ON SANDWICH THEOREMS FOR SOME SUBCLASSES OF ANALYTIC FUNCTIONS INVOLVING EXTENDED MULTIPLIER TRANSFORMATIONS

M. K. Aouf, A. Shamandy, R. M. El-Ashwah and E. E. Ali

Abstract. In this paper we derive some subordination and superordination results for certain normalized analytic functions in the open unit disc, which are acted upon by a class of extended multiplier transformations. Relevant connections of the results, which are presented in this paper, with various known results are also considered.

1. Introduction

Let H(U) be the class of analytic functions in the open unit disc $U = \{z \in \mathbb{C} : |z| < 1\}$ and let H[a, n] denote the subclass of the functions $f \in H(U)$ of the form

$$f(z) = a + a_n z^n + a_{n+1} z^{n+1} + \dots \quad (a \in \mathbb{C}).$$
(1.1)

Also, let A(n) be the subclass of the functions $f \in H(U)$ of the form

$$f(z) = z + \sum_{k=n+1}^{\infty} a_k z^k,$$
 (1.2)

and set $A \equiv A(1)$.

For $f, g \in H(U)$, we say that the function f(z) is subordinate to g(z), written symbolically as follows:

$$f \prec g$$
 or $f(z) \prec g(z)$,

if there exists a Schwarz function w(z), which (by definition) is analytic in U with w(0) = 0 and |w(z)| < 1, $(z \in U)$, such that f(z) = g(w(z)) for all $z \in U$. In particular, if the function g(z) is univalent in U, then we have the following equivalence (cf., e.g., [10]; see also [11, p.4]):

$$f(z) \prec g(z) \Leftrightarrow f(0) \prec g(0) \text{ and } f(U) \subset g(U).$$

2010 AMS Subject Classification: 30C45.

 $Keywords\ and\ phrases:$ Multiplier transformations; differential subordination; superordination.

Supposing that p and h are two analytic functions in U, let

$$\varphi(r, s, t; z) : \mathbb{C}^3 \times U \to \mathbb{C}.$$

If p and $\varphi(p(z), zp'(z), z^2p''(z); z)$ are univalent functions in U and if p satisfies the second-order superordination

$$h(z) \prec \varphi(p(z), zp'(z), z^2 p''(z); z), \qquad (1.3)$$

then p is said to be a solution of the differential superordination (1.3). (If f is subordinate to F, then F is superordinate to f). An analytic function q is called a subordinant of (1.3), if $q(z) \prec p(z)$ for all the functions p satisfying (1.3). A univalent subordinant \tilde{q} that satisfies $q \prec \tilde{q}$ for all of the subordinants q of (1.3), is called the best subordinant (cf., e.g., [10], see also [11]).

Recently, Miller and Mocanu [12] obtained sufficient conditions on the functions h, q and φ for which the following implication holds:

$$h(z) \prec \varphi(p(z), zp'(z), z^2 p''(z); z) \Rightarrow q(z) \prec p(z).$$
(1.4)

Using these results, Bulboaca [5] considered certain classes of first-order differential superordinations as well as superordination preserving integral operators [4]. Ali et al. [1], have used the results of Bulboaca [5] and obtained sufficient conditions for certain normalized analytic functions f(z) to satisfy

$$q_1(z) \prec \frac{zf'(z)}{f(z)} \prec q_2(z),$$
 (1.5)

where q_1 and q_2 are given univalent functions in U with $q_1(0) = 1$, Shanmugam et al. [17] obtained sufficient conditions for normalized analytic functions f(z) to satisfy

$$q_1(z) \prec \frac{f(z)}{zf'(z)} \prec q_2(z), \text{ and } q_1(z) \prec \frac{z^2 f'(z)}{\{f(z)\}^2} \prec q_2(z),$$

where q_1 and q_2 are given univalent functions in U with $q_1(0) = 1$. and $q_2(0) = 1$. Liu [9] introduced and studied the class of functions $B(\beta, \alpha, \rho)$ defined by $f \in B(\beta, \alpha, \rho)$ if and only if

$$\operatorname{Re}\left\{(1-\beta)(\frac{f(z)}{z})^{\alpha} + \beta \frac{zf'(z)}{f(z)}(\frac{f(z)}{z})^{\alpha}\right\} > \rho,$$

where $f(z) \in A, \beta \ge 0, \alpha > 0$ and $\rho \ge 0$.

Many essentially equivalent definitions of multiplier transformation have been given in literature (see [7], [8], and [20]). In [6] Catas defined the operator $I^m(\lambda, \ell)$ as follows:

DEFINITION 1 [6]. Let the function $f(z) \in A(n)$. For $m \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}$, $\lambda \geq 0, \ell \geq 0$, the extended multiplier transformation $I^m(\lambda, \ell)$ on A(n) is defined by the following infinite series:

$$I^{m}(\lambda,\ell)f(z) = z + \sum_{k=n+1}^{\infty} \left[\frac{\ell+1+\lambda(k-1)}{\ell+1}\right]^{m} a_{k}z^{k}, \quad m \in \mathbb{N}_{0}, \, z \in U.$$
 (1.6)

