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NUMERICAL SOLUTIONS OF THIRD KIND
INTEGRAL-ALGEBRAIC EQUATIONS

Azzeddine Bellour and E. A. Rawashdeh

Abstract. In this paper, collocation and discretized collocation methods for solving third
kind integral-algebraic equations numerically are developed. The global convergence analysis

using the spline polynomial space S−1
m−1(ΠN ) is given. We exhibit the methods and tabulate the

results for several numerical test cases.

1. Introduction

The general form of the linear semi-explicit integral-algebraic equations is

A(t)X(t) = q(t) +
∫ t

0

K(t, s)X(s) ds, t ∈ I = [0, T ], (1.1)

where q(t) = (q1(t), q2(t))t and A is a singular matrix with

A(t) =
(

a(t) d(t)
c(t) b(t)

)
, K(t, s) =

(
K11(t, s) K12(t, s)
K21(t, s) K22(t, s)

)
and X(t) =

(
y(t)
z(t)

)
.

System (1.1) has been widely applied in engineering and physics; particularly, it
arises in a number of important problems of the theory of elasticity, neutron trans-
port, and scattering of particles; see for example [1, 8, 9]. System (1.1) has many
forms according to the algebraic form of the matrix A(t). The matrix A(t) has two
eigenvalues 0 and λ(t). If λ(t) 6= 0, ∀t ∈ I, then there exists a matrix P (t) such
that

P−1(t)A(t)P (t) = diag[λ(t), 0],

thus equation (1.1) can be written in the form

diag[λ(t), 0]P−1(t)X(t) = P−1(t)q(t) +
∫ t

0

P−1(t)K(t, s)X(s) ds.
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Defining W (t) = P−1(t)X(t) = (u(t), v(t))t, we get

u(t) = q̃1(t) +
∫ t

0

(K̃11(t, s)u(s) + K̃12(t, s)v(s)) ds,

0 = q̃2(t) +
∫ t

0

(K̃21(t, s)u(s) + K̃22(t, s)v(s)) ds

(1.2)

which is called semi-explicit linear integral-algebraic equation of index 1. Equa-
tion (1.2) has been investigated by Kauthen [6]. He applied the spline collocation
method to approximate the solution of (1.2). This paper deals with the following
form of (1.1):

y (t)− a(t)z(t) = f (t) +
∫ t

0

(K11 (t, s) y (s) + K12 (t, s) z (s)) ds

0 = g (t) +
∫ t

0

(K21 (t, s) y (s) + K22 (t, s) z (s)) ds.

(1.3)

We call this type: third kind semi-explicit linear integral-algebraic equation where
the data functions a, f, g, Kij ; i, j = 1, 2, are sufficiently smooth. Furthermore, we
suppose that g(0) = 0, |a (t)| ≥ a0 > 0, |K22(t, t) + a(t)K21(t, t)| ≥ k0 > 0 for all
t ∈ I. It then follows that equation (1.3) has a unique continuous solutions y and z
on I. This can be easily seen as follows: we first differentiate the second equation
of (1.3) so that we get a second kind Volterra integral equation which is known
to have a unique continuous solution (Yosida [10]). Note that equation (1.3) can
be obtained from equation (1.1) by assuming λ(t) = 0, ∀t ∈ I and a(t) 6= 0 for all
t ∈ I. Moreover, equation (1.3) can be considered as a general case of equation
(1.2).

Recently, there has been a growing interest in developing approximate numer-
ical techniques for integral equations of the third kind; see for example [3, 4].

The solutions of (1.3) are to be approximated in the space S
(−1)
m−1(ΠN ); the

space of discontinuous polynomial spline functions of degree m − 1. Our goal
is to generalize the convergence theory that has been proved by Kauthen [6] to
approximate the solution of equation (1.3).

In Section 2, polynomial spline collocation method is used to solve equation
(1.3) numerically. A convergence analysis is established in Section 3. In Section
4, we briefly study the discretized collocation method. Numerical illustrations are
provided in Section 5.

