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We consider the differential equation with power nonlinearities

u(n)(t) = (−1)k

m
∑

i=1

pi(t)|u(τi(t))|
λi sgn u(τi(t)), (1k)

where n ≥ 2, m ≥ 2, k ∈ {1, 2}, λm > · · · > λ1 > 0, pi : [0,+∞[→ [0,+∞[ (i = 1, . . . ,m)
are locally Lebesgue integrable functions, and τi : [0, +∞[→ [0,+∞[ (i = 1, . . . , m) are
continuous functions such that

τi(t) ≥ t for t ≥ 0 (i = 1, . . . , m).

A solution u of the equation (1k), defined on some interval [a,+∞[⊂ [0,+∞[, is said
to be proper if it is not identically zero in any neighborhood of +∞.

A proper solution of the equation (1k) is said to be oscillatory if it has a sequence of
zeros converging to +∞; it is said to be nonoscillatory otherwise.

According to [1] and [6], we say that the equation (1k) has Property A if every proper
solution of this equation for n even is oscillatory and for n odd either is oscillatory or
satisfies the condition

lim
t→+∞

u(i)(t) = 0 (i = 0, . . . , n− 1). (2)

Equation (1k) has Property B if every proper solution of this equation for n even either
is oscillatory or satisfies (2) or satisfies the condition

lim
t→+∞

|u(i)(t)| = +∞ (i = 0, . . . , n− 1), (3)

and for n odd either is oscillatory or satisfies (3).

In [3], there are obtained necessary and sufficient conditions for the equation (1k) to
have properties A and B in the case λm < 1. In the present paper, the case is considered
where λm > 1. The results given below are new not only for τi(t) 6≡ t (i = 1, . . . ,m), but
also for τi(t) ≡ t (i = 1, . . . , m), i.e., for the case where the equation (1k) has the form

u(n)(t) = (−1)k

m
∑

i=1

pi(t)|u(t)|λi sgn u(t) (4k)

(compare with results from [1]–[5], [7]–[9]).

2000 Mathematics Subject Classification. 34K11.
Key words and phrases. Linear differential equation with advanced arguments, proper

solution, oscillatory solution, property A, property B.



157

Theorem. Let m0 ∈ {1, . . . ,m− 1}, λm0+1 > 1, n be odd (even), and

+∞
∫

0

tn−2
(

m
∑

i=m0+1

[τi(t)]
λi pi(t)

)

dt = +∞.

Then the condition

+∞
∫

0

tn−1
(

m0
∑

i=1

pi(t)

)

dt = +∞ (5)

is sufficient and, if

+∞
∫

0

tn−1
(

m
∑

i=m0+1

pi(t)

)

dt < +∞, (6)

also necessary for the equation (11) (equation (12)) to have property A (property B).

Corollary. Let m0 ∈ {1, . . . ,m− 1}, λm0+1 > 1, n be odd (even), and

+∞
∫

0

(

m
∑

i=m0+1

tn−2+λi pi(t)

)

dt = +∞.

Then the condition (5) is sufficient and, if (6) is fulfilled, also necessary for the equation
(41) (equation (42)) to have property A (property B).
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