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UNIQUENESS RESULTS OF MEROMORPHIC FUNCTIONS
WHOSE NONLINEAR DIFFERENTIAL POLYNOMIALS

HAVE ONE NONZERO PSEUDO VALUE

Hong-Yan Xu, Ting-Bin Cao and Shan Liu

Abstract. In this paper we deal with some uniqueness questions of meromorphic functions
whose certain nonlinear differential polynomials have a nonzero pseudo value. The results in this
paper improve the corresponding ones given by M. L. Fang, X. Y. Zhang and W. C. Lin, L. P.
Liu, and so on.

1. Introduction and main results

In this paper, by meromorphic functions we will always mean meromorphic
functions in the complex plane. We adopt the standard notations of the Nevan-
linna theory of meromorphic functions as explained in [8], [20] and [24]. It will be
convenient to let E denote any set of positive real numbers of finite linear measure,
not necessarily the same at each occurrence. For a nonconstant meromorphic func-
tion h, we denote by T (r, h) the Nevanlinna characteristic of h and by S(r, h) any
quantity satisfying S(r, h) = o{T (r, h)}, as r →∞ and r 6∈ E.

Let f and g be two nonconstant meromorphic functions, and let a be a value
in the extended plane. We say that f and g share the value a CM , provided that
f and g have the same a−points with the same multiplicities. We say that f and
g share the value a IM , provided that f and g have the same a−points ignoring
multiplicities (see [24]). We say that a is a small function of f , if a is a meromorphic
function satisfying T (r, a) = S(r, f) (see [24]). Let l be a positive integer or ∞.
Next we denote by El)(a; f) the set of of those a−points of f in the complex plane,
where each point is of multiplicity ≤ l and counted according to its multiplicity.
By El)(a; f) we denote the reduced form of El)(a; f). If El)(a; f) = El)(a; g), we
say that a is a l−order pseudo common value of f and g (see [15]). Obviously, if
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E∞)(a; f) = E∞)(a; g)(E∞)(a; f) = E∞)(a; g), resp.) then f and g share a CM
(IM , resp.). We define m∗ m∗ := χµm, where χµ = 0, if µ = 0, χµ = 1 if µ 6= 0.

In 1976, C. C. Yang posed the following question.
Question A. What can be said about the relationship between two entire

functions f and g, if f, g share 0 CM and f (n), g(n) share 1 CM , where n is a
nonnegative integer, and 2δ(0, f) > 1?

In 1990, H. X. Yi dealt with Question A (see [21], [22] [23]). In 1997, I. Lahiri
posed the following question.

Question B. (see [12]) What can be said if two non-linear differential poly-
nomials generated by two meromorphic functions share 1 CM?

Afterwards some research works concerning Question B have been done by
many mathematicians such as ([2–6,8–10,13,14,16-19,24,25]). A recent increment
to uniqueness theory has been to considering weighted sharing instead of sharing
IM/CM , this implies a gradual change from sharing IM to sharing CM . This
notion of weighted sharing has been introduced by I. Lahiri around 2000, and
since then investigated by I. Lahiri, his students and some of Chinese colleagues.
In this direction, many research works concerning Question B have been done by
many mathematicians, such as ([1,9–10,13–14]). The notion of weighted sharing is
defined as follows.

Definition 1.1. [9,10] Let k be a nonnegative integer or infinity. For a ∈
C ∪ {∞}, we denote by Ek(a; f) the set of all a-points of f where an a-point
of multiplicity m is counted m times if m ≤ k and k + 1 times if m > k. If
Ek(a; f) = Ek(a; g), we say that f, g share the value a with weight k.

We also need the following five definitions.

Definition 1.2. (see [11, Definition 1]) Let p be a positive integer and a ∈
C ∪ ∞. Then by N(r, a; f | ≤ p) we denote the counting function of those a-
points of f (counted with proper multiplicities) whose multiplicities are not greater
than p, by N(r, a; f | ≤ p) we denote the corresponding reduced counting function
(ignoring multiplicities). By N(r, a; f | ≥ p) we denote the counting function of
those a−points of f (counted with proper multiplicities) whose multiplicities are
not less than p, by N(r, a; f | ≥ p) we denote the corresponding reduced counting
function (ignoring multiplicities), where N(r, a; f | ≤ p), N(r, a; f | ≤ p), N(r, a; f | ≥
p) and N(r, a; f | ≥ p) mean N(r, f | ≤ p), N(r, f | ≤ p), N(r, f | ≥ p) and N(r, f | ≥
p) respectively, if a = ∞.