2. Discontinuous collocation approximations

Let ΠN be a uniform partition of the interval I = [0, T ] defined by tn = nh,
n = 0, 1, . . . , N where the stepsize is given by h = T/N(N > 0). Let 0 < c1 <
c2 < · · · < cm ≤ 1(m ≥ 1) be the collocation parameters and tn,j = tn + cjh, j =
1, . . . , m, n = 0, . . . , N−1 the collocation points. Moreover, denote by πm+d the set
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of all real polynomials of degree not exceeding m+d. We define the real polynomial
spline space of degree m and of continuity class d as follows:

S
(d)
m+d(ΠN ) = {u ∈ Cd(I) : u ∈ πm+d on σn, n = 0, 1, . . . , N − 1};

where σn = (tn, tn+1] and −1 ≤ d ≤ m + d, and for d = −1

S
(−1)
m−1(ΠN ) = {u : un = u|σn

∈ πm−1, n = 0, . . . , N − 1}.
The exact solutions y, z of (1.3) will be approximated on I by elements u, v ∈

S
(−1)
m−1(ZN ) respectively, (called collocation solutions). These approximations satisfy

the collocation equations

u (t)− a(t)v(t) = f (t) +
∫ t

0

(K11 (t, s)u (s) + K12 (t, s) v (s)) ds (2.1)

0 = g (t) +
∫ t

0

(K21 (t, s)u (s) + K22 (t, s) v (s)) ds (2.2)

for t = tn,j , j = 1, . . . , m, n = 0, . . . , N − 1.
Let Yn,j = un (tn,j) and Zn,j = vn (tn,j). Since un, vn ∈ πm−1, it holds for

τ ∈ (0, 1],

un (tn + τh) =
m∑

j=1

Lj (τ) Yn,j , vn (tn + τh) =
m∑

j=1

Lj (τ) Zn,j (2.3)

where Lj(τ) =
∏

k 6=j(τ − ck)/(cj − ck), j = 1, . . . ,m, denote the fundamental
Lagrange polynomials. Substituting (2.3) into (2.1) and (2.2), we obtain for each
n = 0, . . . , N − 1, a linear system for the unknowns Yn,j , Zn,j , j = 1, . . . ,m

Yn,j − a(tn,j)Zn,j = f (tn,j) + h

m∑

k=1

(
∫ cj

0

(K11 (tn,j , tn + τh) Lk (τ)) dτ)Yn,k

+ h

m∑

k=1

(
∫ cj

0

(K12 (tn,j , tn + τh)Lk (τ)) dτ)Zn,k

+ h

n−1∑

i=0

m∑

k=1

(
∫ 1

0

(K11 (tn,j , ti + τh)Lk (τ)) dτ)Yi,k

+ h

n−1∑

i=0

m∑

k=1

(
∫ 1

0

(K12 (tn,j , ti + τh)Lk (τ)) dτ)Zn,k

(2.4)

and

0 = g (tn,j) + h

m∑

k=1

(
∫ cj

0

(K21 (tn,j , tn + τh) Lk (τ)) dτ)Yn,k

+ h

m∑

k=1

(
∫ cj

0

(K22 (tn,j , tn + τh)Lk (τ)) dτ)Zn,k
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+ h

n−1∑

i=0

m∑

k=1

(
∫ 1

0

(K21 (tn,j , ti + τh)Lk (τ)) dτ)Yi,k

+ h

n−1∑

i=0

m∑

k=1

(
∫ 1

0

(K22 (tn,j , ti + τh)Lk (τ)) dτ)Zi,k. (2.5)

Then the algebraic system defining Yn and Zn can be written as
(

I − hK
(n,n)
11 −An − hK12(n, n)

K
(n,n)
21 K

(n,n)
22

)(
Yn

Zn

)
=

(
fn + G

(1)
n

−h−1[gn + G
(2)
n ]

