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BIRTH OF AN ELLIPTIC ISLAND IN A CHAOTIC SEA

CARLANGELO LIVERANI

Abstract. I consider a one parameter family of area preserving smooth maps
evolving from a uniformly hyperbolic situation to developing an elliptic region.
I prove that exponentially close to such a family there are maps with positive
metric entropy.

1. introduction

Although it is expected that generic symplectic maps exhibit mixed behavior
(coexistence of integrable and chaotic behavior) almost no examples are available
in which such a situation is present. Noticeable exceptions are the cases where the
two behaviors are separated by a homoclinic or heteroclinic invariant manifold and
an example, due to Wojtkowski [24, 25], of a continuous (but not C1) map of the
torus where the heteroclinic tangle is shown to be of positive measure.

In the first context one can mention the work of Przytycki [20] in which he
constructs a C∞ one parameter family of area preserving toral diffeomorphisms
that crosses the boundary of the set of Anosov diffeomorphisms due to a fixed point
that from hyperbolic becomes first parabolic (this is the boundary diffeomorphism)
and then elliptic. He shows that, for properly chosen families, when the fixed
point becomes elliptic, both an elliptic island and an ergodic component of positive
measure (which is Bernoulli) are present. As already mentioned, the two regions
are sharply separated by an invariant (heteroclinic) manifold. I will call this type of
situations the “Przytycki scenario.” Later various authors constructed examples for
three dimensional flows (e.g., Donnay’s light bulb example [4, 5] of a geodesic flow
on the sphere or the two torus, or the case of a particle moving in a special potential,
always on the two torus, see [6]). More recently, one can mention the “mushroom

Date: January 25, 2004.
It is a real pleasure to thank M.Benedicks. Not only I benefited from several discussions with

him but, most importantly, the entire paper stemmed from the attempt to address some of his

questions. In addition, I am indebted to D.Bambusi, M.Wojtkowski and R.de la Llave for several
relevant references of which I was not aware. Finally, I would like to thank the anonymous referees
and E.Valdinoci for pointing out several misprints and imprecisions. This work has been partially
supported by the ESF programme PRODYN.

1



2 CARLANGELO LIVERANI

billiards” by Bunimovich [3] (closely related to the two ergodic components example
by Wojtkowski [26]).1

The work of this paper is very much in Przytycki spirit and it hints to the fact
that each time a one parameter symplectic family leaves the Anosov class by loosing
hyperbolicity at a single periodic orbit (the orbit becomes first parabolic and then
elliptic), the Przytycki scenario is automatic, provided one is willing to perform an
extremely small deformation of the family.

It should be remarked that the present work has noting to say on the problem
of the frequency of positive metric entropy for symplectic maps. In this respect it
is know that the metric entropy is upper semi continuous [19], yet Mañé [14] has
argued that the metric entropy is zero in a C1 dense set in the complement of the
closure of the Anosov diffeomorphisms (see [2] for a proof). A nice discussion of
problems connected to the metric entropy can be found in [7], (see also [18, 21] for
related issues).

For the shake of clarity I will discuss a concrete one parameter family but the
following could be applied more generally to families that exhibit the “Przytycki
scenario” (see footnote 3).

2. the model

Let us consider the maps2 Tε : T2 → T2

(2.1) Tε(x, y) =

{

x+ y + hε(x) mod 2π

y + hε(x) mod 2π.

Where3

hε(x) = x− (1 + ε) sinx.

On the one hand, if ε = −1, then we have the well known linear automorphism
of the torus, the basic example of Anosov maps. On the other hand, for ε very
large the map becomes increasingly similar to the classical standard map, whose
behavior is known to be very hard to describe. Let us try to follow the changes in
the dynamics as ε increases.

Since the origin is a fixed point for all ε, it is instructive to see what happens to
it: for ε < 0 it is hyperbolic, for ε = 0 it is parabolic and for ε > 0 elliptic. This
turns out to reflect more global properties of the maps.

For ε ∈ (−1, 0) the system is Anosov. For ε = 0 the systems is still hyperbolic
(and mixing), but not uniformly so.4 To see this it suffices to notice that the cone

1I am sure that the above list is far from exhaustive, my goal was simply to emphasize that
there has been a considerable activity in trying to find relevant examples. For a further discussion
of the issue consult the review article [22].

