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LAMBERT MULTIPLIERS OF THE RANGE
OF COMPOSITION OPERATORS

M. R. Jabbarzadeh and S. Khalil Sarbaz

Abstract. In this note Lambert multipliers of the range of composition operators acting
between different Lp spaces are characterized by using some properties of conditional expectation
operators. Also, necessary conditions for Fredholmness and normality of these type operators are
investigated.

1. Introduction and preliminaries

Let (X, Σ, µ) be a sigma finite measure space. For any complete sub-sigma
finite algebra A ⊆ Σ with 1 ≤ p ≤ ∞, the Lp-space Lp(X,A, µ|A) is abbreviated
by Lp(A), and its norm is denoted by ‖.‖p. We view Lp(A) as a closed subspace
of Lp(Σ). The support of a measurable function f is defined by σ(f) = {x ∈ X :
f(x) 6= 0}. For D ∈ Σ, we define AD = {A ∩ D : A ∈ A}. All comparisons
between two functions or two sets are to be interpreted as holding up to a µ-null
set. We denote the linear space of all complex-valued Σ-measurable functions on
X by L0(Σ).

For a sub-sigma algebra A ⊆ Σ, the conditional expectation operator associat-
ed with A is the mapping f 7→ EAf , defined for all non-negative f as well as for all
f ∈ Lp(Σ), 1 ≤ p ≤ ∞, where EAf is the unique A-measurable function satisfying

∫

A

f dµ =
∫

A

EAf dµ, ∀A ∈ A.

As an operator on Lp(Σ), EA is idempotent and EA(Lp(Σ)) = Lp(A). This opera-
tor will play major role in our work, and we list here some of its useful properties:
• If g is A-measurable then EA(fg) = EA(f)g.
• |EA(f)|p ≤ EA(|f |p).
• If f ≥ 0 then EA(f) ≥ 0; if f > 0 then EA(f) > 0.
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• EA(|f |2) = |EA(f)|2 if and only if f ∈ Lp(A).
• σ(EA(|f |)) is the smallest A-measurable set containing σ(f).

A detailed discussion and verification of most of these properties may be found in
[2] and [4]. Let ϕ : X → X be a non-singular measurable transformation, namely,
a mapping from X into itself with the properties that the measure µ ◦ ϕ−1 is
absolutely continuous with respect to µ, and ϕ−1(Σ) is sub-sigma finite algebra of
Σ. We set h = dµ ◦ϕ−1/dµ. Recall that an A-atom of the measure µ is an element
A ∈ A with µ(A) > 0 such that for each F ∈ Σ, if F ⊆ A then either µ(F ) = 0
or µ(F ) = µ(A). A measure space (X, Σ, µ) with no atoms is called non-atomic
measure space. It is well-known fact that every σ-finite measure space (X,A, µ|A)
can be partitioned uniquely as X =

(⋃
n∈NAn

)∪B, where {An}n∈N is a countable
collection of pairwise disjoint A-atoms and B ∈ A, being disjoint from each An, is
non-atomic (see [6]).

Let w ∈ L0(Σ). Then w is said to be conditionable with respect to EA if w ∈
D(EA), where D(EA) denotes the domain of EA. For w and f in L0(Σ) such that
{w, f ◦ϕ} ∈ D(EA), we define w¦f := wEA(f ◦ϕ)+EA(w)f ◦ϕ−EA(w)EA(f ◦ϕ).
Let 1 ≤ p, q ≤ ∞. Since for each f ∈ Lp(Σ), f ◦ ϕ is conditionable, a measurable
function w ∈ D(EA) for which w ¦ f ∈ Lq(Σ) is called Lambert multiplier of
the range of composition operator Cϕ. An easy consequence of the closed graph
theorem assures us that w ∈ D(EA) is the Lambert multiplier of the range of
composition operator Cϕ if and only if the corresponding ¦-multiplication operator
Kϕ

w : Lp(Σ) → Lq(Σ) defined as Kϕ
wf = w ¦ f is bounded. Note that if A = Σ

or ϕ−1(Σ) = A, then Kϕ
w = MwCϕ = wCϕ, where wCϕ is a weighted composition

operator.
If ϕ is the identity on X, these operators were initially introduced in [3] by A.