)
(2.6)

where the matrix K
(n,n)
lr = (

∫ cj

0
Klr (tn,j , tn + τh)Lk (τ) dτ ) (l, r = 1, 2), Yn =

(Yn,1, . . . , Yn,m)T and Zn = (Zn,1, . . . , Zn,m)T . We also define F
(r)
n (tn,j) =∫ tn

0
(Kr1 (tn,j , s) u (s) + Kr2 (tn,j , s) v (s)) ds, fn = (f(tn,1), . . . , f(tn,m))T , gn =

(g(tn,1), . . . , g(tn,m))T , G
(r)
n = (F (r)

n (tn,1), . . . , F
(r)
n (tn,m))T (r = 1, 2), and An =

diag[a(tn,1), . . . , a(tn,m)].

3. Convergence analysis

To study the convergence of the collocation method for equation (1.3), we need
the following lemmas:

Lemma 1. Let B be an n × n matrix such that ‖B‖∞ < 1. Then the matrix
(I −B) is invertible and

(I −B)−1 = I + B + B2 + · · · .

Lemma 2. Let Q, B, C, D, E be n × n matrices such that Q and E + DQ
are invertible, then there exists h > 0 such that for all h ∈ [0, h], the block matrix(

I − hB −Q− hC
D E

)
is invertible.

Proof. We have by Lemma 1, that there exists h1 > 0 such that for all h ∈
[0, h1] the matrix I − hB is invertible. Hence by Leibniz formula, for all h ≤ h1

(
I − hB −Q− hC

D E

)
=

(
I − hB 0

D I

)(
I (I − hB)−1(−Q− hC)
0 E −D(I − hB)−1(−Q− hC)

)
.

Thus,

det
(

I − hB −Q− hC
D E

)
= det(I − hB) det(E + D(I − hB)−1(Q + hC))

= det(I − hB) det(B1),

where

B1 = E + D(h(I − hB)−1B + I)Q + D(I − hB)−1hC

= E + DQ + hD(I − hB)−1(BQ + C).
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From Lemma 1, we have
∥∥(I − hB)−1

∥∥
∞ ≤

∞∑
n=0

‖(hB)n‖∞ =
1

1− h ‖B‖∞
≤ 1

1− h1 ‖B‖∞
,

then D(I−hB)−1(BQ+C) is bounded and since E+DQ is invertible we obtain by

using Lemma 1 that the matrix
(

I − hB −Q− hC
D E

)
is invertible for all h ∈ [0, h],

for some h ∈ [0, h1].

We now return to system (2.6). Let D = K
(n,n)
21 , E = K

(n,n)
22 , and Q = An,

then Q is invertible because |a(t)| ≥ a0 > 0, on the other hand, we have

E + DQ = (
∫ cj

0
(K22 (tn,j , tn + τh) + a(tn,j)K21 (tn,j , tn + τh))Li (τ) dτ )j,i=1,...,m

= (K22 (tn, tn) + a(tn)K21 (tn, tn))A + O(h)

where the matrix A = (aji)m
j,i=0 with aji =

∫ ci

0
Lj(τ) dτ . Since |K22 (tn, tn) +

a(tn)K21 (tn, tn)| ≥ k0 > 0 and the matrix A is invertible by [7], then there exists
h1 such that for all h ∈ [0, h1] the matrix E + DQ is invertible. Thus according to
Lemma 2 there exist h2 ≤ h1 such that the left-hand side block matrix of equation
(2.6) is also invertible for all h ∈ [0, h2] and the linear algebraic system (2.6) has a
unique solutions Yn, Zn for n = 0, 1, . . . , N − 1 and h ∈ [0, h2].

We are now in a position to prove the following global convergence result:

Theorem 1. Consider the polynomial spline approximations u, v in S
(−1)
m−1(ΠN )

to the solutions y, z of equation (1.3) and defined by (2.3), (2.4), and (2.5). If cm =
1 then for every choice of ci (i = 1, 2, . . . ,m−1), the collocation approximations u, v
converge to the solutions y, z respectively. If cm < 1, the collocation approximations
u, v converge to the solutions y, z for any m ≥ 1 if and only if

−1 ≤ R(∞) = (−1)m
m∏

i=1

1− ci

ci
≤ 1.

