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A MASS PARTITION PROBLEM IN R*
Aleksandra S. Dimitrijevié Blagojevi¢

Abstract. The paper considers the existence of the maximal possible hyperplane partition
of a continuous probability Borel measure in R*. The emphases is on the use of the equivariant
ideal valued index theory of Fadell and Husseini. The presented result is the tightest positive
solution to one of the oldest and most relentless partition problems posed by B. Griinbaum [12].

1. Statement of the main result

A mass/measure partition problem is one of the most interdisciplinary prob-
lems in geometric combinatorics with different aspects ranging from convex geom-
etry ([12], [1], [2]), equivariant topology (3], 4], (5], [14], [15], (9], (6], (8], [19)),
to theoretical computer science ([17], [16]). The problem we discuss is the shining
beacon of this part of geometric combinatorics. First introduced by B. Griinbaum
in 1960, [12], positively answered in dimension n = 3 by H. Hadwiger [13] and
negatively answered for n > 5 by D. Avis [2], the problem persisted against all
attacks in the dimension 4 ([15], [19]) and remained open.

The general problem considers a mass distribution x4 in R™ and looks for a
collection of n-hyperplanes Hy,..., H, such that each of the 2" hyper-orthants
contains the same amount of measure p, i. e.

(V (01s-- o) € {0,13") p(H M-+~ N H™) = p(R),

where H" denotes the appropriate closed halfspace determined by H;.

Here we try to understand how the conditions could be modified, without extra
assumptions on the measure, in such a way that instead of a complete equipartition
we obtain an almost equipartition.

THEOREM 1. Let i, v and n be mass distributions in R*, assuming that u, v,
n are finite continuous Borel measures defined by some integrable density functions.
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Then there exist four different hyperplanes Hy, Ho, H3, Hy and consequently sixteen

4-orthants H{* N H* NH* NHJ* = Op, 0005045 (01, ..,04) € {0,1}*, such that
M(Ooooo) = M(Ooom) = M(00101) = ,U(OOIH)

= 1(O1000) = 1(O1010) = 1(O1101) = 1(O1111), (1)
1#(O0001) = 1(O0011) = 1(O0100) = 1(Oo110)

= 11(O01001) = p(O1011) = (O1100) = p(O1110) (2)

and the hyperplane Hs equiparts the remaining two measures v and n, i.e.

Z v(Ogon) = Z v(Og1n), (3)

g€{0,1}2,he{0,1} g€{0,1}2,he{0,1}
Z 77(090h) = Z n(oglh)-
g€{0,1}2,he{0,1} g€{0,1}2,he{0,1}

REMARK 2. The result for u is not a consequence of the fact that in R* for
every mass there exist three hyperplanes which equipart it. For example, if
(A) Hy = Hs then pu(Op14x) = (O104x) = 0; this would imply that all orthants
have measure zero providing obvious contradiction;

(B) Hy = —Hj then p(Ogpss) = p(O114+) = 0; and again all orthants have measure
zero providing the same contradiction;

In the similar way the remaining possibilities can be tested.

REMARK 3. The result concerning the measure g is highly relevant to the
Grinbaum equipartition problem in dimension 4. Moreover, after it was proved in
[19] that a CS/TM scheme fails to provide the existence of an equipartition, this
result is the best known approximation (without imposing any additional constrains
on the measure p).

2. History of solution efforts

One of the first attempts of solving similar problems was by E. Ramos [15]. He
introduced a more general problem which as a special case contained our problem.
Briefly, he wanted to find all triples (d, j, k) such that for every j mass distributions
Hiy-ey [y ian

(3 Hy, ..., Hy hyperplanes in R?) (Y (ay,...,0%) € {0,1}%)
V7 efl, g} pe(HP A0 HYY) = 2B,

The triples (d, j, k) were traditionally called admissible. As a tool from topology
Ramos used a specially modified version of Borsuk-Ulam theorem for “even-odd”
maps of the form f: S~ x...x §4~1 — R". The method allowed Ramos to attain
very interesting results, for example (5,1,4), (9,3,3), and (9,5,2) were proved to
be admissible.
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The general problem of Ramos is discussed via CS/TM paradigm. The Config-
uration Space/Test Map paradigm is a tool for systematic derivation of topological
lower bounds for combinatorial problems. The partition problem of Ramos can be
reduced to the problem of the existence of a W), = (Zg)k X Si map

(SH* — S(UF)

where U,?J is an appropriate Wj-representation.

