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ON HADAMARD TYPE POLYNOMIAL CONVOLUTIONS
WITH REGULARLY VARYING SEQUENCES

Slavko Simié

Abstract. For a sequence of polynomials Pp(x) := ngnpma:m, n 2 1, we give a neces-
sary and sufficient condition for the asymptotic equivalence

PT(LQ) (z) = Z CmPma™ ~ cn Pn () (n — 0),

m<n

to hold for each z 2> A and an arbitrary regularly varying sequence {cp} of index @ € R.

Introduction

A sequence {py, }n>1 of non-negative numbers generates a sequence of polyno-
mials {P,(z)}n>1 defined by P, (2) := 3, <, pma™.

A sequence {cy, }n>1 of positive numbers is regularly varying with index o € R
if it can be represented in the form ¢, = n®¢,, where {{,} is a slowly varying
sequence, i.e. satisfying £[y,,] ~ £n (n — o0) for each A > 0 ([1], [2]).

Some examples of slowly varying sequences are:

log(n +1), a € R; log’(log(n+ 1)), b€ R; exp(log®(n+1)), 0 < ¢ < 1.
Our task here is to investigate asymptotic behavior of Hadamard-type convolutions
P,(La)(x) = ngn CmPmx™ as n — oo (cf. [2]).

In [2] we introduced an operator T'f(x) in the following way.

DEFINITION. Let f € C*°[0,00). Then

Tf(z) = x}{(g)

Under a more general framework, we obtained asymptotic behavior of P,(la)(z)
supposing

T(TP,(z)) < M, (I)

where M does not depend on n or z.
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In this paper we find a necessary and sufficient condition for the given asymp-
totics avoiding the somewhat ambiguous condition ().

Results

THEOREM. Let A be a positive number. Then the asymptotic relation
P?’(La) (17) ~ naénP”(:zj) (n - OO), (1)

holds for each x > A, a € R, and an arbitrary slowly varying sequence {{,}, if and
only if
_AP(4)

TP,(A): P, (A)

~n (n— o). (2)

Proof. Denote Qy(z) :== >, <,
necessary if we put in (1): a =1, £, =1,
proved using the following lemmas.

P, (z). We can see that the condition (2) is
x = A. That it is also sufficient can be

LEMMA 1. Under the condition (2), for each real oo we have

(1) n®Qn(A) = 007 (ii) Y mpmA™ ~n®Py(4)  (n— ).

m<n
LEMMA 2. We have sup,,, (mlm,) ~ nly; infpcn (b /m) ~ £y /n (0 — 00).

2Py ()
P, ()

LEMMA 4. (Stoltz’s lemma) If ngn by — 00 and an /b, — 8 as n — o0,

then
Zam/me—ns (n — ).

m<n m<n

LemMA 3. The function x —

s non-decreasing for x > 0.

Proof of Lemma 1. By partial summation we get ngn mp, A™ =
(n+1)P,(A) — Qn(A). Hence, the condition (2) is equivalent to

nPn(4)/Qn(A) = o0 (n— ) 3)

Therefore, for n > ng and fixed o € R, we deduce

nP,(A) L Qu(A) = Qua(A) _al+1,
Qn(A) > ‘Otl + 17 Qn(A) > n 3
QCSLZX?) . lal+1 exp(_Iocl +1,

Hence
Qn(A) > exp((Ja +1) > 1/m) > exp((Ja] + 1) logn),

m<n

i.e. n®Q,(A) > notlelt1 and the part (i) is proved.
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Denoting Ar,, := 7,41 — Ty, by (3) we get
Pn_(A)AnO‘ I P, (A)An® S (- o).
Ane=1Qn-1(A)) n 1P, (A) + Qn(A)Ana—1
Now, applying part (), Stoltz’s lemma and (3), we obtain
=Y Pu(A)Am® ~ an®'Qu(A) = o(n®Py(A))  (n— ).

m<n

Therefore, by partial summation we get

Z mopmA™ = (n+1)*Pp(A) = Sp(A) = (n+1)*Py(A)+0(n®P,(A)) (n — o0),

m<n

and the part (i7) of Lemma 1 is also proved. m

Lemma 2. is proved in [1, p. 23].

Proof of Lemma 3. Indeed, for z > 0 by Cauchy’s inequality, we get

2
d (:EP/( )) _ ngn m2pm$m B (ngn mpm$m> >0

dx n($) ngn PmT™ Emgn Pm@™

Hence TP, (z) is monotone non-decreasing for > 0. m
Stoltz’s lemma is a classical one and is proved, for example, in [3, p. 30].

Now we can give the proof of the Theorem at the point x = A. By Lemmas 1
and 2, as n — 0o, we get

= Z M pm A™ < sup (mly, Z m* 1 p A™ ~ nl, P, (A),
m<n msn m<n

and

o mos g a+1 m
; m Ly, pm A™ > ﬂ11151(&,1/771) Z< m*Tp,, A n“, P, (A).

Hence
1 < liminf(P{*)(A)/n%¢, P,(A)) < limsup(P{Y(A)/n*l, P,(A)) < 1,
and the proof is done. m
For x > A, by Lemma 3, we obtain
n~ AP!(A)/P,(A) < zP.(x)/P,(x) < n.

Hence P} (x)/Pn(x) ~n (n — oco) and we can apply the previous proof replacing
A by z.

COMMENT. As the referee notes, the condition (2) is certainly less opaque then
the former condition (I), but it still is opaque in that one has to do a calculation
and some asymptotic approximations to decide if a candidate sequence satisfies it.
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There is also a problem to determine the least possible A such that (2) holds.

For instance, if p,, = a™ for some a > 0 then (2) holds for A > 1/a and fails
for A< 1/a.

Also, if p,, = 1/n! then (2) never holds; but for p,, = n! an easy calculation
shows that (2) is valid for all A > 0.

Therefore we shall establish two simple criteria which can help to decide if a

given sequence {p,} satisfies (2) or not.

PROPOSITION 1. If A lies inside the interval of convergence of > ppx™ then
the condition (2) fails.

Proof. We have, as n — 00, > PmA™ — P(A), and consequently,

m<n

> mp A™ — AP'(A).
m<n
Hence TP, (A) -0 (n — c0). m

But the divergence of > p, A" does not imply that (2) is true. This can be
seen from the following example.

Let p,,, = 1 if m is in the factorial form and p,, = 0 otherwise. Then
Prg1y-1(A) = A g ADE
For A > 1, we have Pp,11y1-1(A) ~ A™ and
AP,y (A) =nlA™ + (n — DIAPD 4o nlA™ (0 — o0).

Therefore |
n.'_1_>0 (n — o00).

TP Ao —————
('n+1)!71( ) (TL+1)

PROPOSITION 2. [f, for some A > 0,

: L pn )
lmn(l—— = +4o00, 4
n—oo ( Apn+1 ( )

then (2) holds.

Proof. Note that the condition (4) implies just a finite number of p,, = 0. Also,
by Raabe’s convergence criteria, Y p, A™ diverges.

Now, the condition (4) is equivalent to

1 o
tin=1) (1_prn1> e

ie.
(npr, A" — (n — 1)pn_1A"*1)/pnA” — +00.
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Applying Lemma 4, we get ngn PmA™ /np, A" — 0 (n — 00). It follows that

np, A"
npp A" + ngn_l P A™

-1 (n— o),

i.e.
npy, A"
N
n ngn pmA™ — (n — 1) ngnfl pmA™

Applying Lemma 4 again, we obtain the condition (2). m

1.

Now it is not difficult to verify the above examples using Propositions 1 and 2.
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