Definition 1.3. Let a be an any value in the extended complex plane, and
let k be an arbitrary nonnegative integer. We define

Nk(r, a; f) = N(r, a; f) + N(r, a; f | ≥ 2) + · · ·+ N(r, a; f | ≥ k),

and

δk(a; f) = 1− lim
r→∞

Nk(r, a; f)
T (r, f)

.
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Definition 1.4. [2] Let k and r be two positive integers such that 1 ≤ r < k−1
and for a ∈ C ∪ {∞}, Ek)(a; f) = Ek)(a; g), Er)(a; f) = Er)(a; g). Let z0 be a zero
of f − a of multiplicity p and a zero of g − a of multiplicity q. We denote by
NL(r, a; f)(NL(r, a; g)) the reduced counting function of those a-points of f and g

for which p > q ≥ r + 1(q > p ≥ r + 1), by N
(r+1

E (r, a; f) the reduced counting
function of those a-points of f and g for which p = q ≥ r+1, by Nf≥k+1(r, a; f |g 6=
a)(Ng≥k+1(r, a; g|f 6= a)) the reduced counting functions of those a-points of f and
g for which p ≥ k + 1 and q = 0(q ≥ k + 1 and p = 0).

Definition 1.5. [2] If r = 0 in definition 1.2 then we use the same notations
as in definition 1.2 except by N

1)

E (r, a; f) we mean the common simple a-points of f

and g and by N
(2

E (r, a; f) we mean the reduced counting functions of those a-points
of f and g for which p = q ≥ 2.

Definition 1.6. [2] Let a, b ∈ C ∪ {∞}, We denote by N(r, a; f |g = b) the
counting function of those a−points of f , counted according to multiplicity, which
are b-points of g; by N(r, a; f |g 6= b) the counting function of those a-points of f ,
counted according to multiplicity, which are not the b-points of g.

We recall the following result proved by Zhang and Lin in 2008, which extended
two uniqueness theorems of Fang in [4].

Theorem A. [24] Let f and g be two nonconstant entire functions, and let
n,m and k be three positive integers with n > 2k + m∗ + 4, and λ, µ be constants
such that |λ|+ |µ| 6= 0. If [fn(µfm +λ)](k) and [gn(µgm +λ)](k) share 1 CM , then

(i) when λµ 6= 0, f ≡ g,
(ii) when λµ = 0, either f ≡ tg, where t is a constant satisfying tn+m = 1, or

f = c1e
cz, g = c2e

−cz, where c1, c2 and c are three constants satisfying

(−1)kλ2(c1c2)n+m∗[(n + m∗)c]2k = 1 or (−1)kµ2(c1c2)n+m∗[(n + m∗)c]2k = 1.

Using the idea of weighted sharing, Liu proved the following result, which
generalized and improved Theorem A.

Theorem B. [16] Let f and g be two nonconstant meromorphic functions, and
let n,m and k be three positive integers, and λ, µ be constants such that |λ|+ |µ| 6=
0. If El(1, [fn(µfm + λ)](k)) = El(1, [gn(µgm + λ)](k)), and one of the following
conditions holds,

(1) l ≥ 2 and n > 3m∗ + 3k + 8;
(2) l = 1 and n > 4m∗ + 5k + 10;
(3) l = 0 and n > 6m∗ + 9k + 14.
Then: (i) when λµ 6= 0, if m ≥ 2 and δ(∞, f) > 3

n+m , then f ≡ g; if m = 1
and Θ(∞, f) > 3

n+1 , then f ≡ g;



4 Hong-Yan Xu, Ting-Bin Cao and Shan Liu

(ii) when λµ = 0, if f 6= ∞ and g 6= ∞, then either f ≡ tg, where t is a
constant satisfying tn+m∗

= 1, or f = c1e
cz, g = c2e

−cz, where c1, c2 and c are
three constants satisfying

(−1)kλ2(c1c2)n+m∗[(n + m∗)c]2k = 1 or (−1)kµ2(c1c2)n+m∗[(n + m∗)c]2k = 1.

Regarding Theorem B, it is natural to ask the following question.
Question 1.1. What can be said about the relationship between two mero-

morphic functions f and g, if the condition El(1, [fn(µfm+λ)](k)) = El(1, [gn(µgm+
λ)](k)) in Theorem B is replaced with the condition El)(1, [fn(µfm + λ)](k)) =
El)(1, [gn(µgm + λ)](k))?