The paper by R. Zivaljevié [19] discussed the problem we are interested in. He
used the stated reduction to a problem of the existence of a Wy = (Z2)* x S4 map
(S*)* — S(Uy). Using the Koschorke’s exact singularity sequence, unfortunately,
he proved that a Wy-map X — S(U,), for a concrete relevant subspace X C (S4)4,
exists. This means that a particular reduction is of no help in solving the partition
problem. With an extra assumption of the symmetry on the mass distribution, he
obtained the positive answer to the equipartition question.

3. The proof of Theorem 1

The proof of the theorem has two stages. First we use the CS/TM scheme
to translate the partition problem to an equivariant one. Second, we use the ideal
valued index theory of Fadell-Husseini to solve the associated equivariant problem.

3.1. The CS/TM scheme

The configuration space X. Let X be the space of all collections of four
oriented affine hyperplanes in R* such that each one equiparts the measure u.
It is not hard to see that for every direction (unit vector) in R* there exists a
unique oriented affine hyperplane orthogonal to a given direction that equiparts
the measure. Therefore, the configuration space is X = (S%)%.

The test map M. Let us recall that every hyperplane H in R* determines
two closed halfspaces H° and H'. The orientation of H introduces the order on
halfspaces, for example H° < H', such that the change of orientation flips order,
H' < HO. Therefore, the collection of four oriented hyperplanes Hi, Ho, Hs, H,
in R* defines 16 hyper-orthants. To relax the definition of the test map M, let
us assume that coordinates of each copy of R are indexed (when it suits us) by
the binary words of length four or by the elements of the group Z3. The test map
M : (93)* — R16 @ R @ RS is defined by

M(Hy, Ho, H3, Hy) (i, i i5,i0,0) = p(H N HY N HY N H) — 5 p(RY),

24
M(Hy, Hoy H3, Hy) (i, i ig,ia,1) = V(Hfl N HziQ N H?z,d N H}f) - Q%V(RA)»
M(Hy, Hoy H3, Ha) (i, i ig,i0,2) = n(Hfl N Hérz N H:é& N Hff) - g%ﬁ(Rél)a

where R16 @ R'6 @ R16 is indexed by the elements of the group Zj @ Z3. Here
the elements of the group Zs distinguish between three measures u, v and 7. The
assumption that each hyperplane of a four-tuple (Hy, Ho, Hs, Hy) in X equiparts
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the measure allows the reduction of the codomain R*® @ R® @ R®. The codomain
of the map M is a subspace U of RI6 @R® RIS defined by the following equalities:

D Tiyiniz00 = D Tiyinizl05 D Tiyin0is0 = Y Liyinliz0

> Li10i2i30 = > Liq1i24305 > L0iyi2i30 = > T14142430

D Tiyinizia0 = 05 D0 Tiyinigia1 = 05 D0 Tiyigizisz = 05
where sums are over all i1isiz € Z3 and over all i1igizis € Z3. Thus M((S®)*) C U,
where U is a linear space of dimension 41 = 48 — 7.

The Z3 action. The group Z, acts antipodaly on 2, i.e. in our interpretation
of the sphere S the action presents an orientation change of a hyperplane. Thus
the group Z3 acts on the product (S%)?%, and the action is free as a product of
free actions. The group Z3 also acts on R*® = R0 ¢ R16 @ R!® by permuting the

following way
(Vg € Z3)(Yw = u X i5 € Z3 X Z3) g € = €guxis-
The following statements are obvious considering definitions.