We can write (1.6) as follows:

$$I^{m}(\lambda,\ell)f(z) = (\Phi_{\lambda,\ell}^{,m} * f)(z),$$

where

$$\Phi^m_{\lambda,\ell}(z) = z + \sum_{k=n+1}^{\infty} \left[\frac{\ell+1+\lambda(k-1)}{\ell+1} \right]^m z^k$$

It is easily verified from (1.6), that

$$\lambda z (I^m(\lambda,\ell)f(z))' = (1+\ell)I^{m+1}(\lambda,\ell)f(z) - [1-\lambda+\ell]I^m(\lambda,\ell)f(z) \ (\lambda>0). \ (1.7)$$

We note that:

$$I^{0}(\lambda, \ell)f(z) = f(z)$$
 and $I^{1}(1, 0)f(z) = zf'(z).$

Also by specializing the parameters λ,ℓ and m we obtain the following operators studied by various authors:

- (i) $I^m(1, \ell) = I^m(\ell)f(z)$ (see Cho and Srivastava [8] and Cho and Kim [7]);
- (ii) $I^m(\lambda, 0)f(z) = D^m_{\lambda}f(z)$ (see Al-Oboudi [2]);
- (iii) $I^m(1,0) = D^m f(z)$ (see Salagean [16]);
- (iv) $I^m(1,1) = I^m f(z)$ (see Uralegaddi and Somanatha [20]);

2. Preliminaries

In order to prove our subordination and superordination results, we make use of the following known definition and lemmas.

DEFINITION 2. [12] Denote by Q the set of all functions f(z) that are analytic and injective on $\overline{U} \setminus E(f)$ where

$$E(f) = \{\zeta : \zeta \in \partial U \text{ and } \lim_{z \to \zeta} f(z) = \infty\},$$
(2.1)

and are such that $f'(\zeta) \neq 0$ for $\zeta \in \partial U \setminus E(f)$.

LEMMA 1. [11] Let the function q(z) be univalent in the unit disc U, and let θ and φ be analytic in a domain D containing q(U), with $\varphi(w) \neq 0$ when $w \in q(U)$. Set $Q(z) = zq'(z)\varphi(q(z))$, $h(z) = \theta(q(z)) + Q(z)$ and suppose that

(i)
$$Q$$
 is a starlike function in U ,

(ii)
$$\operatorname{Re}\left(\frac{zh'(z)}{Q(z)}\right) > 0 \text{ for } z \in U.$$

If p is analytic in U with $p(0) = q(0), p(U) \subseteq D$ and

$$\theta(p(z)) + zp'(z)\varphi(p(z)) \prec \theta(q(z)) + zq'(z)\varphi(q(z)),$$
(2.2)

then $p(z) \prec q(z)$, and q is the best dominant.

LEMMA 2. [17] Let q be a convex function in U and let $\psi \in \mathbb{C}$ with $\delta \in \mathbb{C}^* = \mathbb{C} \setminus \{0\}$ with

$$\operatorname{Re}\left(1+\frac{zq''(z)}{q'(z)}\right) > \max\left\{0; -\operatorname{Re}\frac{\psi}{\delta}\right\}, \quad z \in U.$$

If p(z) is analytic in U, and

$$\psi p(z) + \delta z p'(z) \prec \psi q(z) + \delta z q'(z), \qquad (2.3)$$

then $p(z) \prec q(z)$, and q is the best dominant.

LEMMA 3. [4] Let q(z) be a convex univalent function in the unit disc U and let θ and φ be analytic in a domain D containing q(U). Suppose that

(i) Re
$$\left\{ \frac{\theta'(q(z))}{\varphi(q(z))} \right\} > 0$$
 for $z \in U$;
(ii) $zq'(z)\varphi(q(z))$ is starlike in U.

If $p \in H[q(0), 1] \cap Q$ with $p(U) \subseteq D$, and $\theta(p(z)) + zp'(z)\varphi(p(z))$ is univalent in U, and

$$\theta(q(z)) + zq'(z)\varphi(q(z)) \prec \theta(p(z)) + zp'(z)\varphi(p(z))$$

then $q(z) \prec p(z)$, and q is the best subordinant.

LEMMA 4. [12] Let q be convex univalent in U and let $\delta \in \mathbb{C}$, with $\operatorname{Re}(\delta) > 0$. If $p \in H[q(0), 1] \cap Q$ and $p(z) + \delta z p'(z)$ is univalent in U, then

$$q(z) + \delta z q'(z) \prec p(z) + \delta z p'(z), \qquad (2.4)$$

implies $q(z) \prec p(z)$ ($z \in U$), and q is the best subordinant.

This last lemma gives us a necessary and sufficient condition for the univalence of a special function which will be used in some particular cases:

LEMMA 5. [15] The function $q(z) = (1-z)^{-2ab}$ is univalent in U if and only if $|2ab-1| \leq 1$ or $|2ab+1| \leq 1$.

3. Subordination results for analytic functions

Unless otherwise mentioned we shall assume throughout the paper that $\beta \in \mathbb{C}^*$, $\alpha > 0, \lambda > 0, \ell \ge 0, n \in \mathbb{N}, m \in \mathbb{N}_0$ and the powers understood as principle values.