Lambert and T. G. Lucas where, some operator properties of them are also studied
in [1]. In the next section, weighted conditional multipliers acting between two
different Lp(Σ) spaces are characterized by using some properties of conditional
expectation operator. Also we give a necessary condition for Fredholmness and
normality of Kϕ

w.

2. Characterization of Lambert multipliers of the range of Cϕ

Let 1 ≤ p, q ≤ ∞. Define Kϕ
p,q, the set of all Lambert multipliers of the range

of composition operator Cϕ from Lp(Σ) into Lq(Σ), as follows

Kϕ
p,q = {w ∈ D(E) : w ¦ R(Cϕ) ⊂ Lq(Σ)},

where R(Cϕ) is the range of Cϕ. Note that Kϕ
p,q is a vector subspace of L0(Σ). Put

Kϕ
p,q = Kϕ

p for 1 ≤ p = q ≤ ∞. Suppose that X =
(⋃

n∈N Cn

) ∪ C, where {Cn}n∈N
is a countable collection of pairwise disjoint Σ-atoms and C ∈ Σ, being disjoint
from each Cn, is non-atomic. Note that (

⋃
n∈N Cn) ∩ A ⊆ ⋃

n∈NAn and B ⊆ C.
By making use of the methods, which are used in the proofs of the results

in [1], in the following theorem we similarly characterize the elements of the Kϕ
p,q,

1 ≤ p, q ≤ ∞ in the various cases.
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From now on we assume that w ∈ D(E), EA = E and ϕ−1(A) is a sub-sigma
finite algebra of A.

Theorem 2.1. Let ϕ be a non-singular measurable transformation on X such
that ϕ−1(A) ⊆ A and Sp := h[Eϕ−1(Σ)E(|w|p)] ◦ ϕ−1. Then we have

(a) If 1 ≤ p = q < ∞, then w ∈ Kϕ
p if and only if Sp ∈ L∞(Σ).

(b) If 1 ≤ q < p < ∞, then w ∈ Kϕ
p,q if and only if q

√
Sq ∈ Lr(Σ), where

1
p + 1

r = 1
q .

(c) Let 1 ≤ p < q < ∞ and let 1
q + 1

r = 1
p . If Sq = 0 on C and

supn∈N
Sq(Cn)

(µ(Cn))
q
r

< ∞, then w ∈ Kϕ
p,q. On the other hand, let ΣB = AB. If

w ∈ Kϕ
p,q, then Sq = 0 on B and supn∈N

Sq(An)

(µ(An))
q
r

< ∞.

(d) If p = q = ∞, then w ∈ Kϕ
∞ if and only if w ∈ L∞(Σ).

(e) If 1 ≤ q < ∞ = p, then w ∈ Kϕ
∞,q if and only if Sq ∈ L1(Σ).

Proof. (a) As an application of the properties of the conditional expectation
operator and using the change of variable formula, for each f ∈ Lp(Σ), we have

‖wE(f ◦ ϕ)‖p
p =

∫

X

|wE(f ◦ ϕ)|p dµ ≤
∫

X

E(E(|w|p)|f |p ◦ ϕ) dµ

=
∫

X

(E(|w|p)|f |p ◦ ϕ) dµ =
∫

X

Eϕ−1(Σ)(E(|w|p)|f |p ◦ ϕ) dµ

=
∫

X

Eϕ−1(Σ)(E(|w|p))|f |p ◦ ϕdµ =
∫

X

h[Eϕ−1(Σ)E(|w|p)] ◦ ϕ−1|f |p dµ

=
∫

X

Sp|f |p dµ ≤ ‖Sp‖∞
∫

X

|f |p dµ = ‖Sp‖∞‖f‖p
p.

Hence we have that ‖wE(f ◦ ϕ)‖p ≤ ‖Sp‖
1
p∞‖f‖p. Similar computations show that

‖Kϕ
wf‖p ≤ 3‖Sp‖

1
p∞‖f‖p. It follows that w ¦ f ∈ Lp(Σ) and hence w ∈ Kϕ

p .

