) = t

(√
2A

)2
exp

(
xt

(√
2A

)2 − t2
((√

2A
)2

+ I
))

=

∞∑

n=0

1

n!

d

dx
HHn(x,A)tn

and

∂

∂t
F (x, t, A) =

(
x
(√

2A
)2 − 2

((√
2A

)2
+ I

)
t
)
exp

(
xt

(√
2A

)2 − t2
((√

2A
)2

+ I
))

=

∞∑

n=1

1

(n − 1)!
HHn(x,A)tn−1.

Therefore, F (x, t, A) satisfies the partial matrix differential equation

(
x
(√

2A
)2 − 2

((√
2A

)2
+ I

)
t
)∂F

∂x
− t

(√
2A

)2 ∂F

∂t
= 0

which, by virtue of (2.3), becomes

(√
2A

)2
∞∑

n=0

n

n!
HHn(x, A)tn = x

(√
2A

)2
∞∑

n=0

1

n!

d

dx
HHn(x, A)tn

− 2
((√

2A
)2

+ I
) ∞∑

n=0

d

dx

1

n!
HHn(x, A)tn+1.

Since x(d/dx) HH1(x, A) = HH1(x, A), it follows that

n
(√

2A
)2

HHn(x, A) = x
(√

2A
)2 d

dx
HHn(x, A) − 2n

((√
2A

)2
+ I

) d

dx
HHn−1(x, A).

Using (2.6) and (2.8), we get (2.7). The proof of Theorem 2.2 is completed.

The above recurrence properties can be derived either from (2.1) or from (2.2). It

is easy to prove that

d

dx
HHn(x, A) = n

(√
2A

)2
HHn−1(x, A) = 2nA HHn−1(x, A),(2.9)

Hn+1(x, A) =
[
x
(√

2A
)2 − 2

((√
2A

)2
+ I

)
(√

2A
)2

d

dx

]
HHn(x, A)

=
[
2xA − 2(2A + I)

2A

d

dx

]
HHn(x, A).
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The differential equation satisfied by HHn(x, A) can be straightforwardly inferred by

introducing the shift operators

(2.10) P̂ =
1

2A

d

dx
,

M̂ = 2Ax − 2(2A + I)

2A

d

dx

which act on HHn(x, A) according to the rules

(2.11) P̂ HHn(x, A) = n HHn−1(x, A)(x,A),

M̂ HHn(x, A) = HHn+1(x,A).

Using the identity

(2.12) M̂P̂ HHn(x,A) = n HHn(x, A)

from (2.12), we find that Hn(x, A) satisfies the following ordinary differential equa-

tion of second order [4], [10], [11]

(2.13)
[ d2

dx2
− x(2A)2

2(2A + I)

d

dx
+

n(2A)2

2(2A + I)

]
HHn(x, A) = 0, n > 0.

In the next result, the Hermite-Hermite matrix polynomials appear as finite series

solutions of the second order matrix differential equation.

Corollary 2.1. The Hermite-Hermite matrix polynomials are solutions of the

matrix differential equation of the second order

(2.14)
[ d2

dx2
− x(2A)2

2(2A + I)

d

dx
+

n(2A)2

2(2A + I)

]
HHn(x, A) = 0, n > 0.

P r o o f . Replacing n by n − 1 in (2.6) gives

(2.15)
d

dx
HHn−1(x, A)) = 2(n − 1)A HHn−2(x, A).

Substituting from (2.15) into (2.4) yields

(2.16)
d2

dx2 HHn(x, A) = 2nA
d

dx
HHn−1(x, A) = n(n − 1)(2A)2 HHn−2(x, A).

From (2.7), (2.15) and (2.16) we obtain (2.14). Thus the proof of Corollary 2.1 is

completed.

2.2. Expansion of Hermite-Hermite matrix polynomials. Now, we can use

the expansion of Hermite-Hermite matrix polynomials together with their properties

to prove the following result.
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Theorem 2.3. Let A be a positive stable matrix in C N×N satisfying (1.2). Then

we have

(2.17) (2xA)n = n!

[ 1
2
n]∑

k=0

(
2A + I

)k

k!(n − 2k)!
HHn−2k(x, A), −∞ < x < ∞.