We will prove the following two theorems, which improves Theorems A and B,
and deals with Question 1.1.

Theorem 1.1. Let f and g be two nonconstant meormorphic functions, and let
n,m and k be three positive integers with n > 13

3 k+ 13
3 m∗+ 28

3 , and λ, µ be constants
such that |λ| + |µ| 6= 0. If El)(1, [fn(µfm + λ)](k)) = El)(1, [gn(µgm + λ)](k)) and
E1)(1, [fn(µfm + λ)](k)) = E1)(1, [gn(µgm + λ)](k)), where l ≥ 3 is an integer, then
the conclusions of Theorem B still hold.

Theorem 1.2. Let f and g be two nonconstant meromorphic functions, and
let n,m and k be three positive integers with n > 3k+3m∗+6, and λ, µ be constants
such that |λ| + |µ| 6= 0. If El)(1, [fn(µfm + λ)](k)) = El)(1, [gn(µgm + λ)](k)) and
E2)(1, [fn(µfm + λ)](k)) = E2)(1, [gn(µgm + λ)](k)), where l ≥ 4 is an integer, then
the conclusions of Theorem B still hold.

2. Some lemmas

Lemma 2.1. [8] Let f(z) be a non-constant meromorphic function, k a positive
integer, and let c be a non-zero finite complex number. Then

T (r, f) ≤ N(r, f) + N(r, 0; f) + N(r, c; f (k))−N(r, 0; f (k+1)) + S(r, f)

= N(r, f) + Nk+1(r, 0; f) + N(r, c; f (k))−N0(r, 0; f (k+1)) + S(r, f),
(1)

where N0(r, 0; f (k+1)) is the counting function which only counts those points such
that f (k+1) = 0 but f(f (k) − c) 6= 0.

Lemma 2.2. [20] Let f be a nonconstant meromorphic function and P (f) =
a0 + a1f + a2f

2 + · · · + anfn, where a0, a1, a2, . . . , an are constants and an 6= 0.
Then

T (r, P (f)) = nT (r, f) + S(r, f).

Lemma 2.3. [15, Proof of Lemma 2.3] Let f be a nonconstant meromorphic
function, and let k ≥ 1 and p ≥ 1 be two positive integers. Then

Np(r, 0; f (k)) ≤ Np+k(r, 0; f) + kN(r,∞; f) + S(r, f).
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Lemma 2.4. [10] If N(r, 0; f (k)|f 6= 0) denotes the counting function of those
zeros of f (k) which are not the zeros of f , where a zero of f (k) is counted according
to its multiplicity then

N(r, 0; f (k)|f 6= 0) ≤ kN(r,∞; f) + N(r, 0; f | < k) + kN(r, 0; f | ≥ k) + S(r, f).

Lemma 2.5. [2] Let F, G be two nonconstant meromorphic functions such that
E1)(1; F ) = E1)(1; G) and H 6≡ 0. Then

N
1)
E (r, 1;F ) ≤ N(r,∞;H) + S(r, F ) + S(r,G),

where H = (F ′′
F ′ − 2F ′

F−1 )− (G′′
G′ − 2G′

G−1 ).

Lemma 2.6. [1] Let El)(1; F ) = El)(1; G), E1)(1;F ) = E1)(1; G) and H 6≡ 0,
where l ≥ 3. Then

N(r,∞;H) ≤ N(r, 0;F | ≥ 2) + N(r, 0; G| ≥ 2) + N(r,∞;F | ≥ 2)

+ N(r,∞; G| ≥ 2) + NL(r, 1; F ) + NL(r, 1; G) + NF≥l+1(r, 1; F |G 6= 1)

+ NG≥l+1(r, 1; G|F 6= 1) + N0(r, 0; F ′) + N0(r, 0; G′),

where N0(r, 0; F ′) is the reduced counting function of those zeros of F ′ which are
not the zeros of F (F − 1) and N0(r, 0; G′) is similarly defined.

Lemma 2.7. [2] Let El)(1; F ) = El)(1; G), E1)(1;F ) = E1)(1; G) and H 6≡ 0,
where l ≥ 3. Then

2NL(r, 1;F ) + 2NL(r, 1;G) + N
(2

E (r, 1; F ) + lNG≥l+1(r, 1;G|F 6= 1)

−NF>2(r, 1; G) ≤ N(r, 1; G)−N(r, 1; G).