2Note that the following formula is equivalent, by the symplectic change of variable q = x− y,
p = y, to the map

T ε(q, p) =

{

q + p

p+ hε(q + p)

which belongs to the standard map family. Yet, the functions hε considered here differ from the
sine function which would correspond to the classical Chirikov-Taylor well known example.

3Indeed, all the following would apply as well to a more general “Przytycki scenario”. That is
an hε with the following properties: hε(x) = −hε(−x) for all ε; h′0(x) > 0 for all x 6= 0; h′0(0) = 0;

h′′′0 (0) > 0; d
dε
h′ε(0) < 0.

4The map T0 is sometime referred to as Lewowicz map since Lewowicz introduced it in [12].
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C+ := {(u, v) ∈ R2 | uv ≥ 0} is almost everywhere strictly invariant for each ε ≤ 0
and use classical results by Wojtkowski [23] (the mixing follows by [13, 8]).

Here we wish to push our understanding a bit further and investigate small,
positive, ε. The main result of the paper is as follows.

Theorem 2.1. For each ε > 0, sufficiently small, there exists symplectic positive
metric entropy maps T exponentially close to Tε. More precisely,

5

dC2(Tε, T ) ≤ e−cε
− 1

2 and |hm(T0)− hm(T )| ≤ c ε.

In addition, it is possible to choose T ∈ C∞(T2,T2) so that

m({x ∈ T2 | Tε(x) 6= T (x)}) ≤ e−cε
− 1

2
.

Remark 2.2. The above theorem is far from proving that the map Tε itself has
positive entropy. Nevertheless, it shows that any attempt to investigate numerically
the continuity of the metric entropy, as a function of ε, is likely to be doomed due
to the difficulty to distinguish numerically between the maps T and Tε.

Remark 2.3. We will see (Definition 1) that there exists a simple geometric con-
dition to decide if Theorem 2.1 applies to a map T (exponentially close to Tε).

Remark 2.4. Here we consider maps close in the C2 topology, it would be equally
possible to consider perturbations in Ck or C∞ topology, yet such a possibility does
not seem very relevant in the present context.6 It is instead unclear to me if one
can consider analytic perturbations.

The proof of the above theorem is the content of the next section.
More precisely, section 3.1 describes a flow approximation that will allow a precise

control of the dynamics for quite long times. In addition, the perturbations to
which Theorem 2.1 applies are defined. Section 3.2 shows that such perturbations
exist. Section 3.3 uses the results of section 3.1 to gain the needed control on the
dynamics. Section 3.4 describes an eventually strictly invariant cone field for the
perturbations. Finally, section 3.5 concludes the proof.

3. proof

The loss of hyperbolicity of the origin corresponds to a pitchfork bifurcation.
That is, the transition of the origin from hyperbolic to elliptic corresponds to the
creation of two new hyperbolic points. Such points lie on the x-axis at a distance√
ε from the origin. In addition the ellipses associated to the stable point turn out

to be very elongated with an eccentricity of order ε−
1
2 .

To gain a sufficient control on such a picture, and therefore on the dynamics
near the origin, it is natural to rescale the coordinates as to have the hyperbolic
points at a fixed distance and the ellipses with fixed eccentricity.

5Here, and in the following, c and ci stand for positive constants, possibly numerically different
at different occurrences, independent on ε. By hm(T ) we mean the metric entropy of T . By m

we designate the Lebesgue measure.
6In fact, in such a case one would have Tε 6= T on a much larger set which, from my point of

view, would be less interesting, see Remark 3.5. At any rate, one can obtain the needed estimates
in the C∞ setting by using the theory of Gevrey classes for the partition of unity in Lemma 3.1.
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3.1. Blow up. Consider the local change of coordinates Ξε(x, y) := (q, p),

(3.1) q := ε−
1
2 x; p := ε−1y.

The change of coordinates is not symplectic, yet it has constant Jacobian hence the
map T̂ε := ΞεTεΞ

−1
ε is again symplectic. More precisely, we have

T̂ε(q, p) =

{

q +
√
ε
[

p+ ε−1hε(εq)
]

p+ ε−1hε(εq).

where

ε−1hε(εq) =
√
εg(q) + ε

3
2 rε(q) ; g(q) := −q + 1

6
q3.