THEOREM 1. Let q(z) be convex univalent in U, with q(0) = 1. Suppose that

$$\operatorname{Re}\left(1+\frac{zq''(z)}{q'(z)}\right) > \max\left\{0; -\operatorname{Re}\frac{\alpha}{\beta}\right\}.$$
(3.1)

If $f(z) \in A(n)$ satisfies the subordination:

$$\Phi(f, m, \lambda, \ell, \beta, \alpha) \prec q(z) + \frac{\beta}{\alpha} z q'(z), \qquad (3.2)$$

where

$$\Phi(f,m,\lambda,\ell,\beta,\alpha) = \left[1 - \beta(\frac{\ell+1}{\lambda})\right] \left(\frac{I^m(\lambda,\ell)f(z)}{z}\right)^{\alpha} + \beta\left(\frac{\ell+1}{\lambda}\right) \frac{I^{m+1}(\lambda,\ell)f(z)}{I^m(\lambda,\ell)f(z)} \left(\frac{I^m(\lambda,\ell)f(z)}{z}\right)^{\alpha}, \quad (3.3)$$

then

$$\left(\frac{I^m(\lambda,\ell)f(z)}{z}\right)^{\alpha} \prec q(z), \tag{3.4}$$

and q(z) is the best dominant of (3.2).

Proof. Define the function p(z) by

$$p(z) = \left(\frac{I^m(\lambda, \ell)f(z)}{z}\right)^{\alpha} \quad (z \in U).$$
(3.5)

Then p(z) is analytic in U and p(0) = 1. Differentiating (3.5) logarithmically with respect to z, and using the identity (1.7) in the resulting equation, we have

$$\left[1 - \beta\left(\frac{\ell+1}{\lambda}\right)\right] \left(\frac{I^m(\lambda,\ell)f(z)}{z}\right)^{\alpha} + \beta\left(\frac{\ell+1}{\lambda}\right) \frac{I^{m+1}(\lambda,\ell)f(z)}{I^m(\lambda,\ell)f(z)} \times \left(\frac{I^m(\lambda,\ell)f(z)}{z}\right)^{\alpha} = p(z) + \frac{\beta}{\alpha} z p'(z). \quad (3.6)$$

Thus the subordination (3.2) is equivalent to

$$p(z) + \frac{\beta}{\alpha} z p'(z) \prec q(z) + \frac{\beta}{\alpha} z q'(z) .$$
(3.7)

Applying Lemma 2 with $\gamma = \frac{\beta}{\alpha}$ ($\alpha > 0$), the proof of Theorem 1 is completed.

REMARK 1. Putting $m = \ell = 0$, $\lambda = n = 1$ and $\beta \ge 0$ in Theorem 1, we obtain the result obtained by Shanmungam et al. [18, Theorem 3.1].

Putting $\lambda = 1$ and $\ell = 0$ in Theorem 1, we obtain the following corollary.

COROLLARY 1. Let q(z) be convex univalent in U, with q(0) = 1 and suppose that q(z) satisfies the condition (3.1). If $f(z) \in A(n)$ satisfies the subordination:

$$\Phi(f, m, \beta, \alpha) \prec q(z) + \frac{\beta}{\alpha} z q'(z)$$

where

$$\Phi(f,m,\beta,\alpha) = (1-\beta) \left(\frac{D^m f(z)}{z}\right)^{\alpha} + \beta \frac{D^{m+1} f(z)}{D^m f(z)} \left(\frac{D^m f(z)}{z}\right)^{\alpha}, \qquad (3.8)$$

then $\left(\frac{D^m f(z)}{z}\right)^{\alpha} \prec q(z)$ and q(z) is the best dominant.

Putting $\ell = 0$ in Theorem 1, we obtain the following corollary.

COROLLARY 2. Let q(z) be convex univalent in U, with q(0) = 1 and suppose that q(z) satisfy the condition (3.1). If $f(z) \in A(n)$ satisfies the subordination

$$\Phi(f, m, \lambda, \beta, \alpha) \prec q(z) + \frac{\beta}{\alpha} z q'(z) ,$$

where

$$\Phi(f,m,\lambda,\beta,\alpha) = \left(1 - \frac{\beta}{\lambda}\right) \left(\frac{D_{\lambda}^{m}f(z)}{z}\right)^{\alpha} + \frac{\beta}{\lambda} \frac{D_{\lambda}^{m+1}f(z)}{D_{\lambda}^{m}f(z)} \left(\frac{D_{\lambda}^{m}f(z)}{z}\right)^{\alpha}, \quad (3.9)$$

then $\left(\frac{D_{\lambda}^{m}f(z)}{z}\right)^{\alpha} \prec q(z)$ and q(z) is the best dominant.

Putting $\lambda = 1$ in Theorem 1, we obtain the following corollary.

COROLLARY 3. Let q(z) be convex univalent in U, with q(0) = 1 and suppose that q(z) satisfy (3.1). If $f(z) \in A(n)$ satisfies the subordination

$$\Phi(f,m,\ell,\beta,\alpha) \prec q(z) + \frac{\beta}{\alpha} z q'(z) ,$$

where

$$\Phi(f,m,\ell,\beta,\alpha) = [1-\beta(\ell+1)] \left(\frac{I^m(\ell)f(z)}{z}\right)^{\alpha} + \beta(\ell+1)\frac{I^{m+1}(\ell)f(z)}{I^m(\ell)f(z)} \left(\frac{I^m(\ell)f(z)}{z}\right)^{\alpha}, \quad (3.10)$$

then $\left(\frac{I^m(\ell)f(z)}{z}\right)^{\alpha} \prec q(z)$ and q(z) is the best dominant.