Now, suppose only that w ∈ Kϕ
p . Define a linear functional ψ on L1(A) by

ψ(f) =
∫

X

Spf dµ, f ∈ L1(A).

We shall show that ψ is bounded linear functional on L1(A). Note that since
ϕ−1(A) ⊆ A, f ◦ ϕ is an A-measurable whenever f is an A-measurable function.
Hence we have that

|ψ(f)| ≤
∫

X

h[Eϕ−1(Σ)E(|w|p)] ◦ ϕ−1|f | dµ =
∫

X

Eϕ−1(Σ)(|f | ◦ ϕE(|w|p)) dµ

=
∫

X

|f | ◦ ϕE(|w|p) dµ =
∫

X

E(|w|p|f | ◦ ϕ) dµ =
∫

X

|w|p|f | ◦ ϕdµ

=
∫

X

(|w||f | 1p ◦ ϕ)p dµ =
∫

X

|w|f | 1p ◦ ϕ|p dµ =
∫

X

|Kϕ
w(|f | 1p )|p dµ

= ‖Kϕ
w(|f | 1p )‖p

p ≤ ‖Kϕ
w‖p ‖ |f | 1p ‖p

p = ‖Kϕ
w‖p‖f‖1.
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Now, by the Hahn-Banach theorem we can assume that ψ is a bounded linear
functional on L1(Σ) and ‖ψ‖ ≤ ‖Kϕ

w‖p. By the Riesz representation theorem, there
exists a unique function g ∈ L∞(Σ) such that

ψ(f) =
∫

X

gf dµ, f ∈ L1(Σ).

Therefore, we must have g = Sp a.e. on X and hence Sp ∈ L∞(Σ).
(b) Suppose q

√
Sq ∈ Lr(Σ) and f ∈ Lp(Σ). By using the same method used in

the proof of part (a), we have

‖wE(f ◦ ϕ)‖q
q =

∫

X

|wE(f ◦ ϕ)|q dµ ≤
∫

X

h[Eϕ−1(Σ)E(|w|q)] ◦ ϕ−1|f |q dµ

=
∫

X

Sq|f |q dµ = ‖ q
√

Sqf‖q
q ≤ ‖ q

√
Sq‖q

r ‖f‖q
p.

By a similar computation we obtain ‖Kϕ
wf‖q ≤ 3‖ q

√
Sq‖r‖f‖p, and so ‖Kϕ

w‖ ≤
3‖ q

√
Sq‖r. Consequently, Kϕ

w is bounded and hence w ∈ Kϕ
p,q.

Conversely, suppose that w ∈ Kϕ
p,q. Define ψ : L

p
q (A) → C as

ψ(f) =
∫

X

Sqf dµ, f ∈ L
p
q (A).

Clearly ψ is a linear functional. We shall show that ψ is bounded. Since ϕ−1(A) ⊆
A, Eϕ−1(Σ)(|f |◦ϕ) = E(|f |◦ϕ) = |f |◦ϕ for all A-measurable function f . It follows
that

|ψ(f)| ≤ ‖Kϕ
w(|f | 1q )‖q

q ≤ ‖Kϕ
w‖q‖f‖ p

q
.

Thus ‖ψ‖ ≤ ‖Kϕ
w‖q and hence ψ is bounded. By the Hahn-Banach theorem we can

assume that ψ is a bounded linear functional on L
p
q (Σ) with ‖ψ‖ ≤ ‖Kϕ

w‖q. By the
Riesz-representation theorem, there exists a unique g ∈ L

r
q (A) such that ψ(f) =∫

X
gf dµ for each f ∈ L

p
q (Σ). Hence g = Sq a.e. on X. That is q

√
Sq ∈ Lr(Σ) and

hence the proof is complete.