Thus

(3.2) T̂ε(q, p) =

{

q +
√
ε
[

p+
√
εg(q) + ε

3
2 rε(εq)

]

p+
√
εg(q) + ε

3
2 rε(εq).

Note that T̂ε is a perturbation of the identity, accordingly we can apply the
results in [1] which state that there exists a local (time independent) Hamiltonian
Hε such that the map Ψε, generated by the Hamiltonian flow at time

√
ε, has the

property7

(3.3) ‖T̂ε −Ψε‖Ck ≤ k!C−ke−Cε
− 1

2 ∀k ∈ N.
The Hamiltonian can be computed as a power series:8

(3.4) Hε(q, p) =
1

2
p2 + V (q) +

√
εH1

ε (q, p) ; V (q) =
1

2
q2 − 1

4!
q4.

The phase portrait of such an Hamiltonian flow is depicted in Figure 1. Notice
that, by the usual stability theorems, this implies that T̂ε has three fixed points as
well, one elliptic and two hyperbolic, moreover the two hyperbolic fixed points have
stable and unstable manifolds exponentially close to the one of the flow [9]. In addi-
tion, by KAM theory, there exist invariant tori for the map which are exponentially
close to the separatrices.9 Hence, the true map has an elliptic island exponentially
close to the one of the Hamiltonian Hε, accordingly trajectories coming from out-
side cannot enter in a neighborhood of the origin which is exponentially close to
the elliptic island of the flow. The only substantial difference between the phase
portrait of the flow and the one of the map is that the latter may have a transversal
heteroclinic intersection (one has to compute the related Melnikov integral to verify
the transversality, yet it seems inevitable by genericity).10

The presence or not of the heteroclinic intersection is the dividing wall between
the easily tractable cases that are discussed here and the much more difficult
(generic) situation in which the coexistence between the integrable and ergodic
behavior is intertwined in a cantor set like manner.

7In fact, similar results, although in a less explicit form, are already present in [17] and, at
the formal level, in [16]. More generally, every symplectic map can be viewed as a time one
Hamiltonian flow provided the Hamiltonian is taken to be time dependent [15].

8Simply develop the equation Hε ◦ T̂ε = Hε +O(e−cε
− 1

2 ) in powers of
√
ε.

9This requires a somewhat careful analysis of the KAM estimates to be verified. I do not
indulge in it since it is irrelevant for the task at hand.

10This also is an issue that requires quite a bit of work to be deal with. Yet the argument can
be patterned after the various study of the splitting in a slow pendulum [11].
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Figure 1. Phase portrait (in the part of the region Sε close to the origin)

In the following we will then restrict our considerations to the case in which the
two behaviors have a chance to be divided in a sharp way.

Definition 1. Let Tε,µ be the set of maps T ∈ C2(T2,T2) such that

‖Tε − T‖C2 ≤ e−µε
− 1

2
.

and such that the two hyperbolic fixed points are joined by separatrices.

In other words we consider only maps whose phase space is akin to figure 1. One
may wonder if such a set is empty or not.

3.2. Perturbations. The set Tε,µ is far from empty and, in particular, contains
C∞ maps equal to Tε on a large set.

Lemma 3.1. Given µ small enough, for each ε sufficiently small, there exists
T ∈ Tε,µ such that T ∈ C∞(T2,T2) and the measure of the set {ξ ∈ T2 | Tεξ 6= Tξ}
is smaller than eµε

− 1
2 .

Proof. To exhibit the wanted perturbation we intend to construct a map that, away
from the separatrices of the flow, coincides with the original map while close to them
it coincides with the map Ψε. In particular, T = Tε away from the origin. We can
then restrict our discussion to a neighborhood of the origin and use the coordinates
(3.1).11

To carry out the above program, while maintaining area preserving, it is best to

consider the generating functions of the two maps. Let L(q, p1) = qp1 +
√
ε

2 p
2
1 −

Gε(q), where G
′
ε(q) = ε−1hε(εq), then the map defined by

q1 =
∂L

∂p1

p =
∂L

∂q

is exactly the map T̂ε.