Taking $q(z) = \frac{1+Az}{1+Bz}$ $(-1 \le B < A \le 1)$ in Theorem 1, we obtain the following corollary.

COROLLARY 4. Let $-1 \leq B < A \leq 1$ and suppose that

$$\operatorname{Re}\left\{\frac{1-Bz}{1+Bz}\right\} > \max\left\{0, -\operatorname{Re}\frac{\alpha}{\beta}\right\} \ .$$

If $f(z) \in A(n)$ satisfies the subordination

$$\Phi(f, m, \lambda, \ell, \beta, \alpha) \prec \frac{1 + Az}{1 + Bz} + \frac{\beta}{\alpha} \frac{(A - B)z}{(1 + Bz)^2}$$

where $\Phi(f, m, \lambda, \ell, \beta, \alpha)$ is given by (3.3), then

$$\left(\frac{I^m(\lambda,\ell)f(z)}{z}\right)^\alpha\prec\frac{1+Az}{1+Bz}$$

and $\frac{1+Az}{1+Bz}$ is the best dominant.

REMARK 2. Putting $m = \ell = 0$, $\lambda = n = 1$ and $\beta \ge 0$ in Corollary 4, we obtain the result obtained by Shanmungam et al. [18, Corollary 3.2].

THEOREM 2. Let q(z) be univalent in U, and $\alpha, \gamma \in \mathbb{C}$. Suppose that q(z) satisfies

$$\operatorname{Re}\left\{1 + \frac{zq''(z)}{q'(z)} - \frac{zq'(z)}{q(z)}\right\} > 0.$$
(3.11)

If $f(z) \in A(n)$ satisfies the subordination

$$\psi(f, m, \lambda, \ell, \beta, \alpha) \prec 1 + \gamma \frac{zq'(z)}{q(z)},$$
(3.12)

where

$$\psi(f, m, \lambda, \ell, \beta, \alpha) = 1 + \gamma \alpha \left(\frac{\ell + 1}{\lambda}\right) \left[\frac{I^{m+1}(\lambda, \ell)f(z)}{I^m(\lambda, \ell)f(z)} - 1\right], \quad (3.13)$$

then $\left(\frac{I^m(\lambda,\ell)f(z)}{z}\right)^{\alpha} \prec q(z)$ and q(z) is the best dominant.

Proof. Let p(z) be defined by (3.5). Then, simple computations show that

$$\frac{zp'(z)}{p(z)} = \alpha \left(\frac{\ell+1}{\lambda}\right) \left[\frac{I^{m+1}(\lambda,\ell)f(z)}{I^m(\lambda,\ell)f(z)} - 1\right]$$

Putting $\theta(w) = 1$ and $\varphi(w) = \frac{\gamma}{w}$, we can observe that $\theta(w)$ is analytic in \mathbb{C} , $\varphi(w)$ is analytic in \mathbb{C}^* and $\varphi(w) \neq 0$ ($w \in \mathbb{C}^*$). If

$$\psi(z) = zq'(z) = \varphi(q(z)) = \gamma \frac{zq'(z)}{q(z)}$$

and

$$h(z) = \theta(q(z)) + \psi(z) = 1 + \gamma \frac{zq'(z)}{q(z)},$$

then, from (3.11), we find that $\psi(z)$ is starlike univalent in U and

$$\operatorname{Re}\left(\frac{zh'(z)}{\psi(z)}\right) = \operatorname{Re}\left\{1 + \frac{zq''(z)}{q'(z)} - \frac{zq'(z)}{q(z)}\right\} > 0.$$

Then applying Lemma 1, the proof is completed. \blacksquare

REMARK 3. Taking $m = \ell = 0$ and $\lambda = n = 1$ in Theorem 2, we obtain the result obtained by Shanmugam et al. [18, Theorem 3.4].

Putting $\lambda = 1$ and $\ell = 0$ in Theorem 2, we obtain the following corollary.

COROLLARY 5. Assume that (3.11) holds. If $f(z) \in A(n)$, and

$$1 + \gamma \alpha \left[\frac{D^{m+1} f(z)}{D^m f(z)} - 1 \right] \prec 1 + \gamma \frac{z q'(z)}{q(z)},$$

then $\left(\frac{D^m f(z)}{z}\right)^{\alpha} \prec q(z)$ and q(z) is the best dominant.

Putting $\ell = 0$ in Theorem 2, we obtain the following corollary. COROLLARY 6. Assume that (3.11) holds. If $f(z) \in A(n)$, and

$$1 + \frac{\gamma \alpha}{\lambda} \left[\frac{D_{\lambda}^{m+1} f(z)}{D_{\lambda}^m f(z)} - 1 \right] \prec 1 + \gamma \frac{zq'(z)}{q(z)},$$

then $\left(\frac{D_{\lambda}^{m}f(z)}{z}\right)^{\alpha} \prec q(z)$ and q(z) is the best dominant.

Putting $\lambda = 1$ in Theorem 2, we obtain the following corollary.