Moreover, the following error estimates hold

‖y − u‖∞ =





o(hm), if cm = 1
o(hm), if cm < 1 and − 1 ≤ R(∞) < 1
o(hm−1), if cm < 1 and R(∞) = 1,

(3.1)

‖z − v‖∞ =





o(hm), if cm = 1
o(hm), if cm < 1 and − 1 ≤ R(∞) < 1
o(hm−1), if cm < 1 and R(∞) = 1.

(3.2)

Proof. The errors e = y − u and ε = z − v satisfy the system

en (tn)− a(tn)ε(tn) =
∫ tn,j

0

(K11 (tnj , s) e (s) + K12 (tn,j , s) ε (s)) ds

0 =
∫ tn,j

0

(K21 (tn,j , s) e (s) + K22 (tn,j , s) ε (s)) ds,
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where en = e|σn
and εn = ε|σn

. Then similar to the proof of Theorem 3.1 of [6],
the following cases have to be considered:

Case I. If cm = 1, then the following linear system can be derived:
(

I − hK
(n,n)
11 −An − hK

(n,n)
12

K
(n,n)
21 K

(n,n)
22

)(
En

εn

)
= h

n−1∑

i=0

(
K

(n,i)
11 K

(n,i)
12

K̃
(n,i)
21 K̃

(n,i)
22

) (
Ei

εi

)
+O(hm),

where En = (en(tn,1), . . . , en(tn,m))T , εn = (εn(tn,1), . . . , εn(tn,m))T , n = 0, . . . , N−
1, and the matrices

K̃
(n,i)
lr =

( ∫ 1

0
∂1Klr (ξj , ti + τh)Lk (τ) dτ

)
j,k=1,...,m

K
(n,i)
lr = (

∫ cj

0
Klr (tn,j , ti + τh)Lk (τ) dτ )j,k=1,...,m

with l, r = 1, 2, ∂1Klr(t, s) = ∂Klr

∂t (t, s), and ξj between tn−1,m and tn,j . By
(2.6) the inverse of the matrix on the left-hand side exists and is bounded if h is
sufficiently small. Then the result follows from Gronwall’s inequality [2].

Case II. If cm < 1, then we have the linear system(
I − hK

(n,n)
11 −An − hK

(n,n)
12

K
(n,n)
21 K

(n,n)
22

)(
En

εn

)

=
(

hK
(n,n−1)
11 hK

(n,n−1)
12

K21(tn, tn)M1 + O(h) K22(tn, tn)M1 + O(h)

)(
En−1

εn−1

)

+ h

n−2∑

i=0

(
K

(n,i)
11 hK

(n,n−1)
12

K̃
(n,i)
21 K̃

(n,i)
22

)(
En−1

εn−1

)
) + O(hm) (3.3)

where M1 = umeT
mA− umbT , um = (1, . . . , 1)T , em = (0, . . . , 0, 1)T , and the vector

b = (b0, . . . , bm)T with bj =
∫ 1

0
Lj (τ) dτ, j = 1, . . . , m. The inverse of the matrix

on the left-hand side has the form
(

I − hK
(n,n)
11 −An − hK

(n,n)
12

K
(n,n)
21 K

(n,n)
22

)−1

=


 I − anA−1K

(n,n)
21

αn
+ O(h) anA−1

αn
+ O(h)

−A−1K
(n,n)
21

αn
+ O(h) A−1

αn
+ O(h)


 ,

where an = a(tn) and αn = K22(tn, tn) + K21(tn, tn)an. Then
(

I − hK
(n,n)
11 −An − hK

(n,n)
12

K
(n,n)
21 K

(n,n)
22

)−1 (
hK

(n,n−1)
11 hK

(n,n−1)
12

K21(tn, tn)M1 + O(h) K22(tn, tn)M1 + O(h)

)

=

(
K21(tn, tn)anA−1

αn
M1 + O(h) K22(tn, tn)anA−1

αn
M1 + O(h)

K21(tn, tn)A−1

αn
M1 + O(h) K22(tn, tn)A−1

αn
M1 + O(h)

)
.