11Note that here and in the following we abuse notations by using T , Ψε both to designate the
maps in the (x, y) and the (q, p) coordinates. This should create no confusion since the coordinate
systems is always clear form the context.
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On the other hand, for ε small enough, calling q, q1 the initial and final (at
time

√
ε) position of a trajectory of the flow, the trajectory is uniquely determined

(e.g., see [10]). Let us call q̄(q, q1, t) such a trajectory (clearly q = q̄(q, q1, 0) and
q1 = q̄(q, q1,

√
ε)). Then the function S defined by12

S(q, p1) := p1q1 −
∫

√
ε

0

L(q̄(q, q1, s), ˙̄q(q, q1, s)) ds

p1 =
∂L
∂ ˙̄q

(q1, ˙̄q(q, q1,
√
ε)),

(3.5)

(where the last equation defines q1 as a function of q and p1) is the generating
function of the map Ψε.

Next, let Γε be the separatrices of the flow, and let Γ̃ε be a C∞ curve, containing
Γε in its interior, such that

1

2
e−

C
4
ε
− 1

2 ≤ inf
ξ∈Γ̃ε

d(ξ,Γε) ≤ sup
ξ∈Γ̃ε

d(ξ,Γε) ≤ 2e−
C
4
ε
− 1

2
.

Note that the curve can be constructed so that its curvature is bounded by c1e
C
4
ε
− 1

2 ,

and the derivative of the curvature is bounded by c1e
C
2
ε
− 1

2 . Let Σε be a c2e
−C

4
ε
− 1

2

neighborhood of Γ̃ε.
13 Clearly the complement of Σε in R2 consists of two con-

nected components, the one containing zero together with the elliptic island, and
the unbounded one. Finally, let χe : R2 → R+ be a smooth function equal to
zero in the bounded component and to one in the unbounded one. In addition,

we require that ‖χe‖C3 ≤ c3e
3C
4

ε
− 1

2 for some c3 large enough.14 Analogously, we
can consider a smooth curve Γ̄ε at the same distance from Γε but inside it, and let

Σ̄ε be a c2e
−C

4
ε
− 1

2 neighborhood of Γ̄ε. We can then consider the smooth function
χi : R2 → R+ equal to one in the bounded component of the complement of Σ̄ε and

to zero in the unbounded one, always with the requirement ‖χi‖C3 ≤ c3e
3C
4

ε
− 1

2 .
Let χ = χe + χi ≥ 0, by construction χ equals zero in an exponentially small
neighborhood of the separatrices and equals one away from it. Finally, define
χ̃(q, p1) := χ(q, p1 − ε−1hε(εq)) and

L̃ := χ̃L+ (1− χ̃)S.

The function L̃ generates a map T which coincides with T̂ε away from the separatri-
ces and with Ψε in a neighborhood of it. Such a map is the perturbation mentioned
in Theorem 2.1 (after the obvious change of coordinates). Notice that, since L and

S must be exponentially close, ‖Tε − T‖C2 ≤ c4e
−C

8
ε
− 1

2 and that the maps differ
only in a set of exponentially small measure. ¤

12Clearly L is the Lagrangian associated to the Hamiltonian (3.4).
13Where c2 < 1

4
is taken sufficiently small, with respect to c1, to insure that in Σε is well

defined the system of coordinates (s, ρ), where s is the arclenght along Γ̃ε and ρ is the distance

from Γ̃ε.
14For example, consider the function g ∈ C∞(R,R) defined by g(x) = 0 for x ≤ 0 and g(x) =

e−
1
x for x > 0. Then define χe(s, ρ) =

g(ρ+δ)
g(ρ+δ)+g(δ−ρ)

, δ := c2e
− c

4
ε
− 1

2
, where I have used the

coordinates introduced in footnote 13.
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Now that we verified the existence of many maps of the wanted type, we can go
back to the study of their dynamics. In fact, thanks to the results of section 3.1, it
is possible to gain a rather precise control on the dynamics near the origin.

3.3. Near separatrix dynamics. By the results of section 3.1 it follows that, for
each T ∈ Tε,µ,

|Hε(T (q, p))−Hε(q, p)|∞ = |Hε(T (q, p))−Hε(Ψε(q, p))|∞ ≤ 2e−µε
− 1

2
.