COROLLARY 7. Assume that (3.11) holds. If $f(z) \in A(n)$, and

$$1 + \gamma \alpha(\ell+1) \left[\frac{I^{m+1}(\ell)f(z)}{I^m(\ell)f(z)} - 1 \right] \prec 1 + \gamma \frac{zq'(z)}{q(z)},$$

then $\left(\frac{I^m(\ell)f(z)}{z}\right)^{\alpha} \prec q(z)$ and q(z) is the best dominant.

Taking $q(z) = \frac{1}{(1-z)^{2\alpha b}} (\alpha, b \in \mathbb{C}^*), \ \gamma = \frac{1}{\alpha b}, \ \lambda = n = 1 \text{ and } m = \ell = 0 \text{ in}$ Theorem 2, we obtain the next result due to Obradović et al. [13, Theorem 1].

COROLLARY 8. [13] Let $\alpha, b \in \mathbb{C}^*$ such that $|2\alpha b - 1| \leq 1$ or $|2\alpha b + 1| \leq 1$. Let $f(z) \in A$ and suppose that $\frac{f(z)}{z} \neq 0$ for all $z \in U$. If

$$1 + \frac{1}{b} \left(\frac{zf'(z)}{f(z)} - 1 \right) \prec \frac{1+z}{1-z}$$

then $\left(\frac{f(z)}{z}\right)^{\alpha} \prec (1-z)^{-2\alpha b}$ and $(1-z)^{-2\alpha b}$ is the best dominant.

REMARK 4. For $\alpha = 1$, Corollary 8 reduces to the recent result of Srivastava and Lashin [19, Corollary 1].

Taking $q(z) = (1 + Bz)^{\frac{\alpha(A-B)}{B}}$, $-1 \leq B < A \leq 1$, $B \neq 0$, $\alpha \in \mathbb{C}^*$, $\gamma = 1$, $m = \ell = 0$ and $\lambda = 1$ in Theorem 2, we obtain the following corollary.

COROLLARY 9. Let $-1 \leq B < A \leq 1$, with $B \neq 0$, and suppose that

$$\left|\frac{\alpha(A-B)}{B} - 1\right| \le 1 \quad or \quad \left|\frac{\alpha(A-B)}{B} + 1\right| \le 1.$$

If $f(z) \in A(n)$ such that $\frac{f(z)}{z} \neq 0$ for all $z \in U$, and let $\alpha \in \mathbb{C}^*$. If

$$1 + \alpha \left(\frac{zf'(z)}{f(z)} - 1\right) \prec \frac{1 + [B + \alpha(A - B)]z}{1 + Bz}$$

then

$$\left(\frac{f(z)}{z}\right)^{\alpha} \prec (1+Bz)^{\frac{\alpha(A-B)}{B}},$$

and $(1+Bz)^{\frac{\alpha(A-B)}{B}}$ is the best dominant.

REMARK 5. For $\alpha = n = 1$, Corollary 9 reduces to the recent result of Obradović and Owa [14].

Putting $q(z) = (1-z)^{-2\alpha b \cos \lambda e^{-i\lambda}}$ $(\alpha, b \in \mathbb{C}^*; |\lambda| < \frac{\pi}{2}), \gamma = \frac{e^{i\lambda}}{\alpha b \cos \lambda}, n = \lambda = 1$ and $m = \ell = 0$ in Theorem 2, we obtain the next result due to Aouf et al. [3, Theorem 1].

COROLLARY 10. [3] Let $\alpha, b \in \mathbb{C}^*$ and $|\lambda| < \frac{\pi}{2}$, and suppose that $|2\alpha b \cos \lambda e^{-i\lambda} - 1| \le 1$ or $|2\alpha b \cos \lambda e^{-i\lambda} + 1| \le 1$. Let $f(z) \in A$ such that $\frac{f(z)}{z} \ne 0$ for all $z \in U$. If

$$1 + \frac{e^{i\lambda}}{b\cos\lambda} \left(\frac{zf'(z)}{f(z)} - 1\right) \prec \frac{1+z}{1-z}$$

then

$$\left(\frac{f(z)}{z}\right)^{\alpha} \prec (1-z)^{-2\alpha b \cos \lambda e^{-i\lambda}},$$

and $(1-z)^{-2\alpha b \cos \lambda e^{-i\lambda}}$ is the best dominant.

4. Superordination and Sandwich results

THEOREM 3. Let q(z) be convex in U with q(0) = 1, and $\beta \in \mathbb{C}$, $\operatorname{Re} \beta > 0$. If $f(z) \in A(n)$ such that $(\frac{I^m(\lambda,\ell)f(z)}{f(z)})^{\alpha} \in H[q(0),1] \cap Q$ and $\Phi(f,m,\lambda,\ell,\beta,\alpha)$ is univalent in U and satisfies the superordination:

$$q(z) + \frac{\beta}{\alpha} z q'(z) \prec \Phi(f, m, \lambda, \ell, \beta, \alpha),$$
(4.1)

where $\Phi(f, m, \lambda, \ell, \beta, \alpha)$ is given by (3.3), then

$$q(z) \prec \left(\frac{I^m(\lambda,\ell)f(z)}{z}\right)^{\alpha}$$

and q(z) is the best subordinant.