Lemma 2.8. Let El)(1; F ) = El)(1; G), E1)(1; F ) = E1)(1; G), where l ≥ 3.
Then

NF>2(r, 1; G) + 2NF≥l+1(r, 1; F |G 6= 1)

≤ 2
3
N(r, 0;F ) +

2
3
N(r,∞; F )− 2

3
N0(r, 0; F ′) + S(r, F ).

Proof. We note that any 1-point of F with multiplicity ≥ 3 is counted at most
twice. Hence by using Lemma 2.4 we see that

NF>2(r, 1; G) + 2NF≥l+1(r, 1; F |G 6= 1)

≤ N(r, 1;F | ≥ 3;G| = 2) + 2N(r, 1; F |G 6= 1)

≤ 2
3
N(r, 0;F ′|F = 1)

≤ 2
3
N(r, 0;F ′|F 6= 0)− 2

3
N0(r, 0; F ′)

≤ 2
3
N(r, 0;F ) +

2
3
N(r,∞; F )− 2

3
N0(r, 0; F ′) + S(r, F ),
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where by N(r, 1; F | ≥ 3; G| = 2) we mean the reduced counting function of 1 points
of F with multiplicity not less than 3 which are the 1-points of G with multiplicity
2. Thus, we complete the proof of the lemma.

Lemma 2.9. Let El)(1; (F ∗)(k)) = El)(1; (G∗)(k)), E1)(1; (F ∗)(k)) =
E1)(1; (G∗)(k)) and H∗ 6≡ 0, where l ≥ 3. Then

T (r, F ∗) ≤ (
8
3

+
2
3
k)N(r,∞;F ∗) +

5
3
N(r, 0; F ∗) +

2
3
Nk(r, 0; F ∗)

+ Nk+1(r, 0; F ∗) + (k + 2)N(r,∞; G∗) + N(r, 0; G∗)

+ Nk+1(r, 0; G∗) + S(r, F ∗) + S(r,G∗)

where

H∗ ≡
[
(F ∗)(k+2)

(F ∗)(k+1)
− 2(F ∗)(k+1)

(F ∗)(k) − 1

]
−

[
(G∗)(k+2)

(G∗)(k+1)
− 2(G∗)(k+1)

(G∗)(k) − 1

]
.

Proof. Let F = (F ∗)(k) and G = (G∗)(k), then the condition of this lemma is
El)(1; F ) = El)(1; G), E1)(1; F ) = E1)(1; G) and H∗ = H 6≡ 0. From the definition
of H∗, and Lemma 2.5, we have

N
1)
E (r, 1;F ) ≤ N(r, 0; H∗) ≤ T (r,H∗) + O(1)

≤ N(r,∞; H∗) + S(r, F ∗) + S(r,G∗). (2)

On the other hand, by the assumptions, we can see that possible poles of H∗

occur at the zeros of F ′ and G′, and the common 1-points of F and G whose
multiplicities are different, and the poles of F ∗ and G∗, and those 1-points of F (G)
which are not the 1-points of G(F ), and the zeros of F ′(G′) which are not the zeros
of F ∗(F − 1)(G∗(G− 1)). So from Lemma 2.6 and (2), we have

N(r,∞; H∗) ≤ N(r, 0;F ∗) + N(r, 0; G∗) + N(r,∞;F ∗) + N(r,∞; G∗)

+ NL(r, 1; F ) + NL(r, 1; G) + NF≥l+1(r, 1;F |G 6= 1)

+ NG≥l+1(r, 1;G|F 6= 1) + N0(r, 0;F ′) + N0(r, 0;G′), (3)

From Lemmas 2.7 and (2),(3) , we get

N(r, 1;F ) + N(r, 1; G)

≤ N(r, 1; F | = 1) + NL(r, 1; F ) + NL(r, 1; G) + N
(2

E (r, 1; F )

+ NF≥l+1(r, 1; F |G 6= 1) + N(r, 1;G)

≤ N(r, 0; F ∗) + N(r,∞; F ∗) + N(r, 0; G∗)

+ N(r,∞; G∗) + NL(r, 1; F ) + NL(r, 1; G)

+ NF≥l+1(r, 1; F |G 6= 1) + NG≥l+1(r, 1; G|F 6= 1)