Hence

(3.6) |Hε(T
n(q, p))−Hε(q, p)|∞ ≤ 2ne−µε

− 1
2
.

Thus the trajectories remain close to the energy levels of the Hamiltonian for an
exponentially long time. Yet, the trajectories of the two maps can diverge much
faster. The best estimates available in such a generality are

|Tnξ −Ψn
ε ξ| ≤

n
∑

k=1

|T k ◦Ψn−k
ε ξ − T k−1 ◦Ψn−k+1

ε ξ| ≤
n
∑

k=1

ec(n−k)
√
ε2e−µε

− 1
2

≤ cε−
1
2 ecn

√
ε−µε

− 1
2 ≤ e−

µ
2
ε
− 1

2
,

(3.7)

provided n ≤ µ
3cε

−1 and ε is small enough.
Analogous estimates hold for the derivatives

|DξT
n −DξΨ

n
ε | ≤

n
∑

k=1

|D
T̂n−k+1ξ

T k−1[DTn−kξT −DΨn−kε ξ
Ψε]DξΨ

n−k
ε |

≤ 4necn
√
εe−

µ
2
ε
− 1

2 ≤ e−
µ
4
ε
− 1

2
,

(3.8)

provided n ≤ µ
6cε

−1.

Lemma 3.2. Let {ξ, T ξ, . . . , Tnξ} be a trajectory from entering to exiting the neigh-
borhood [−

√
8ε,
√
8ε]×[−2ε, 2ε]. There exists L > 0 such that if the trajectory enters

at a distance larger than Le−cε
− 1

2 from the stable manifolds of the hyperbolic fixed
points, then n ≤ CLε

− 1
2 and, in a small enough neighborhood U of ξ,

‖Tn −Ψn
ε ‖C1(U) ≤ e−cε

− 1
2
.

Proof. Note that if the trajectory keeps always a distance larger than O(ε 3
2 ) from

the x-axis, then n = O(ε−1) and the result follows from (3.7), (3.8).15

Let us consider closer encounters for the flow first. Let E∗ be the energy of the
two hyperbolic fixed points, if the energy E of the entering trajectory is smaller than
E∗, then the trajectory remains all the time on the same side of one of the hyperbolic

fixed points. Suppose instead the energy larger than E∗ + Le−cε
− 1

2 . Let p∗(q) ≥ 0
be the equation of the stable manifolds of the hyperbolic points for the flow, the
separatrix and the unstable one (the analysis for p < 0 is completely similar). Note
that p∗ is analytic but at the hyperbolic fixed points. Clearly Hε(q, p∗(q)) = E∗.

Let δE := E −E∗ ≥ Le−cε
− 1

2 and δp(q) be defined by

δE = Hε(q, p∗(q) + δp(q)) −E∗.

15Remember that, setting (xn, yn) := Tn
ε ξ, it follows xn+1 = xn + yn+1.



8 CARLANGELO LIVERANI

Then

δp(q) =
δE

∂Hε

∂p
(q, ζ)

for some ζ ∈ [p∗, p∗+ δp]. By the explicit form of the Hamiltonian (3.4), it follows

(3.9)
δE

4
≤ δp(q) ≤ 4δE

provided |q| is large enough. Accordingly, a trajectory of the flow that enters in the
neighborhood at a distance δE from the stable manifold will exit the neighborhood
at a distance proportional to δE of the unstable one.

Next, consider that if the trajectory gets closer than δ to the hyperbolic fixed
point (in the blown up coordinates) and further away than O(δ) from its stable
manifold, then it will take a time O(ln δ−1) to get to a distance of order one.