Proof. Let p(z) be given by (3.5) and proceeding as in the proof of Theorem 1, the subordination (4.1) becomes

$$q(z) + \frac{\beta}{\alpha} z q'(z) \prec p(z) + \frac{\beta}{\alpha} z p'(z).$$

The proof follows by an application of Lemma 4. \blacksquare

THEOREM 4. Let q(z) be convex univalent in $U, \beta \in \mathbb{C}$, $\operatorname{Re}(\beta) > 0$, and $(\frac{I^m(\lambda,\ell)f(z)}{z})^{\alpha} \in H[q(0),1] \cap Q$. If $f(z) \in A(n)$ and

$$1 + \gamma \frac{zq'(z)}{q(z)} \prec 1 + \gamma \alpha \left(\frac{\ell+1}{\lambda}\right) \left[\frac{I^{m+1}(\lambda,\ell)f(z)}{I^m(\lambda,\ell)f(z)} - 1\right],\tag{4.2}$$

then

$$q(z) \prec \left(\frac{I^m(\lambda,\ell)f(z)}{z}\right)^{\alpha}$$

and q(z) is the best subordinant.

REMARK 6. Putting $m = \ell = 0$, $\lambda = n = 1$ in Theorem 4, we obtain the result obtained by Shanmugam et al. [18, Theorem 4.3].

Combining Theorem 1 with Theorem 3 and Theorem 2 with Theorem 4, we state the following "Sandwich results".

THEOREM 5. Let q_1, q_2 be convex in U with $q_1(0) = q_2(0) = 1$, $\beta \in \mathbb{C}$, $\operatorname{Re} \beta > 0$ and satisfies (3.1). If $f(z) \in A(n)$, $(\frac{I^m(\lambda, \ell)f(z)}{z})^{\alpha} \in H[q(0), 1] \cap Q$, $\Phi(f, m, \lambda, \ell, \beta, \alpha)$ is univalent in the unit disc U, where $\Phi(f, m, \lambda, \ell, \beta, \alpha)$ is defined by (3.3) and

$$q_1(z) + \frac{\beta}{\alpha} z q_1'(z) \prec \Phi(f, m, \lambda, \ell, \beta, \alpha) \prec q_2(z) + \frac{\beta}{\alpha} z q_2'(z),$$
(4.3)

then

$$q_1(z) \prec \left(\frac{I^m(\lambda,\ell)f(z)}{z}\right)^{\alpha} \prec q_2(z)$$

and $q_1(z)$ and $q_2(z)$ are, respectively, the best subordinant and best dominant.

Putting $\lambda = 1$ and $\ell = 0$ in Theorem 5, we obtain the following corollary.

COROLLARY 11. Let $q_1(z), q_2(z)$ be convex in U with $q_1(0) = q_2(0) = 1$, $\beta \in \mathbb{C}$, $\operatorname{Re} \beta > 0$ and satisfies (3.1). If $f(z) \in A(n)$, $(\frac{D^m f(z)}{z})^{\alpha} \in H[q(0), 1] \cap Q$, $\Phi(f, m, \beta, \alpha)$ is univalent in the unit disc U, where $\Phi(f, m, \beta, \alpha)$ is defined by (3.8) and

$$q_1(z) + \frac{\beta}{\alpha} z q_1'(z) \prec \Phi(f, m, \beta, \alpha) \prec q_2(z) + \frac{\beta}{\alpha} z q_2'(z),$$

then

$$q_1(z) \prec \left(\frac{D^m f(z)}{z}\right)^{\alpha} \prec q_2(z)$$

and $q_1(z)$ and $q_2(z)$ are, respectively, the best subordinant and best dominant.

Putting $\ell = 0$ in Theorem 5, we obtain the following corollary.

COROLLARY 12. Let $q_1(z), q_2(z)$ be convex in U with $q_1(0) = q_2(0) = 1$, $\beta \in \mathbb{C}$, $\operatorname{Re} \beta > 0$ and satisfies (3.1). If $f(z) \in A(n)$, $(\frac{D_{\lambda}^m f(z)}{z})^{\alpha} \in H[q(0), 1] \cap Q$, $\Phi(f, m, \lambda, \beta, \alpha)$ is univalent in the unit disc U, where $\Phi(f, m, \lambda, \beta, \alpha)$ is defined by (3.9) and

$$q_1(z) + \frac{\beta}{\alpha} z q'_1(z) \prec \Phi(f, m, \lambda, \beta, \alpha) \prec q_2(z) + \frac{\beta}{\alpha} z q'_2(z),$$

then

$$q_1(z) \prec \left(\frac{D_\lambda^m f(z)}{z}\right)^{\alpha} \prec q_2(z)$$

and $q_1(z)$ and $q_2(z)$ are, respectively, the best subordinant and best dominant.

Putting $\lambda = 1$ in Theorem 5, we obtain the following corollary.