PROPOSITION 4. (1) The subspace U is a Z3 invariant subspace of R*8.
(2) The test map M : (S®)* — U C R*® is a Z3-equivariant map.

The test space. Let T be the minimal Z3-invariant space inside U containing
the linear subspace U N L where L is defined by equalities

Z00000 = 00100 = £01000 = L01100 = L10010 = 10110 = 11010 — L11110;

Z00010 = 00110 = 201010 = 01110 = 10000 = £10100 = 11000 = T11100;

Z Tgohl = Z Tg1hl (4)

9€{0,1}2,he{0,1} 9€{0,1}2,he{0,1}
Z Lgoh2 = Z Tg1h2-
9€{0,1}2,h€{0,1} 9€{0,1}2,h€{0,1}

Here the coordinates of R*® are indexed by elements of the group Z3 & Zs. Since L
is a Zj-invariant subspace, the test space is UN L. It is not hard to compute that
the codimension of U N L inside U is 12.

We have proved the central proposition of the CS/TM scheme, which relates
a partition problem with a problem of the existence of an equivariant map.

PROPOSITION 5. (A) If there is no Z3-equivariant map
(83 U\ LCR*®

(with already defined actions), then there exists a solution of the mass partition
problem stated in Theorem 1.
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(B) If there is no Z3-equivariant map
(8% — S(UNL)") CR®

(with already defined actions), then the statement of Theorem 1 holds. Here (UNL)*
denotes the orthogonal complement of UNL inside U and S((UNL)™L) the associated
unit sphere.

REMARK 6. The statement (B) follows from the fact that there is a Z3 defor-
mation retraction U\L — S((UN L)1). The sphere S((UN L)1) is 11 dimensional.

3.2. Z3%-index of (S3)* and S(UN L)L)
Corollary 10 implies that Zj3-index of the product (53)* is

Indzs ((S°)*) = (83, 3, 85, 1) C Fa[t1, b, t3,ta]. (5)

Index of the sphere S((UN L)*) can be computed using Proposition 12. Let e; ;;

. ;e16,; denote the vectors of the standard basis of the i-th copy of R'6. The
first index in the notation of the base vectors e, ; is the decimal value +1 of the
binary number obtained from an element of Z3 indexing the coordinates of R!S.
For example, e1,; = epooo,; and ez ; = egpo1,;- On the other hand, let vy 4; ... ;v16,
be the vectors of the Z3-invariant basis of the i-th copy of R'6 given by (to simplify
the notation, we dropped the second index for the moment)

v1 =e€1 t+ex+e3teqst+es+estert+es—eg—ejp— €l —€l2 — €13 — €14 — €15 — €16,
vy =e1t+extezt+eqs—e5—eg—er —eg+eg+eip+ern +e2 —ei3 —eiq —eis — ele,
v3=e€1 +ex—e3 —€eq+es+es—er —egt+eg+ejp—err —ei2+e13+eq — €15 — €ip,
Vg =e€e1 —ext+e3—eqst+es —est+er—esgt+eg—eiot el —ei2+e1s —eis+ eis — €elg,
vs =e1t+exte3tes—e5—esg—er —eg—eg—e1p —ell — €12 +e13 + eiq + €15 + e,
ve =e€e1 +ex—e3 —est+es+e—er—eg —eg—ejot el +e2 —eis3 — e+ eis + eig,
v7 =ep —ex+e3—eqt+es —est+er—eg—eg+eip—er1+e12 —ei1s3 +elq — eis + eie,
vg =e1t+ex—e3—eqs—e5—egt+ert+eg+eg+eip— el —ei2 —e13 —eiq + eis + eip,
Vg =e1 —ex+e3 —eq—e5+e—€e7rt+egt+eg—ejo+ e —ei2 —ei3+ eq — €15 + €eip,
vip =€e1 —ez —e3 t+es+e5s—es —er+eg+eg—eip—e11+ ez +e13 —eiq —els + e,
Vi1 =e1+e2—e3 —eq —e5 —egt+er+eg—eg—eio+ein+e2+ei3+eiq —eis — eis,
vi2 =e1 —e2+e3 —eq4 —e5+es —ert+eg—egteip—eint+ei2+e3 —eis+eis — e,
vi3 =e1 —e2 —e3 t+eq+e5 —eg —er+eg—eg+ e+ el —ei2 —ei3+eiq +eis — e,
vig =e1 —e2 —e3+eq4—e5+est+er—egteg—eip—eil+ei2 —ei3+eiq+eis — e,
vis =e1 —e2 —e3 t+eq4 —es5+est+er —eg—eg+ e+ el —ei2+ €13 —eiq —eis + €eie,
vig =e1+e2+e3zt+es+es+es+er+esg+eg+eio+err+e2+ei3+eis+eis + e