Accordingly, the trajectories discussed above will spend at most a time O(ε− 1
2 ) in

a neighborhood of the hyperbolic fixed points. Thus, provided that L has been
chosen large enough, the above scenario will hold also for a trajectory of the map T

due to (3.7), (3.8). Notice that if δE < Le−cε
− 1

2 , then the upper bound of equation
(3.9) will still hold while the existence of the separatrices will anyhow constrain the
motion from entering the internal region. ¤

3.4. A cone filed. Let us fix T ∈ Tε,µ. Let Sε := {(x, y) ∈ T2 | |x| ≤ ε
1
4 },

Mε := {(x, y) ∈ T2 | cosx ≥ (1 + 2ε)−1} and Ω be the whole region outside the
separatrices of the map. Obviously, Ω is an invariant compact set and Mε is more
or less the strip |x| ≤ 2

√
ε, while the fixed points are roughly at |x| =

√
6ε, thus

well outside Mε (see Figure 1). Note that the stable and unstable manifolds of
the hyperbolic fixed points divide Sε into five separate open regions: the region
belonging to the elliptic island, two thin sectors TS on the left and right of the
hyperbolic fixed points and two fat sectors FS below and above the island (see
Figure 1). We define a cone field C on Ω as follows: C(ξ) := C+ for all ξ 6∈ Sε∩FS; if
ξ ∈ Sε∩FS, then let n ∈ N the smallest integer such that T−nξ 6∈ Sε (clearly such a
finite n exists if ξ ∈ Sε∩FS ). Define vn := DT−nξT

n(1, 0) and, for each v ∈ R2, let
αn, βn be such that v = αnvn+βn(0, 1), define then C(ξ) := {v ∈ R2 | αnβn ≥ 0}.16

Lemma 3.3. For ε small enough and T ∈ Tε,µ, the cone field C is eventually
strictly invariant on Ω.

Proof. Let us set ξ = (x, y) and notice that

DξTε(1, u) =

(

1 + h′ε(x) 1
h′ε(x) 1

)(

1
u

)

= (1 + h′ε(x) + u)(1, Fε(ξ, u)).

where

Fε(ξ, u) = Fε(x, y, u) :=
h′ε(x) + u

1 + h′ε(x) + u
.

The derivative of Tε rotates clockwise the vector (0, 1) by an uniform amount, hence
the same holds for the derivative of T . Thus, all is needed is to check the lower edge
of the cone. First, recall that for each ξ 6∈ Mε, DξTεC+ ⊂ int(C+) ∪ {0}, thus the
cone field is strictly invariant outside Sε∩FS. Second notice that, by definition, the
lower edge is exactly invariant as long as the trajectory lies in Sε∩FS, accordingly
all we need to check is that, upon exiting such a region, the lower edge belongs to

16That is, C(ξ) is the sector between the vector vn and the vector (0, 1).
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the interior of C+. To show this we will follow the lower edge along trajectories
increasingly closer to the separatrix using first the map Tε, then Ψε and finally the
dynamics on the separatrix itself to approximate the trajectories of T .

If y ≥ L
√
ε, for L large enough, then the trajectory can spend only one time

step in Mε and, if Tεξ ∈Mε, then DξT
2
ε C+ ⊂ int(C+)∪ {0}. The same result holds

trivially for the map T . Accordingly, the cone field is invariant for T , as long as
the trajectory does not enter in a

√
ε neighborhood of the line {x = 0}. Next, let

us look more carefully at what happens in such a neighborhood.

First of all notice that if |x| ≥ ε
1
4 , then

Fε(x, y, 0) >
ε

1
2

4
.

In addition, if 2ε
1
2 ≤ |x| ≤ ε

1
4 and u ∈ [0, ε

1
2

4 ], then

Fε(ξ, u) ≥ u.

This implies that C(ξ) ⊂ {(1, u) ∈ R2 | u ≥ ε
1
2

4 } if |x| ≥ 2ε
1
2 . Moreover, if |x| ≤ 2ε

1
2

and u ∈ [0, ε
1
2

4 ], then
Fε(ξ, u) ≥ u− cε.

Finally, if |y| ≥Mε and |x| ≤ 2ε
1
2 , then the trajectory exits from the 2ε

1
2 neighbor-

hood of {x = 0} in a time at most 4M−1ε−
1
2 , provided M is chosen large enough.

Accordingly, the second component of the normalized image of the vector (1, ε
1
2

4 ),

when the point exits the dangerous region, is larger than ε
1
2

4 − 4cM−1ε
1
2 ≥

√
ε

8
provided M has been chosen large enough.