+ NL(r, 1; F ) + NL(r, 1; G) + N
(2

E (r, 1; F )
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+ NF≥l+1(r, 1; F |G 6= 1) + T (r,G)−m(r, 1; G)

+ O(1)− 2NL(r, 1;F )− 2NL(r, 1;G)−N
(2

E (r, 1;F )

− lNG≥l+1(r, 1;G|F 6= 1) + NF>2(r, 1;G) + N0(r, 0; F ′)

+ N0(r, 0; G′) + S(r, F ) + S(r,G)

≤ N(r, 0; F ∗) + N(r,∞; F ∗) + N(r, 0; G∗) + N(r,∞;G∗)

+ T (r,G)−m(r, 1;G) + 2NF≥l+1(r, 1;F |G 6= 1)

+ NF>2(r, 1; G)− (l − 1)NG≥l+1(r, 1; G|F 6= 1)

+ N0(r, 0; F ′) + N0(r, 0; G′) + S(r, F ) + S(r,G).

From Lemma 2.8, we can get

N(r, 1;F ) + N(r, 1; G)

≤ N(r, 0;F ∗) + N(r,∞; F ∗) + N(r, 0;G∗)

+ N(r,∞; G∗) + T (r,G)−m(r, 1; G)

+
2
3
N(r, 0; F ) +

2
3
N(r,∞;F )

− (l − 1)NG≥l+1(r, 1;G|F 6= 1) + N0(r, 0;F ′)

+ N0(r, 0; G′) + S(r, F ) + S(r,G). (4)

Using Lemma 2.1 for F ∗ and G∗, we get

T (r, F ∗) ≤ N(r,∞; F ∗) + Nk+1(r, 0;F ∗) + N(r, 1; F )

−N0(r, 0; F ′) + S(r, F ∗), (5)

and

T (r,G∗) ≤ N(r,∞; G∗) + Nk+1(r, 0;G∗) + N(r, 1;G)

−N0(r, 0;G′) + S(r,G∗). (6)

Adding (5) and (6), we get

T (r, F ∗) + T (r,G∗)

≤ N(r,∞;F ∗) + Nk+1(r, 0; F ∗) + N(r,∞; G∗)

+ Nk+1(r, 0;G∗) + N(r, 1;F ) + N(r, 1; G)

−N0(r, 0; F ′)−N0(r, 0; G′) + S(r, F ∗) + S(r,G∗). (7)

Since
T (r,G) = T (r, (G∗)(k)) ≤ T (r,G∗) + kN(r,∞; G∗) + S(r,G∗), (8)

from (2), (7), (8) and S(r, F ) = S(r, F ∗), S(r,G) = S(r,G∗), we get

T (r, F ∗) ≤ N(r,∞; F ∗) + Nk+1(r, 0; F ∗) + N(r,∞; G∗) + Nk+1(r, 0;G∗)
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+ N(r, 0; F ∗) + N(r,∞; F ∗) + N(r, 0; G∗) + N(r,∞; G∗)

+ kN(r,∞; G∗)−m(r, 1;G) +
2
3
N(r, 0;F ) +

2
3
N(r,∞; F )

+ S(r, F ∗) + S(r,G∗). (9)

Since F = (F ∗)(k) and G = (G∗)(k), from Lemma 2.3, (9) becomes

T (r, F ∗) ≤ 8
3
N(r,∞;F ∗) + N(r, 0; F ∗) + Nk+1(r, 0; F ∗)

+
2
3
N(r, 0; (F ∗)(k)) + (k + 2)N(r,∞; G∗) + N(r, 0; G∗)

+ Nk+1(r, 0;G∗) + S(r, F ∗) + S(r,G∗)

≤ (
8
3

+
2
3
k)N(r,∞; F ∗) +

5
3
N(r, 0; F ∗) +

2
3
Nk(r, 0; F ∗)

+ Nk+1(r, 0;F ∗) + (k + 2)N(r,∞; G∗) + N(r, 0;G∗)

+ Nk+1(r, 0;G∗) + S(r, F ∗) + S(r,G∗). (10)

Lemma 2.10. Let El)(1; (F ∗)(k)) = El)(1; (G∗)(k)), E1)(1; (F ∗)(k)) =
E1)(1; (G∗)(k)) where l ≥ 3. If

∆1l = (
8
3

+
2
3
k)Θ(∞;F ∗) +

5
3
Θ(0, F ∗) +

2
3
δk(0, F ∗) + δk+1(0; F ∗)

+ (k + 2)Θ(∞; G∗) + Θ(0, G∗) + δk+1(0; G∗)

>
5
3
k + 9,

then (F ∗)(k)(G∗)(k) ≡ 1 or F ∗ ≡ G∗.