Let V; = span{v;}, for i € {1,...,16}. Then Proposition 12,A implies that

Indzs (S(V1)) = (t1); Indzs(S(V2)) = (t2); Indza(S(V3)) = (t3); Indzs(S(Va)) = (ta);
Indzs (S(Vs)) = (t1 +t2); Indza (S(Vs)) = (t1 +t3);  Indza(S(V7)) = (t1 + ta);
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Indzs(S(Vs)) = (t2 + t3); Indzs (S(Vo)) = (t2 + ta);  Indgs(S(Vio)) = (ts + ta);
Indzs (S(Vi1)) = (t1 +t2 +t3);  Indza(S(Vi2)) = (t1 + 12 + ta);
Tndys (S(Vis)) = (b1 +ts + ta); Ty (S(Vi)) = {t + 5 + ta);
IndZ%(S(Vm)) = (t1 +to +t3 + ta); IndZ%(S(Vm)) = (0).

A simple computation in some linear algebra package (like Mathematica or Maple)
confirms:

(Un L)J‘ = span{vs,0, V6,0, V8,0, ¥9,0, V10,0, V11,0, V12,05 V13,0, V14,0, V15,0, V3,1, V3,2 } -
(6)
Then by the statement (B) of Proposition 12
Indzs (S((UN L)) = ((t1 + ta) (tr + t3) (2 + t3) (b2 + ta) (t3 + ta)
(t1 +t2 +t3)(t1 + ta + ta)(t1 + 3 + ta)(t2 + t3 + ta)
(t1 +to +t3 + t4)t3) C Folty, to, t3,t4]. (7)
A direct computation in the polynomial ring Fo[tq, ta, t3,t4] implies that
Indzs (S((UN L)) = (p(t1, ta, ts, ta)) C Falty, ta, t3, L] (8)
where
Pty ta s, t) = 94385 + (1045 + 190283 + 1545 + oty + 1545 + 11E5t51
+ 1352ty 4 U tataty 4 titataty + 155, + titatSty + 13158,
+ tatatty + 1651505 + 1t t5] + t1e3t5t] + 0653
+ HEH + tHtatSt] + t1t3t] + tatat] + titatit]
F st 1St | 36 |+ 115t + O tat5ts + t5tat3t]
+ 5L+ 3] + T + 5] + Hatt] + titat3e]
2SS et LSS 4 251D 4 titotit] + totatats
+ tytstat + atS + 3631 + 11515 + o515, (9)
Since p(ti,t2,t3,ta) — t§13t3t5 € Indga((S®)*), it follows that p(ti,t2,t3,t1) ¢
Indgs ((S3)*) and consequently
Indz ((S°)*) 2 Indza (S((UN L))

Therefore, the basic Proposition 7 of the ideal valued index theory implies that
there is no Z3 equivariant map

(S = S(UN L)),

Now Proposition 5,(B) provides the final argument for the statement of Theorem
1. m
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4. Appendix: The Fadell-Husseini index theory

For the more complete presentation of the material in the appendix consult
following papers [11], [18] and [7].