This shows that the cone field C is eventually strictly invariant for Tε (hence, by
equation (3.3) and Lemma 3.2, also for T ), unless the trajectory enters the region

Rε := {(x, y) ∈ R2 | |x| ≤ 2ε
1
2 ; |y| ≤ Mε}.17 This last possibility requires a finer

analysis.
For each point ξ ∈ Rε let V (ξ) = (1, V (ξ)), be the flow direction and let N

be the time at which the point exits Rε. The image vector will be dξΨ
N
ε V (ξ) =

λ(1, V (ΨN
ε (ξ)), λ > 0. Obviously, dΨN

ε V ∈ C+ uniformly, see Figure 1. Accord-
ingly, Lemma 3.2 implies that if the trajectory enters in Sε∩FS at a distance larger

than O(e−bε
− 1

2 ), hence N = O(bε− 1
2 ), then DTNV ∈ C+, provided b is chosen small

enough. Since, upon entering Rε, V (ξ) < 0 while V (TNξ) > 0, see Figure 1, it
follows vN > 0, that is DTNC+ ⊂ C+ (that is, the lower edge of the cone is always
above the flow direction).

This easy analysis holds for every map T in a e−µε
1
2 neighborhood of Tε. Unfor-

tunately, it fails for trajectories that border the elliptic island at a distance smaller

than e−bε
− 1

2 . For a simple analysis of these last trajectories it is necessary to as-
sume the existence of a separatrix (i.e. T ∈ Tε,µ). In such a case it is possible to
compare the behavior of the trajectories with the behavior over the separatrix. In
order to achieve this some preliminary considerations are in order.

We start by noticing that, for each u ≥ 0,

(3.10)
∂Fε(x, y, u)

∂x
=

(1 + ε) sinx

(1 + h′ε(x) + u)2
.

17The dotted box in Figure 1.
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Thus, for x ≤ −ε we have ∂Fε(x,y,u)
∂x

≤ − |x|
2 and the same holds for the analogous

quantity of the map T . Now let (1, v∗) be the unstable direction of the hyperbolic

fixed point on the left ξ∗ = (x∗, y∗). It is easy to show that |x∗ +
√
6ε| ≤ cε. If

x ≤ x∗ and D(x,y)T (1, v∗) =: λ(1, u), then the above facts imply that u ≥ v∗. In

other words C(ξ) ⊂ {(u, v) ∈ R2 | v
u
≥ v∗} for each ξ above the stable manifold and

with x ≤ x∗. Next, let (x, γ(x)) be the equation of the upper separatrix. Note that
γ′(x∗) = v∗.

Sub-lemma 3.4. For each ε small enough, the separatrix is convex, more precisely
γ′′ ≤ − 1

2
√
3
.

Proof. Since the stable and unstable manifolds are continuous in the Cr topologies
[9], it suffices to prove the lemma for the flow. This is best done in the blow up
coordinates; recall that in such coordinates the separatrix reads (q, p∗(q)). Using
again the stability of the invariant manifolds it suffices to prove the result for the
Hamiltonian, see (3.4),

H0(q, p) =
1

2
p2 + V (q).

For such an Hamiltonian the energy level of the separatrix is H0 = 3
2 and the

separatrix p0∗ reads, for all |q| ≤
√
6,

p0∗(q) =

√

3− q2 +
1

12
q4 =

√
3(1− 1

6
q2),

Thus (p0∗)
′′ = − 1√

3
and, as already mentioned, by stability analogous estimates

follow for p′′∗ = γ′′ and, finally, for the second derivative of the separatrix of the
map T . ¤

By definition T (x, y) = (x + y + hε(x) + δαε(x, y), y + hε(x) + δβε(x, y)), with

0 ≤ δ ≤ e−µε
− 1

2 . Hence, for each two points (x, y), (x, y′), y′ ≥ y, setting (x1, y1) :=
T (x, y) and (x′1, y

′
1) := T (x, y′), one has

y′1 − y1 = x+ y′ + hε(x) + δαε(x, y
′)− x− y − hε(x) − δαε(x, y)

= (1−O(δ))(y′ − y) ≥ 2(y′ − y)

3
> 0

x′1 − x1 = y′1 − y1 +O(δ)(y′ − y) ≥ y′ − y

2
> 0,

that is, higher points are pushed more on the right (the map is close to a twist).
Accordingly, for (x, y), x ≥ x∗ and y > γ(x), setting (x1, γ(x1)) := T (x, γ(x)) and
(x′1, y

′
1) := T (x, y), holds true

λ(x)(1, u) := D(x,y)T (1, γ
′(x)) =D(x,γ(x))T (1, γ

′(x)) +O(δ|y − γ(x)|)
=λ̃(x)(1, γ′(x1)) +O(δ|y − γ(x)|).