(c) Suppose that Sq = 0 on C and M := supn∈N
Sq(Cn)

(µ(Cn))
q
r

< ∞. Then, for each

f ∈ Lp(Σ) with ‖f‖p ≤ 1 we have

‖wE(f ◦ ϕ)‖q
q ≤

∫

X

Sq|f |q dµ = (
∫

C

+
∫

∪∞n=1Cn

)(Sq|f |q) dµ

= 0 +
∞∑

n=1

∫

Cn

Sq|f |q dµ =
∞∑

n=1

Sq(Cn)|f(Cn)|qµ(Cn)

=
∞∑

n=1

Sq(Cn)
µ(Cn) q

r

(|f(Cn)|pµ(Cn))
q
p ≤ M‖f‖q

p ≤ M < ∞,

where we have used the fact that (Sq|f |q) is constant function on each Cn.
Consequent, we get ‖wE(f ◦ ϕ)‖q ≤ q

√
M . Similar computations show that

‖Kϕ
w‖ ≤ 3 q

√
M < ∞ and hence w ∈ Kϕ

p,q.
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Now, suppose that w ∈ Kϕ
p,q. First we show that Sq = 0 on B. Assuming the

contrary, we can find some δ > 0 such that 0 < µ({x ∈ B : Sq(x) ≥ δ}) < ∞. Set
K = {x ∈ B : Sq(x) ≥ δ}. Note that K ∈ ΣB = AB , B ⊆ C and A is sigma finite.
Then for all n ∈ N, there exists Kn ⊆ K such that Kn ∈ A with µ(Kn) = µ(K)

2n .
For any n ∈ N, put fn = 1

(µ(Kn))1/p χ
Kn

. It is clear that fn ∈ Lp(A) and ‖fn‖p = 1.
Since q

p − 1 > 0 and ϕ−1(A) ⊆ A, we obtain

∞ > ‖Kϕ
w‖q ≥ ‖Kϕ

wfn‖q
q = ‖w(fn ◦ ϕ)‖q

q =
∫

X

Sq|fn|q dµ

=
1

µ(Kn)
q
p

∫

Kn

Sq dµ ≥ δµ(Kn)

µ(Kn)
q
p

= δ

(
µ(K)
2n

) q
p−1

→∞ as n →∞,

which is a contradiction. Hence we conclude that µ({x ∈ B : Sq(x) 6= 0}) = 0.
Next, we exam the supremum. For any n ∈ N, put fn = 1

(µ(An))1/p χAn
, Then it is

clear that fn ∈ Lp(A) and ‖fn‖p = 1. Then we have

∞ > ‖Kϕ
w‖q ≥ ‖Kϕ

wfn‖q
q = ‖w(fn ◦ ϕ)‖q

q

=
1

(µ(An))
q
p

∫

An

Sq dµ =
1

(µ(An))
q
p

Sq(An)µ(An) =
Sq(An)

(µ(An))
q
r

.

Since this holds for any n ∈ N, we get that supn∈N
Sq(An)

(µ(An))
q
r

< ∞.

(d) Suppose that for each f ∈ L∞(Σ), Kϕ
wf ∈ L∞(Σ). Then

‖w‖∞ = ‖w(χ
X
◦ ϕ)‖∞ = ‖Kϕ

wχ
X
‖∞ ≤ ‖Kϕ

w‖‖χX
‖∞ = ‖Kϕ

w‖ < ∞.

Conversely, suppose that w ∈ L∞(Σ). Since E is a contraction operator, then for
each f ∈ L∞(Σ), we have

‖Kϕ
wf‖∞ ≤ 3‖w‖∞‖f ◦ ϕ‖∞ ≤ 3‖w‖∞‖f‖∞.

Thus ‖Kϕ
w‖ ≤ 3‖w‖∞, and so w ∈ Kϕ

∞.
(e) Suppose Sq ∈ L1(Σ) and f ∈ L∞(Σ). Then we have

‖wE(f ◦ ϕ)‖q
q ≤

∫

X

Sq|f |q dµ ≤ ‖f‖q
∞‖Sq‖1.

It follows that ‖Kϕ
w‖ ≤ 3‖Sq‖1/q

1 , and so w ∈ Kϕ
∞,q. Conversely, suppose that

w ∈ Kϕ
∞,q. Since χX ∈ L∞(A), thus Kϕ

wχX ∈ Lq(Σ), and so

‖Sq‖1 =
∫

X

Sq dµ = ‖Kϕ
wχ

X
‖q

q < ∞.