Thus (3.3) becomes(
En

εn

)
=

(
K21(tn, tn) an

αn
M0 K22(tn, tn) an

αn
M0

K21(tn, tn) 1
αn

M0 K22(tn, tn) 1
αn

M0

)(
En−1

εn−1

)

+ h

n−1∑

i=0

(
D

(n,i)
1 D

(n,i)
2

D
(n,i)
3 D

(n,i)
4

)(
Ei

εi

)
+ O(hm)

where M0 = A−1M1 and D
(n,i)
2 , i = 2, . . . , 5, denote bounded matrices. Then, the

result follows as in [5] and [7] and by the help of the following lemmas.
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Lemma 3. [6] Let M0 = A−1um(eT
mA − bT ). Then M0 has rank one and its

only nonzero eigenvalue is

R(∞) = (−1)m
m∏

i=1

1− ci

ci
,

where R(z) = 1 + zbT (u − zA)−1um denotes the stability function of the Runge-
Kutta method (c, A, b), moreover there exists a nonsingular matrix P such that
M0 = PDP−1 with D = diag(R(∞), 0, . . . , 0).

Lemma 4. Let Mn =
(

K21(tn, tn) an

αn
M0 K22(tn, tn) an

αn
M0

K21(tn, tn) 1
αn

M0 K22(tn, tn) 1
αn

M0

)
. Then Mn is

diagonalizable, and its only nonzero eigenvalue is R(∞).

Proof. It is clear that λ = 0 is an eigenvalue of Mn of multiplicity 2m− 1 and
trace(Mn) = trace(M0) = R(∞).

4. Discretized collocation

In section 2 it is assumed that the integrals in (2.1) and (2.2) are evaluated
analytically. But it is not always possible to compute these integrals, thus they
have to be approximated by using the following appropriate quadrature formulas:

∫ ci

0

f (τ) dτ ≈
m∑

j=1

aijf (cj) , i = 1, . . . , m,

∫ 1

0

f (τ) dτ ≈
m∑

j=1

bjf (cj) ,

where the coefficients aij and bj are defined by

aij =
∫ ci

0

Lj (τ) dτ, bj =
∫ 1

0

Lj (τ) dτ, i, j = 1, . . . , m.

The resulting approximations of y, z are denoted by ũ, ṽ ∈ S
(−1)
m−1(ZN ) and defined

by

Ỹn,j − a(tn,j)Z̃n,j =

= f (tn,j) + h

m∑

k=1

ajkK11 (tn,j , tn,k) Ỹn,k + h

m∑

k=1

ajkK12 (tn,j , tn,k) Z̃n,k

+ h

n−1∑

i=0

m∑

k=1

bkK11 (tn,j , ti,k) Ỹi,k + h

n−1∑

i=0

m∑

k=1

bkK12 (tn,j , ti,k) Z̃i,k

and

0 = g(tn,j) + h

m∑

k=1

ajkK21 (tn,j , tn,k) Ỹn,k + h

m∑

k=1

aj,kK22 (tn,j , tn,k) Z̃n,k

+ h

n−1∑

i=0

m∑

k=1

bkK21 (tn,j , ti,k) Ỹi,k + h

n−1∑

i=0

m∑

k=1

bkK22 (tn,j , ti,k) Z̃i,k,
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where

ũn (tn + τh) =
m∑

j=1

Lj (τ) Ỹn,j , ṽn (tn + τh) =
m∑

j=1

Lj (τ) Z̃n,j .