Proof. From Lemma 2.9, we first suppose that H 6≡ 0, without loss of
generality, we suppose that there exists a set I with infinite measure such that
T (r,G∗) ≤ T (r, F ∗) for r ∈ I. From Lemma 2.9 we get

T (r, F ∗) ≤ {5
3
k + 10− (

8
3

+
2
3
k)Θ(∞;F ∗)− 5

3
Θ(0, F ∗)− 2

3
δk(0, F ∗)

− δk+1(0; F ∗)− (k + 2)Θ(∞; G∗)−Θ(0, G∗)− δk+1(0; G∗)

+ ε}T (r, F ∗) + S(r, F ∗), (11)

for r ∈ I and 0 < ε < ∆1l − 5
3k− 9, that is {∆1l − 5

3k− 9− ε}T (r, F ∗) ≤ S(r, F ∗),
i.e. ∆1l − 5

3k − 9 ≤ 0, i.e. ∆1l ≤ 5
3k + 9, which is a contradiction to the condition

of Lemma 2.10.
Therefore, we have H ≡ 0, then

(F ∗)(k+2)

(F ∗)(k+1)
− 2(F ∗)(k+1)

(F ∗)(k) − 1
≡ (G∗)(k+2)

(G∗)(k+1)
− 2(G∗)(k+1)

(G∗)(k) − 1
. (12)

From this equation we get

(G∗)(k) =
(b + 1)(F ∗)(k) + (a− b− 1)

b(F ∗)(k) + (a− b)
, (13)

where a(6= 0), b are two constants.
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We will prove (F ∗)(k)(G∗)(k) ≡ 1 or F ∗ ≡ G∗ with the employment of the
same argument used in [3]. Now, we consider three cases as follows.

Case 1. b 6= 0,−1, If a− b− 1 6= 0, then by (13) we know

N
(
r,

a− b− 1
b + 1

; (F ∗)(k)
)

= N(r, 0; (G∗)(k)).

By Lemma 2.1 we have

T (r, F ∗) ≤ N(r, F ∗) + Nk+1(r, 0; F ∗) + N(r, c; (F ∗)(k))

−N0(r, 0; (F ∗)(k+1)) + S(r, F ∗)

≤ N(r, F ∗) + Nk+1(r, 0; F ∗) + N
(
r,

a− b− 1
b + 1

; (F ∗)(k)
)

+ S(r, F ∗)

≤ N(r, F ∗) + Nk+1(r, 0; F ∗) + kN(r,G∗) + N(r, 0;G∗) + S(r, F ∗).

Hence, from the assumptions of this lemma, we deduce that T (r, F ∗) ≤ S(r, F ∗),
r ∈ I a contradiction.

If a−b−1 = 0, then by (13) we know (G∗)(k) = ((b+1)(F ∗)(k))/(b(F ∗)(k)+1).
Obviously,

N
(
r,

1
b
; (F ∗)(k)

)
= N(r, (G∗)(k)).

By Lemma 2.1 we have

T (r, F ∗) ≤ N(r, F ∗) + Nk+1(r, 0; F ∗) + N(r, c; (F ∗)(k))

−N0(r, 0; (F ∗)(k+1)) + S(r, F ∗)

≤ N(r, F ∗) + Nk+1(r, 0; F ∗) + N
(
r,

1
b
; (F ∗)(k)

)
+ S(r, F ∗)

≤ N(r, F ∗) + Nk+1(r, 0; F ∗) + N(r,G∗) + S(r, F ∗) + S(r,G∗).

Hence, from the assumptions of this lemma, we deduce that T (r, F ∗) ≤ S(r, F ∗),
r ∈ I a contradiction.

Case 2. b = −1. Then (13) becomes (G∗)(k) = a/(a + 1− (F ∗)(k)).
If a+1 6= 0, then N(r, a+1; (F ∗)(k)) = N(r, (G∗)(k)). Similarly, we can deduce

a contradiction as in Case 1.
If a + 1 = 0, then (F ∗)(k)(G∗)(k) ≡ 1.
Case 3. b = 0. Then (13) becomes (G∗)(k) = ((F ∗)(k) + a− 1)/a.