P r o o f . By (1.3) and (2.2) we can write

(2.18) exp
(
2xtA

)
=

∞∑

n=0

(2xA)n

n!
tn =

∞∑

n=0

∞∑

k=0

(
2A + I

)k
HHn(x, A)

n!k!
tn+2k

=

∞∑

n=0

[ 1
2

n]∑

k=0

(
2A + I

)k
HHn−2k(x, A)

k!(n − 2k)!
tn.

Expanding the left-hand side of (2.18) into powers of t and identifying the coefficients

of tn on both sides gives (2.17). Therefore, the expression (2.17) is established and

the proof of Theorem 2.3 is completed.

2.3. Hermite-Hermite matrix polynomials series expansions. It is well-

known that the matrix exponential plays an important role in many different fields

and its computation is difficult, see [2], [4], [6] for example. Using Hermite-Hermite

matrix polynomial series we propose new expansions of the matrices exp(xB),

sin(xB), cos(xB), cosh(xB) and sinh(xB) for matrices satisfying the spectral prop-

erty

(2.19) |Re(x)| > |Im(x)| for all x ∈ σ(B).

Theorem 2.4. Let B be a matrix in C N×N satisfying (2.19). Then

exp
(
xB

)
= exp

(
B + I

) ∞∑

n=0

1

n!
HHn

(
x,

1

2
B

)
, −∞ < x < ∞,(2.20)

cos(xB) = exp
(
− (B + I)

) ∞∑

n=0

(−1)n

(2n)!
HH2n

(
x,

1

2
B

)
, −∞ < x < ∞,(2.21)

sin(xB) = exp
(
− (B + I)

) ∞∑

n=0

(−1)n

(2n + 1)!
HH2n+1

(
x,

1

2
B

)
, −∞ < x < ∞,(2.22)

cosh(xB) = exp
(
B + I

) ∞∑

n=0

1

(2n)!
HH2n

(
x,

1

2
B

)
, −∞ < x < ∞(2.23)

and

sinh(xB) = exp
(
B + I

) ∞∑

n=0

1

(2n + 1)!
HH2n+1

(
x,

1

2
B

)
, −∞ < x < ∞.(2.24)
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P r o o f . Let A = 1
2B. By the spectral mapping theorem [2], [4], [6] and (2.19),

it follows that

(2.25) σ(A) =
{ b

2
; b ∈ σ(B)

}
, Re

( b

2

)
=

1

2

{
Re(b) − Im(b)

}
> 0, b ∈ σ(B).

Thus A is a positive stable matrix and taking t = 1 in (2.2), B = 2A gives

(2.26) exp(xB −
(
B + I

)
) =

∞∑

n=0

1

n!
HHn

(
x,

1

2
B

)
.

Therefore, (2.20) follows.

Considering (2.17) for the positive stable matrix A = 1
2B, we obtain that

(xB)2n = (2n)!
n∑

k=0

(
B + I

)k

k!(2n − 2k)!
HHn

(
x,

1

2
B

)
.

Taking into account the series expansion of cos(Bx) and (1.4), we can write

cos(xB) =

∞∑

n=0

(−1)n

(2n)!
(xB)2n =

∞∑

n=0

n∑

k=0

(−1)n
(
B + I

)k

k!(2n − 2k)!
HH2n−2k

(
x,

1

2
B

)

=
∞∑

n=0

∞∑

k=0

(−1)n
(
B + I

)k

k!(2n)!
HH2n

(
x,

1

2
B

)

=

∞∑

k=0

(−1)k
(
B + I

)k

k!

∞∑

n=0

(−1)n

(2n)!
HH2n

(
x,

1

2
B

)

= exp(−
(
B + I

)
)

∞∑

n=0

(−1)n

(2n)!
HH2n

(
x,

1

2
B

)
.

Therefore, (2.21) follows. By similar arguments we can prove the relations (2.22),

(2.23) and (2.24).

Moreover, the convergence of the matrix series appearing in (2.20)–(2.23) and

(2.24) to the respective matrix function exp(xB), sin(xB), cos(xB), sinh(xB) and

cosh(xB) is uniform in any bounded interval of the real axis. Therefore, the result

is established.

R em a r k 2.1. The series developments given by (2.20)–(2.24) have one important

advantage as compared to the Taylor series, from the computational point of view.