Remark 1. Applying the same techniques as in the proof of Theorem 1, it
can be shown that the error estimates (3.1) and (3.2) hold also for the discretized
collocation method.

5. Numerical examples

In this section, we apply collocation and discretized collocation methods for
equation (1.3). In Tables 1, 2, 5, 6, 9, and 10, the case cm = 1 is considered. Then,
in Tables 3, 4, 7, 8, 11, and 12, the cases cm < 1 and |R(∞)| < 1 are assumed, in all
of these cases the methods are convergent. In Table 13, the orders of convergence of
u and v are given. These results are well in line with the prediction of Theorem 1.

Example 1. Consider equation (1.3) with K11(t, s) = ts + 1,K12(t, s) = st2,
K21(t, s) = st2 + 1,K22(t, s) = ts + 5, a(t) = t + 2, and f(t), g(t) are chosen so that
the exact solutions are y(t) = t + 1 and z(t) = t + 2.

Here we found the following results.

Table 1: Collocation method for Example 1 using N = 10, m = 3, and ci =
i
m , i = 1, . . . ,m.

t 0.4 0.6 0.8 1

|y(t)− u(t)| 0.2× 10−7 0.47× 10−7 0.82× 10−7 0.22× 10−6

|z(t)− v(t)| 0.1× 10−8 0.2× 10−7 0.33× 10−7 0.75× 10−7

Table 2: Discretized collocation method for Example 1 using N = 10, m = 3,
and ci = i

m , i = 1, . . . , m.

t 0.4 0.6 0.8 1

|y(t)− ũ(t)| 0.18× 10−7 0.10× 10−7 0.17× 10−7 0.45× 10−7

|z(t)− ṽ(t)| 0.44× 10−8 0.32× 10−8 0.39× 10−8 0.15× 10−7

Table 3: Collocation method for Example 1 using N = 5, m = 5, and ci =
i

m+2 + 1
12 , i = 1, . . . ,m, and R(∞) = −0.74.

t 0.4 0.6 0.8 1

|y(t)− u(t)| 0.43× 10−5 0.50× 10−5 0.28× 10−5 0.21× 10−5

|z(t)− v(t)| 0.17× 10−5 0.18× 10−5 0.10× 10−5 0.64× 10−6
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Table 4: Discretized collocation method for Example 1 using N = 5, m = 5,
and ci = i

m+2 + 1
12 , i = 1, . . . ,m, and R(∞) = −0.74.

t 0.4 0.6 0.8 1

|y(t)− ũ(t)| 0.15× 10−6 0.58× 10−5 0.84× 10−5 0.15× 10−4

|z(t)− ṽ(t)| 0.4× 10−8 0.21× 10−5 0.28× 10−5 0.51× 10−5

Example 2. Consider equation (1.3) with K11(t, s) = tes − 1,K12(t, s) = set,
K21(t, s) = et+s + 2,K22(t, s) = ts + 1, a(t) = e2t + 1, and f(t), g(t) are chosen so
that the exact solutions are y(t) = 2t− 1 and z(t) = et.

Here we found the following results.

Table 5: Collocation method for Example 2 using N = 5, m = 3, and ci =
i
m , i = 1, . . . ,m.

t 0.4 0.6 0.8 1

|y(t)− u(t)| 0.22× 10−5 0.26× 10−5 0.27× 10−5 0.72× 10−5

|z(t)− v(t)| 0.96× 10−5 0.12× 10−4 0.14× 10−4 0.17× 10−4

Table 6: Discretized collocation method for Example 2 using N = 5, m = 6,
and ci = i

m , i = 1, . . . , m.

t 0.4 0.6 0.8 1

|y(t)− ũ(t)| 0.12× 10−6 0.17× 10−7 0.30× 10−6 0.54× 10−6

|z(t)− ṽ(t)| 0.34× 10−7 0.34× 10−7 0.57× 10−7 0.64× 10−7

Table 7: Collocation method for Example 2 using N = 5, m = 3, and ci =
i

m+1 + 1
10 , i = 1, . . . ,m, and R(∞) = −0.21.