This completes the proof.

Corollary 2.2. Let w ∈ L0(Σ) and let wCϕ : Lp(Σ) → Lq(Σ) be a weighted
composition operator. Put Jp = hEϕ−1(Σ)(|w|p) ◦ ϕ−1. Then the following hold.
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(a) If 1 ≤ p = q < ∞, then wCϕ is bounded if and only if Jp ∈ L∞(Σ).

(b) If 1 ≤ q < p < ∞, then wCϕ is bounded if and only if q
√

Jq ∈ Lr(Σ), where
1
p + 1

r = 1
q .

(c) If 1 ≤ p < q < ∞, then wCϕ is bounded if and only if w satisfies the
following conditions:

i) Jq = 0 on C;

ii) supn∈N
Jq(Cn)

(µ(Cn))
q
r

< ∞, where 1
q + 1

r = 1
p .

(d) If p = q = ∞, then wCϕ is bounded if and only if w ∈ L∞(Σ).

(e) If 1 ≤ q < ∞ = p, then wCϕ is bounded if and only if Jq ∈ L1(Σ).

Proof. Put A = Σ in the previous theorem. Then we have Kϕ
w = wCϕ and

Sq = Jq. Thus the proof holds.

Corollary 2.3. Let ϕ be the identity transformation on X and w ∈ D(E).
Put Twf = wE(f) + fE(w)−Ew)E(f). Then the following hold.

(a) If 1 ≤ p < ∞, then Tw : Lp(Σ) → Lp(Σ) is bounded linear operator if and
only if E(|w|p) ∈ L∞(A).

(b) If 1 ≤ q < p < ∞, then Tw : Lp(Σ) → Lq(Σ) is bounded linear operator if
and only if (E(|w|q)) 1

q ∈ Lr(A) where 1
p + 1

r = 1
q .

(c) Let 1 ≤ p < q < ∞ and let 1
q + 1

r = 1
p . If E(|w|q) = 0 on C and

supn∈N
E(|w|q)(Cn)

(µ(Cn))
q
r

< ∞, then Tw : Lp(Σ) → Lq(Σ) is bounded linear operator. On

the other hand if Tw is bounded, then E(|w|q) = 0 on B and supn∈N
E(|w|q)(An)

(µ(An))
q
r

<

∞.

(d) If p = q = ∞, then Tw : L∞(Σ) → L∞(Σ) is bounded linear operator if
and only if w ∈ L∞(Σ).

(e) If 1 ≤ q < ∞ = p, then Tw : L∞(Σ) → Lq(Σ) is bounded linear operator if
and only if E(|w|q) ∈ L1(Σ).

Proof. Put ϕ = id in the previous theorem. Then we have Kid
w = Tw and

Sp = E(|w|p).
Example 2.4. Let X = [−1, 1], dµ = 1

2dx and Σ the Lebesgue sets. Define
the non-singular transformations ϕi : X → X by ϕ1(x) = 3

√
3x and ϕ2(x) =

(
√

1 + x− 1)χ[−1,0] + (1−√1− x)χ(0,1]. Put hϕi = dµ ◦ ϕi/ dµ and A = ϕ−1
2 (Σ).

It is easy to see that Eϕ−1
1 (Σ) = I and EA(f) = (f(x) + f(−x))/2, for all positive

measurable function f on X. Put w(x) =
√

x2 + x + 1. Direct computations show
that hϕ1(x) = x2, hϕ2(x) = (2+2x)χ[−1,0] +(2−2x)χ(0,1] and EA(w2)(x) = x2 +1.
Therefore we get that

S2(x) = hϕ1(x)[Eϕ−1
1 (Σ)EA(w2)] ◦ ϕ−1

1 (x) = x2 +
1
9
x8,
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J1(x) = x2 +
1
3
x5 +

1
9
x8,

J2(x) = (2 + 2x)
(
(2x + x2)2 + 1

)
χ[−1,0] + (2− 2x)

(
(2x− x2)2 + 1

)
χ(0,1],

where Ji := hϕi
Eϕ−1

i
(Σ)(w2) ◦ ϕ−1

i . If Wi = w.f ◦ ϕi, then we get that

‖Kϕ1
w ‖L2(Σ)→L2(Σ) ≤

√
10, ‖W1‖L2(Σ)→L2(Σ) =

√
13
3

, ‖W2‖L2(Σ)→L2(Σ) = 2
√

10.