In fact, the advantage follows from the fact that it is not necessary to compute the

powers Bn of the matrix B, as well as from the fact that using relationship (2.7),

the Hermite-Hermite matrix polynomials can be computed recurrently in terms of

HH0(x, 1
2B) = I and HH1(x, 1

2B) = xB.
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In the next theorem we obtain another representation for the Hermite-Hermite

matrix polynomials.

Theorem 2.5. Suppose that A is a matrix in C N×N satisfying (1.2). Then the

Hermite-Hermite matrix polynomials have the representation

(2.27) HHn(x, A) = exp
(
− 1

(
√

2A)4
d2

dx2

)(√
2A

)n
Hn(x, A).

P r o o f . It is clear by (1.7) and (2.1) that

exp
(
− 1

(
√

2A)4
d2

dx2

)(√
2A

)n
Hn(x, A) =

∞∑

n=0

(−1)k

k!
(√

2A
)4k

d2k

dx2k

(√
2A

)n
Hn(x, A)

= n!

∞∑

k=0

(−1)k
(√

2A
)−2k

k!(n − 2k)!

(√
2A

)n
Hn−2k(x, A)

= n!

[ 1
2
n]∑

k=0

(−1)k
(√

2A
)n−2k

k!(n − 2k)!
Hn−2k(x, A) = HHn(x,A).

Therefore, the result is established. Using (2.10) and substituting for n the values

0, 1, 2, . . . , n − 1, we get

(2.28)

HHn(x, A) = exp
(
− 2

(
√

2A)4
d2

dx2

)(
x
√

2A
)n

Hn(x, A) =
[
2xA − 2(2A + I)

2A

d

dx

]n

.

Special case: It should be observed that in view of the explicit representation (2.1),

the Hermite-Hermite matrix polynomials HHn(x, A) reduce to the Hermite-Hermite

matrix polynomials H/
√

2AHn(x, A).

3. Another representation for the Hermite-Hermite

matrix polynomials

Let us consider the matrix polynomials

(3.1) Ψn(x, A) = n!

[ 1
2
n]∑

k=0

(−1)kHn−2k(x, A)

k!(n − 2k)!
.

It is clear that

Ψ−1(x, A) = 0, Ψ0(x, A) = I, Ψ1(x, A) = x
√

2A

and Ψn(−x, A) = (−1)n Ψn(x, A).
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Using (1.4), (1.5) and (3.1), we arrange the series

∞∑

n=0

Ψn(x, A)tn

n!
(3.2)

=

∞∑

n=0

[ 1
2
n]∑

k=0

(−1)kHn−2k(x,A)

k!(n − 2k)!
tn =

∞∑

n=0

∞∑

k=0

(−1)kHn(x, A)

k!n!
tn+2k

=
∞∑

n=0

Hn(x, A)

n!
tn

∞∑

k=0

(−1)k

k!
t2kI = exp

(
xt
√

2A − It2
)
exp(−t2I)

= exp
(
xt
√

2A − 2t2I
)

= exp
( x√

2

(
t
√

2
)√

2A − I
(
t
√

2
)2

)

=

∞∑

n=0

Hn

(
x/

√
2, A

)(
t
√

2
)n

n!
=

∞∑

n=0

2n/2Hn

(
x/

√
2, A

)

n!
tn

from which (3.2) follows by equating the coefficients at tn.

We obtain a new generating function which represents the Hermite-Hermite matrix

polynomials Ψn(x, A) by

(3.3)

∞∑

n=0

tn

n!
Ψn(x, A) = exp

(
xt
√

2A − 2t2I
)
.

We obtain an explicit representation for Ψn(x, A) in the form

(3.4) Ψn(x, A) = n!

[ 1
2
n]∑

k=0

(−1)k2k
(
x
√

2A
)n−2k

k!(n − 2k)!
, n > 0

and satisfy the identities

(3.5)
d

dx
Ψn(x, A) = n

√
2AΨn−1(x, A),

Ψn+1(x, A) =
[
x
√

2A − 4√
2A

d

dx

]
Ψn(x, A).

Furthermore, according to (3.5), the Ψn(x, A) are said to be under the action of the

shift operators

(3.6) P̂ =
1√
2A

d

dx
,

M̂ = x
√

2A − 4√
2A

d

dx
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which act on Ψn(x, A) according to the rules

(3.7) P̂Ψn(x, A) = nΨn−1(x,A),

M̂Ψn(x, A) = Ψn+1(x, A).