COROLLARY 13. Let $q_1(z), q_2(z)$ be convex in U with $q_1(0) = q_2(0) = 1$, $\beta \in \mathbb{C}$, $\operatorname{Re} \beta > 0$ and satisfies (3.1). If $f(z) \in A(n)$, $(\frac{I^m(\ell)f(z)}{z})^{\alpha} \in H[q(0), 1] \cap Q$,

 $\Phi(f, m, \ell, \beta, \alpha)$ is univalent in the unit disc U, where $\Phi(f, m, \ell, \beta, \alpha)$ is defined by (3.10) and

$$q_1(z) + \frac{\beta}{\alpha} z q_1'(z) \prec \Phi(f, m, \ell, \beta, \alpha) \prec q_2(z) + \frac{\beta}{\alpha} z q_2'(z),$$

then

$$q_1(z) \prec \left(\frac{I^m(\ell)f(z)}{z}\right)^{\alpha} \prec q_2(z)$$

and $q_1(z)$ and $q_2(z)$ are, respectively, the best subordinant and best dominant.

THEOREM 6. Let $q_1(z), q_2(z)$ be convex in U with $q_1(0) = q_2(0) = 1$, $\beta \in \mathbb{C}$, Re $\beta > 0$ and satisfies (3.1). If $f(z) \in A(n)$, $(\frac{I^m(\lambda, \ell)f(z)}{z})^{\alpha} \in H[q(0), 1] \cap Q$, $\psi(f, m, \lambda, \ell, \beta, \alpha)$ is univalent in the unit disc U, where $\psi(f, m, \lambda, \ell, \beta, \alpha)$ is defined by (3.13) and

$$1 + \gamma \frac{zq_1'(z)}{q_1(z)} \prec \psi(f, m, \lambda, \ell, \beta, \alpha) \prec 1 + \gamma \frac{zq_2'(z)}{q_2(z)},$$

$$(4.4)$$

then

$$q_1(z) \prec \left(\frac{I^m(\lambda,\ell)f(z)}{z}\right)^{\alpha} \prec q_2(z)$$

and $q_1(z)$ and $q_2(z)$ are, respectively, the best subordinant and the best dominant.

Putting $\lambda = 1$ and $\ell = 0$ in Theorem 6, we obtain the following corollary.

COROLLARY 14. Let $q_1(z), q_2(z)$ be convex in U with $q_1(0) = q_2(0) = 1, \beta \in \mathbb{C}$, Re $\beta > 0$ and satisfies (3.1). If $f(z) \in A(n), (\frac{D^m f(z)}{z})^{\alpha} \in H[q(0), 1] \cap Q$,

$$1+\gamma\alpha\left[\frac{D^{m+1}f(z)}{D^mf(z)}-1\right]$$

is univalent in U and

$$1 + \gamma \frac{zq_1'(z)}{q_1(z)} \prec 1 + \gamma \alpha \left[\frac{D^{m+1}f(z)}{D^m f(z)} - 1\right] \prec 1 + \gamma \frac{zq_2'(z)}{q_2(z)}$$

then

$$q_1(z) \prec \left(\frac{D^m f(z)}{z}\right)^{\alpha} \prec q_2(z)$$

and $q_1(z)$ and $q_2(z)$ are, respectively, the best subordinant and the best dominant.

Putting $\ell = 0$ in Theorem 6, we obtain the following corollary.

COROLLARY 15. Let $q_1(z), q_2(z)$ be convex in U with $q_1(0) = q_2(0) = 1, \beta \in \mathbb{C}$, Re $\beta > 0$ and satisfies (3.1). If $f(z) \in A(n), (\frac{D_{\lambda}^m f(z)}{z})^{\alpha} \in H[q(0), 1] \cap Q$,

$$1 + \frac{\gamma \alpha}{\lambda} \left[\frac{D_{\lambda}^{m+1} f(z)}{D_{\lambda}^{m} f(z)} - 1 \right]$$

is univalent in U and

$$1 + \gamma \frac{zq_1'(z)}{q_1(z)} \prec 1 + \frac{\gamma \alpha}{\lambda} \left[\frac{D_{\lambda}^{m+1}f(z)}{D_{\lambda}^m f(z)} - 1 \right] \prec 1 + \gamma \frac{zq_2'(z)}{q_2(z)},$$

then

$$q_1(z) \prec \left(\frac{D_\lambda^m f(z)}{z}\right)^{\alpha} \prec q_2(z)$$

and $q_1(z)$ and $q_2(z)$ are, respectively, the best subordinant and the best dominant.

Putting $\lambda = 1$ in Theorem 6, we obtain the following corollary.

COROLLARY 16. Let $q_1(z), q_2(z)$ be convex in U with $q_1(0) = q_2(0) = 1, \beta \in \mathbb{C}$, Re $\beta > 0$ and satisfies (3.1). If $f(z) \in A(n), (\frac{I^m(\ell)f(z)}{z})^{\alpha} \in H[q(0), 1] \cap Q$,

$$1 + \gamma \alpha(\ell+1) \left[\frac{I^{m+1}(\ell)f(z)}{I^m(\ell)f(z)} - 1 \right]$$

is univalent in U and

$$1 + \gamma \frac{zq_1'(z)}{q_1(z)} \prec 1 + \gamma \alpha(\ell+1) \left[\frac{I^{m+1}(\ell)f(z)}{I^m(\ell)f(z)} - 1 \right] \prec 1 + \gamma \frac{zq_2'(z)}{q_2(z)},$$

then

$$q_1(z) \prec \left(\frac{I^m(\ell)f(z)}{z}\right)^{\alpha} \prec q_2(z)$$

and $q_1(z)$ and $q_2(z)$ are, respectively, the best subordinant and the best dominant.