In what follows we use the symbols N (Kϕ
w) and R(Kϕ

w) to denote the kernel
and the range of Kϕ

w, respectively. Recall that Kϕ
w is a Fredholm operator on Lp(Σ)

if R(Kϕ
w) is closed, dimN (Kϕ

w) < ∞, and codimR(Kϕ
w) < ∞.

In the following we give a necessary condition for Kϕ
w on Lp(Σ) to be a Fred-

holm operator. This is a generalization of the result obtained in [5] for multiplica-
tion operators.

Lemma 2.5. Suppose that w ∈ Kϕ
p and A is a non-atomic measure space. If

Kϕ
w is a Fredholm operator on Lp(Σ) (1 ≤ p < ∞), then it is onto and Eϕ−1(A)(w) 6=

0 almost everywhere on X.

Proof. Suppose that Kϕ
w is a Fredholm operator. We first claim that Kϕ

w

is onto. Suppose the contrary. Then there exists f0 ∈ Lp(Σ) \ R(Kϕ
w). Since

R(Kϕ
w) is closed, by the Hahn-Banach theorem there exists a bounded functional

Fg0
: Lp(Σ) → C, corresponding to g0 ∈ Lq(Σ), such that

Fg0
(f0) =

∫

X

f̄0g0 dµ = 1 (2.1)

and
Fg0

(R(Kϕ
w)) = 0 (2.2)

Now (2.1) yields that the set Br = {x ∈ X : |Eϕ−1(A)(f̄0g0)(x)| ≥ r} has positive
and finite measure for some r > 0. Since ϕ−1(A) ⊆ A is sigma finite and A is
non-atomic, we can choose a sequence of pairwise disjoint sets {An} of A such that
ϕ−1(An) ⊆ Br and µ(ϕ−1(An)) > 0 for all n ∈ N. Put gn = χϕ−1(An)g0 . Clearly,
gn ∈ Lq(Σ) and is nonzero, because

∫

X

|f̄0gn| dµ ≥
∫

ϕ−1(An)

|f̄0gn| dµ =
∫

ϕ−1(An)

Eϕ−1(A)(|f̄0g0 |)

≥
∫

ϕ−1(An)

|Eϕ−1(A)(f̄0g0)| dµ ≥ rµ(ϕ−1(An)) > 0

for each n. Also, for each f ∈ Lp(Σ), χ
An

f ∈ Lp(Σ) and so (2.2) implies that

((Kϕ
w)∗gn, f) = (gn, Kϕ

wf) =
∫

X

g0(χAn
◦ ϕ)Kϕ

wf dµ

=
∫

X

g0K
ϕ
w(χ

An
f) dµ = (g0 ,K

ϕ
w(χ

An
f)) = 0,
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which implies that (Kϕ
w)∗gn = 0 and so gn ∈ N ((Kϕ

w)∗). Since all the sets in
{ϕ−1(An)} are disjoint, the sequence {gn} forms a linearly independent subset of
N ((Kϕ

w)∗). This contradicts the fact that dimN ((Kϕ
w)∗) = codimR(Kϕ

w) < ∞.
Hence Kϕ

w is onto. Put D = {x ∈ X : Eϕ−1(A)(u)(x) = 0}. If µ(D) > 0, there is
a ϕ−1(A)-measurable set F ⊆ D with 0 < µ(F ) < ∞. If χF ∈ R(Kϕ

w), then there
exists f ∈ Lp(Σ) such that Kϕ

wf = χF . Since F is also an A-measurable set and
σ(E(w)) ⊆ σ(Eϕ−1(A)(w)), we get that

µ(F ) =
∫

X

χ
F

dµ =
∫

F

Kϕ
wf dµ =

∫

F

E(Kϕ
wf) dµ =

∫

F

E(w)E(f ◦ ϕ) dµ = 0,

and this is a contradiction. So χ
F
∈ Lp(Σ)\R(Kϕ

w), which again contradicts the
fact that Kϕ

w is onto.
The proof of the following theorem can be obtained by Lemma 2.5 and adapting

the proof of Theorem 3.2 in [1].