Since the identity

(3.8) M̂P̂Ψn(x,A) = nΨn(x, A)

holds we use the explicit definition of M̂ and P̂ given by (3.8) to find that Ψn(x, A)

satisfies the ordinary differential equation of the second order

(3.9)
[ d2

dx2
− x

4

(√
2A

)2 d

dx
+

n

4

(√
2A

)2
]
Ψn(x, A) = 0.

We also find

(3.10) Ψn(x, A) = n!

[ 1
2

n]∑

k=0

(−1)k2k

k!

1
(√

2A
)2k

d2k

dx2k

(
x
√

2A
)n

,

which can be used as an alternative to the series (3.4) and can be viewed as an

alternative to Rodrigues’s formula (3.10). By (3.4) and (3.10) we can define Ψn(x, A)

through the operational rule

(3.11) Ψn(x, A) = exp
(
− 2

(
√

2A)2
d2

dx2

)(
x
√

2A
)n

.

Using (3.5), (3.11) and substituting for n the values 0, 1, 2, . . . , n − 1, we get

(3.12) exp
(
− 2

(√
2A

)2

d2

dx2

)(
x
√

2A
)n

=
[
x
√

2A − 4√
2A

d

dx

]n

.

The use of the inverse of (3.11) allows to conclude that

(3.13)
(
x
√

2A
)n

= exp
( 2

(
√

2A)2
d2

dx2

)
Ψn(x, A).

Using some recurrence relations for Ψn(x, A), we easily obtain the relations

(3.14)
dr

dxr
Ψn(x,A) =

(√
2A

)r
n!

(n − r)!
Ψn−r(x, A), 0 6 r 6 n
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and

(3.15) Ψn(x, A) = x
√

2AΨn−1(x, A) − 4(n − 1)Ψn−2(x, A), n > 2.

Using (1.3) and (3.3), we obtain the expansion of
(
x
√

2A
)
into series

(3.16)
(
x
√

2A
)n

= n!

[ 1
2
n]∑

k=0

2k

k!(n − 2k)!
Ψn−2k(x, A), −∞ < x < ∞.

We propose with Hermite-Hermite matrix polynomial series a new expansion of the

matrix exp(xB), sin(xB), cos(xB), cosh(xB) and sinh(xB) for matrices satisfying

the spectral property

(3.17) |Re(x)| > |Im(x)| for all x ∈ σ(B).

Let A = 1
2B2. By the spectral mapping theorem and (3.17) then it follows that

(3.18) σ(A) =
{1

2
b2 ; b ∈ σ(B)

}
,

Re
(1

2
b2

)
=

1

2
{(Re(b))2 − (Im(b))2} > 0, b ∈ σ(B).

Let B be a matrix in C N×N satisfying (3.17). Then it is easy to prove that
(3.19) exp(xB) = exp(2)

∞∑

n=0

1

n!
Ψn

(
x,

1

2
B2

)
,

cos(xB) = exp(−2)

∞∑

n=0

(−1)n

(2n)!
Ψ2n

(
x,

1

2
B2

)
,

sin(xB) = exp(−2)
∞∑

n=0

(−1)n

(2n + 1)!
Ψ2n+1

(
x,

1

2
B2

)
,

cosh(xB) = exp(2)

∞∑

n=0

1

(2n)!
Ψ2n

(
x,

1

2
B2

)

and

sinh(Bx) = exp(2)

∞∑

n=0

1

(2n + 1)!
Ψ2n+1

(
x,

1

2
B2

)
; −∞ < x < ∞.

Moreover, the convergence of the matrix series appearing in (3.19) to the respective

matrix functions exp(xB), cos(xB), sin(xB), cosh(xB) and sinh(xB) is uniform in

any bounded interval of the real axis. Further examples proving the usefulness of the
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present methods can be easily worked out, but are not reported here for conciseness.

The last identities indicate that the method described in this paper can go beyond

the specific problem addressed here and can be exploited in a wider context.

A c k n ow l e d g em e n t. The authors express their gratitude to the anonymous

referee for his/her helpful comments and suggestions.
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