The above inequality shows that the evolution of the tangent vectors is sharply
controlled by the evolution on the separatrix. We are now ready to exploit the
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convexity of the latter. Since x′1 − x1 >
y−γ(x)
2 , it follows

u = γ′(x1) +O(δ|y − γ(x)|)

> γ′(x′1) +
1

4
√
3
|y − γ(x)|+O(δ|y − γ(x)|)

≥ γ′(x′1) +
1

8
√
3
|y − γ(x)| > γ ′(x′1).

(3.11)

In other words, calling ξ∗ = (x∗, y∗) the hyperbolic fixed point on the right,
C((x, y)) ⊂ {(u, v) ∈ R2 | v

u
≥ γ′(x)}, for all x ≤ x∗.

The same argument as in equation (3.11) shows that if (x, y) and (x−1, y−1) :=
T−1(x, y) are such that x ≥ x∗ and x−1 < x∗, y−1 > γ(x−1) then there exists
c∗ > 0 such that C((x, y)) ⊂ {(u, v) ∈ R2 | v

u
≥ v∗+c∗(y−y∗)}, where v∗ := γ′(x∗).

Clearly (1, v∗) ∈ R2 is the stable direction of the hyperbolic fixed point ξ∗. Then
equation (3.10) implies that, for (1, v) ∈ C, setting D(x,y)T

n(1, v) =: λn(1, vn)

and Dξ∗T
n(1, v) =: λ̃n(1, ṽn), vn > ṽn. By usual distortion arguments, we can

essentially consider the evolution linear until the distance from the fixed point is

of order
√
ε, this will take a time of about n ∼ | ln(y − y∗)|ε− 1

2 , at the same time,
under the action of Dξ∗T , the stable component of (1, v) will shrink by a factor
(y − y∗)−1ε and the unstable component will expand by the same factor. This
clearly means that ṽn > 0. Hence the cone field will be strictly invariant upon
exiting the region Sε ∩ FS. ¤

3.5. Positive entropy. We have thus proved that for each map T ∈ Tε,µ there
exists a measurable cone field C which is eventually strictly invariant on the invariant
set Ω (the region outside the separatrices). It follows from [23] that the Lyapunov
exponents are positive in Ω. Since the cone field is continuous (actually constant)
on the open set U := Ω\Sε, [13, 8] imply that U belongs to one ergodic component.
Since Ω is equal almost everywhere to the union of the images of U it follows that
Ω consists of only one ergodic component. In addition, (Ω, T ) is mixing, [8].

Accordingly, the entropy hm(T ) of T is given by

hm(T ) =

∫

T2

λ+(x)dx =

∫

Ω

λ+(x)dx +O(ε 3
2 ) = λ+Ω +O(ε 3

2 ),

where λ+ is the positive Laypunov exponents and λ+Ω is its a.e. constant value on
Ω. Moreover, calling vu the unstable direction, ‖vu‖ = 1,

λ+Ω =
1

m(Ω)

∫

Ω

ln ‖DTvu‖.

Next, notice that, outside a
√
ε neighborhood of zero, vu ∈ C+. On the other hand

‖DT0−DT‖ = O(ε), it is then easy to verify that, calling v0u the unit unstable vector

of T0, in the complement of the set [−ε 1
3 , ε

1
3 ]×[−ε 2

3 , ε
2
3 ] it holds true vu−v0u = O(ε).

We can then compute

λ+Ω =

∫

T2

ln ‖DT0v0u‖+O(ε) = hm(T0) +O(ε).

We have thus a one parameter family of maps (exponentially close to the initial
one) for which the metric entropy is continuous at ε = 0. Similar arguments can
be used to show continuity at ε 6= 0 for ε sufficiently small.
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Remark 3.5. Notice that if we choose the special map constructed in Lemma 3.1,
then also the time averages for L∞ functions, with respect to Tε or T , differ (in
L1) by an exponentially small amount for an exponentially long time.
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