Theorem 2.6. Let w ∈ Kϕ
p , h ∈ L∞(Σ) and let A be a non-atomic measure

space. If Kϕ
w is a Fredholm operator on Lp(Σ) (1 ≤ p < ∞), then |Eϕ−1(A)(w)| ≥ δ

almost everywhere on X for some δ > 0.

Now, we consider the particular case when p = 2. For w ∈ D(E), define
Tw : L2(Σ) → L2(Σ) as Twf = wE(f) + fE(w)− Ew)E(f). It is easy to see that
T ∗wf = E(w̄f) + E(w)(f − E(f)) and Kϕ

w = TwCϕ. Also we have

(Kϕ
w)∗f = C∗ϕ(T ∗wf) = hEϕ−1(Σ)(T ∗wf) ◦ ϕ−1

Kϕ
w(Kϕ

w)∗ = TwCϕC∗ϕTw = TwMh◦ϕEϕ−1(Σ)Tw

and (Kϕ
w)∗Kϕ

w = C∗ϕT ∗wTwCϕ. For the study of the Lambert multiplication operator
Tw on Lp-spaces, see [1] and the references therein. By using these facts we have
the following lemma.

Lemma 2.7. Let w ∈ Kϕ
2 . Then we have:

(a) (Kϕ
w)∗f = hEϕ−1(Σ)(E(w̄f) + E(w)(f − E(f))) ◦ ϕ−1.

(b) Kϕ
w(Kϕ

w)∗f = wE(h◦ϕEϕ−1(Σ)(T ∗wf))+E(w)h◦ϕEϕ−1(Σ)(T ∗wf)−E(w)E(h◦
ϕEϕ−1(Σ)(T ∗wf)).

(c)(Kϕ
w)∗Kϕ

wf = hEϕ−1(Σ){E(f ◦ ϕ)E(|w|2) + E(w)E(w̄f ◦ ϕ) + wE(w̄)E(f ◦
ϕ) + |E(w)|2f ◦ ϕ− 3|E(w)|2E(f ◦ ϕ)} ◦ ϕ−1.

Proposition 2.8. Let w ∈ Kϕ
2 and let A ⊆ ϕ−1(Σ). If Kϕ

w is normal on
L2(Σ), then (w ¦ (h ◦ ϕ))E(w) = hE(|w|2) ◦ ϕ−1.

Proof. Since Kϕ
w is normal, then Kϕ

w(Kϕ
w)∗f = (Kϕ

w)∗Kϕ
wf for all f ∈ L2(Σ).

In particular if f ∈ L2(A), by Lemma 2.7 we have

Kϕ
w(Kϕ

w)∗f = (w ¦ h ◦ ϕ)E(w)f,

(Kϕ
w)∗Kϕ

wf = h{E(|w|2) ◦ ϕ−1 − |E(w)|2 ◦ ϕ−1 + (Eϕ−1(Σ)(w)E(w)) ◦ ϕ−1}f.
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Since A ⊆ ϕ−1(Σ), for each A ∈ A we get that
∫

A

Eϕ−1(Σ)(w)E(w) dµ =
∫

A

Eϕ−1(Σ)(wE(w)) dµ =
∫

A

wE(w) dµ =
∫

A

|E(w)|2 dµ.

Therefore, we get that (Kϕ
w)∗Kϕ

wf = hE(|w|2) ◦ ϕ−1f .
Note that if ϕ is the identity on X, then by Proposition 2.8 normality of

bounded operator Kϕ
w = Tw implies that wE(w) = E(|w|2). Hence we obtain that

E(|w|2) = |E(w)|2 and thus w ∈ L∞(A). On the other hand, if w ∈ L∞(A) then
it is easy to see that T ∗wTwf = TwT ∗wf = |w|2f for all f ∈ L2(Σ) and hence Tw is
normal.
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