Indg-definition. To every group one can associate a classifying space BG and
the universal G-bundle EG — BG which has expected natural properties. G-space
X induces by Borel construction a G-space EG x¢ X and a homotopy unique map
mx: EG xg X — BG. For a given field K, that map induces a ring homomorphism
in cohomology

7% : H*(BG,K) - H*(EG x¢ X, K).

The cohomology index of a G-space X is the ker ideal of 7%, i.e.,
Indg(X) = kerny C H*(BG, K).
We state the fundamental index monotonicity property.
PROPOSITION 7. Let X and Y be G-spaces and f : X — Y a G-map. Then
Indg(X) 2 Indg(Y).

Proof. Functoriality of all constructions implies that the following diagrams
commute

EGxe X 1 EBGxey  H(EGxeX,K) <= H*(EG x¢ Y,K)

N S N S
BG H*(BG,K)
ie., mx = fomy and % =7} o f*. Thus ker % D kern}.. m
ExaMpPLE 8. Let the sphere S™ be a Zy space with the antipodal action. The

cohomology ring H*(BZ2,F5) is the polynomial ring Fs[t]. Zo-index of S™ is the
principal ideal generated by t™*!:

Indz, (S™) = (t"*1) C Fyt].
The Index of a product of two spaces. Let X be a G-space and Y
an H-space. Then X x Y has the natural structure of a G x H space. The
immediate question arises: Is there a relation among the three indexes Ind gy g (X X

Y), Indg(X), and Indg(Y)? Using Kiinneth formula one can prove the following
proposition.

PROPOSITION 9. Let X be a G-space and Y an H-space and
H*(BG,K) 2 Klzy,...,z,], H(BH,K) 2 Kly1, ..., Yn]
the cohomology rings of the associated configuration spaces. If

Indg(X) = (f1,..., fi) and Indg(Y) = (g1, ..., 95),
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then IIldGXH<X X Y) = <f1,. . .,fi,gl,. .. ?gj> - K[J}l, ey Ty Y1, ,yn]
Index of a torus can be computed using this proposition and Example 8.

COROLLARY 10. Let 8™ x --- x S™ be a Z5-space with the product action.
Then
Indge (S™ x -+ x ™) = (#7F et CFalt, .. ).

Index of a sphere. We would like to know how to compute the index of a
sphere that is not equipped by Z, antipodal action only. The following two practical
propositions are of significant importance.

PROPOSITION 11. Let U and V' be two G representations and S(U), S(V)
associated G spheres. If G is preserving the orientation of the spheres S(U), S(V)

and
Indg(S(U)) = (f) and Inde(S(V))=(g),

then
Inde(S(U & V) = (f - g) € H*(BG,K).

In case of Z& group it is known that each irreducible representation V is one-
dimensional. Every such representation is identified with a group homomorphism
€:75 — Z,, where Zo = {41, —1} is a multiplicative group. Thus, it is completely
determined by a 0-1 vector £(V) = (au, ..., ax) € F5 defined by equality

Elwi) = (1), ie{l,...,k}
where w; is the generator of the i-th Zs copy in Z’QC.

PROPOSITION 12. (A) Let V' be an 1-dimensional Z§ representation with the
associated 0-1 vector (o, ..., o) € F5. Then

Indzg (S(V)) = <C¥1t1 + e+ Olktk> g FQ[tl, . ,tk].

(B) Let U be an n-dimensional Z5 representation with a decomposition U =
Vie---aV, in 1-dimensional Z’g representations Vi, ..., Vy. If (14, ..., 0p5) € F’g
is the associated 0-1 vector of V;, then

n

Indzlzc (S(U)) = <H(O[1Z‘t1 + -+ Oékitk» - Fg[tl, ... ,tk].
=1
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