REMARK 7. Putting $m = \ell = 0$, $\lambda = n = 1$ and $\beta \ge 0$ in Theorem 6, we obtain the following result which improves the result of Shanmugam et al. [18, Theorem 5.2].

COROLLARY 17. Let $q_1(z), q_2(z)$ be convex in U with $q_1(0) = q_2(0) = 1$, $\beta \in \mathbb{C}$, $\operatorname{Re}\beta > 0$ and satisfies (3.1). If $f(z) \in A(n)$, $(\frac{f(z)}{z})^{\alpha} \in H[q(0), 1] \cap Q$, $1 + \gamma \alpha(\frac{zf'(z)}{f(z)} - 1)$ is univalent in U and

$$1 + \gamma \frac{zq_1'(z)}{q_1(z)} \prec 1 + \gamma \alpha \left(\frac{zf'(z)}{f(z)} - 1\right) \prec 1 + \gamma \frac{zq_2'(z)}{q_2(z)}$$

then

$$q_1(z) \prec \left(\frac{f(z)}{z}\right)^{\alpha} \prec q_2(z)$$

and $q_1(z)$ and $q_2(z)$ are, respectively, the best subordinant and the best dominant.

REFERENCES

 R.M. Ali, V. Ravichandran, M.H. Khan, K.G. Subramaniam, Differential sandwich theorems for certain analytic functions, Far East J. Math. Sci. 15 (2004), 87–94.

- F.M. Al-Oboudi, On univalent function defined by a generalized Salagean operator, Internat. J. Math. Math. Sci. 27 (2004), 1429–1436.
- [3] M.K. Aouf, F.M. Al-Oboudi, M.M. Haidan, On some results for λ-spirallike and λ-Robertson functions of complex order, Publ. Institute Math. (Belgrade) 77(91) (2005), 93–98.
- [4] T. Bulboacă, A class of superordination preserving integral operators, Indag. Math. (New Series) 13 (2002), 301–311.
- [5] T. Bulboacă, Classes of first-order differential subordinations, Demonstratio Math. 35 (2002), 287–392.
- [6] A. Catas, On certain classes of p-valent functions defined by multiplier transformations, in: GFTA 2007 Proceedings (Istanbul, Turkey; 20-24 August 2007) (S. Owa and Y. Polatoglu, Eds.), pp. 241–250, Istanbul, 2008.
- [7] N.E. Cho, T.H. Kim, Multiplier transformations and strongly close-to-convex functions, Bull. Korean Math. Soc. 40 (2003), 399–410.
- [8] N.E. Cho, H.M. Srivastava, Argument estimates of certain analytic functions defined by a class of multiplier transformations, Math. Comput. Modelling 37 (2003), 39–49.
- [9] M. Liu, Properties for some subclasses of analytic functions, Bull. Inst. Math. Acad. Sinica 30 (2002), 9–26.
- [10] S.S. Miller, P.T. Mocanu, Differential subordinations and univalent functions, Michigan Math. J. 28 (1981), 157–171.
- [11] S.S. Miller, P.T. Mocanu, Differential Subordinations Theory and Applications, Series on Monographs and Textbooks in Pure and Applied Math., No. 225, Marcel Dekker Inc. New York, Basel, 2000.
- [12] S.S. Miller, P.T. Mocanu, Subordinatinations of differential superordinations, Complex Variables 48 (2003), 815–826.
- [13] M. Obradović, M.K. Aouf, S. Owa, On some results for starlike functions of complex order, Publ. Inst. Math. (Belgrade) 46(60) (1989), 79–85.
- [14] M. Obradović, S. Owa, On certain properties for some classes of starlike functions, J. Math. Anal. Appl. 145 (1990), 357–364.
- [15] W.C. Royster, On the univalence of a certain integral, Michigan Math. J. 12 (1965), 385–387.
- [16] G.S. Salagean, Subclasses of univalent functions, Lecture Notes in Math. 1013 (1983), 362– 372.
- [17] T.N. Shanmugam, V. Ravichandran, S. Sivasubramanian, Differential sandwich theorems for some subclasses of analytic functions, Austral. J. Math. Anal. Appl. 3 (2006), Art. 8, 1–11.
- [18] T.N. Shanmugam, S. Sivasubramanian, M. Darus, C. Ramachandran, Subordination and superordination results for certain subclasses of analytic functions, Internat. Math. Forum 2 (2007), no. 21, 1039-1052.
- [19] H.M. Srivastava, A.Y. Lashin, Some applications of the Briot-Bouquet differential subordination, J. Ineq. Pure Appl. Math. 6 (2005), Art. 41, 1–7.
- [20] B.A. Uralegaddi, C. Somanatha, Certain classes of univalent functions, In: Current Topics in Analytic Function Theory, (H.M. Srivastava and S. Owa, eds., World Scientific Publishing Company, Singapore, 1992, 371–374.

(received 11.03.2010; in revised form 04.02.2011)

Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt *E-mail*: mkaouf127@yahoo.com, shamandy16@hotmail.com, r_elashwah@yahoo.com, ekram_008eg@yahoo.com