t 0.4 0.6 0.8 1

|y(t)− u(t)| 0.5× 10−4 0.57× 10−4 0.65× 10−4 0.39× 10−4

|z(t)− v(t)| 0.30× 10−3 0.45× 10−3 0.56× 10−3 0.14× 10−3

Table 8: Discretized collocation method for Example 2 using N = 5, m = 5,
and ci = i

m+2 + 1
6 , i = 1, . . . ,m, and R(∞) = −0.08.

t 0.4 0.6 0.8 1

|y(t)− ũ(t)| 0.3× 10−9 0.12× 10−5 0.21× 10−5 0.91× 10−5

|z(t)− ṽ(t)| 0.2× 10−7 0.24× 10−6 0.69× 10−7 0.58× 10−7
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Example 3.Consider equation (1.3) with K11(t, s) = set,K12(t, s) = t sin s,
K21(t, s) = st2 + 1,K22(t, s) = ts + 5, a(t) = et + 2, and f(t), g(t) are chosen so
that the exact solutions are y(t) = 2 cos t + 1 and z(t) = t sin t.

Here we found the following results.
Table 9: Collocation method for Example 3 using N = 5, m = 3, and ci =

i
m , i = 1, . . . ,m.

t 0.4 0.6 0.8 1

|y(t)− u(t)| 0.109× 10−2 0.143× 10−2 0.164× 10−2 0.407× 10−3

|z(t)− v(t)| 0.348× 10−3 0.497× 10−3 0.652× 10−3 0.342× 10−4

Table 10: Discretized collocation method for Example 3 using N = 5, m = 3,
and ci = i

m , i = 1, . . . , m.

t 0.4 0.6 0.8 1

|y(t)− ũ(t)| 0.895× 10−3 0.128× 10−2 0.157× 10−2 0.317× 10−3

|z(t)− ṽ(t)| 0.354× 10−3 0.467× 10−3 0.573× 10−3 0.124× 10−3

Table 11: Collocation method for Example 3 using N = 5, m = 5, and ci =
i

m+2 + 1
12 , i = 1, . . . ,m, and R(∞) = −0.74.

t 0.4 0.6 0.8 1

|y(t)− u(t)| 0.123× 10−4 0.8× 10−6 0.664× 10−4 0.418× 10−4

|z(t)− v(t)| 0.287× 10−5 0.101× 10−6 0.174× 10−4 0.945× 10−5

Table 12: Discretized collocation method for Example 3 using N = 10, m = 5,
and ci = i

m+2 + 1
12 , i = 1, . . . ,m, and R(∞) = −0.74.

t 0.4 0.6 0.8 1

|y(t)− ũ(t)| 0.116× 10−5 0.242× 10−5 0.104× 10−5 0.503× 10−5

|z(t)− ṽ(t)| 0.483× 10−6 0.413× 10−6 0.44× 10−6 0.823× 10−6

Table 13: The orders of convergence for Example 3 using ci = i
m , i = 1, . . . ,m.

n m = 2 m = 3 m = 2 m = 3

5 u u v v

10 1.536 2.980 2.183 2.977

15 1.626 2.9849 2.156 2.981

20 1.673 2.992 2.141 2.986

25 1.704 3.127 2.130 3.056
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6. Conclusion

An efficient numerical scheme based on the collocation spline method was
proposed for solving third kind integral-algebraic equations. Moreover, the dis-
cretized collocation method for approximating the solution of equation (1.3) was
discussed. Error analysis was provided. The error is o(hm) if cm = 1 or cm < 1
and −1 ≤ R(∞) < 1 and o(hm−1) if cm < 1 and R(∞) = 1. The results in this
paper can be considered as a general case of the convergence theory that has been
proved by Kauthen [6]. Three numerical examples were introduced showing that
the methods are convergent with a good accuracy. All numerical results confirmed
the theoretical estimates.
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