If a − 1 6= 0, then N
(
r, 1 − a; (F ∗)(k)

)
= N

(
r, 0; (G∗)(k)

)
. Similarly, we can

again deduce a contradiction as in Case 1.
If a− 1 = 0, then (F ∗)(k) ≡ (G∗)(k). From this equation, we obtain

F ∗ = G∗ + p(z),

where p(z) is a polynomial, then T (r, F ∗) = T (r,G∗) + S(r, F ∗). If p(z) 6≡ 0, then
by Lemma 2.2, we have

T (r, F ∗) ≤ N(r, F ∗) + N(r, 0;F ∗) + N(r, p; F ∗) + S(r, F ∗)

≤ N(r, F ∗) + N(r, 0;F ∗) + N(r, 0; G∗) + S(r, F ∗).
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Hence, from the assumptions of this lemma, we deduce that T (r, F ∗) ≤ S(r, F ∗),
r ∈ I, a contradiction. Thus, we deduce that p(z) ≡ 0, that is F ∗ ≡ G∗.

Therefore, we complete the proof of Lemma 2.10.

Lemma 2.11. Let El)(1; (F ∗)(k)) = El)(1; (G∗)(k)), E2)(1; (F ∗)(k)) =
E2)(1; (G∗)(k)) and H∗ 6≡ 0, where l ≥ 4. Then

T (r, F ∗) + T (r,G∗) ≤ (k + 4)N(r,∞; F ∗) + (k + 4)N(r,∞;G∗)

+ 2Nk+1(r, 0; F ∗) + 2Nk+1(r, 0; G∗) + 2N(r, 0; F ∗)

+ 2N(r, 0; G∗) + S(r, F ∗) + S(r,G∗).

where H∗ is defined as Lemma 2.9.

Proof. Let F = (F ∗)(k) and G = (G∗)(k), then El)(1;F ) = El)(1; G),
E2)(1; F ) = E2)(1; G). Since H∗ 6≡ 0, using the same argument of as in Lem-
ma 2.11 and by Lemma 2.1, we can get

T (r, F ∗) + T (r,G∗)

≤ N(r,∞; F ∗) + Nk+1(r, 0; F ∗) + N(r,∞; G∗) + Nk+1(r, 0; G∗)

+ N(r, 1; (F ∗)(k)) + N(r, 1; (G∗)(k))−N0(r, 0; (F ∗)(k+1))

−N0(r, 0; (G∗)(k+1)) + S(r, F ∗) + S(r,G∗)

≤ N(r,∞; F ∗) + Nk+1(r, 0; F ∗) + N(r,∞; G∗) + Nk+1(r, 0; G∗)

+ N(r, 1; (F ∗)(k)| = 1) + N(r, 1; (F ∗)(k)| ≥ 2) + N(r, 1; (G∗)(k))

−N0(r, 0; (F ∗)(k+1))−N0(r, 0; (G∗)(k+1)) + S(r, F ∗) + S(r,G∗)

≤ N(r,∞; F ∗) + Nk+1(r, 0; F ∗) + N(r,∞; G∗) + Nk+1(r, 0; G∗)

+ N(r, 0;F ∗) + N(r, 0; G∗) + N(r,∞; F ∗) + N(r,∞;G∗)

+ NL(r, 1; F ) + NL(r, 1;G) + NF≥l+1(r, 1;F |G 6= 1) + N(r, 1; G)

+ NG≥l+1(r, 1;G|F 6= 1) + N(r, 1; F | ≥ 2) + S(r, F ∗) + S(r,G∗).

Since

N(r, 1; F | = l; G| = l − 1) + · · ·+ N(r, 1; F | = l; G| = 3) ≤ N(r, 1; F | = l),

and

N(r, 1; G| = l; F | = l − 1) + · · ·+ N(r, 1; G| = l; F | = 3) ≤ N(r, 1; G| = l),

we see that

NL(r, 1;F ) + NL(r, 1; G) + NF≥l+1(r, 1; F |G 6= 1)

+ NG≥l+1(r, 1; G|F 6= 1) + N(r, 1; F | ≥ 2) + N(r, 1; (G)

≤ N(r, 1; F | = l;G| = l − 1) + · · ·+ N(r, 1;F | = l;G| = 3)
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+ N(r, 1; F | ≥ l + 2) + N(r, 1;G| = l;F | = l − 1) + · · ·
+ N(r, 1; G| = l; F | = 3) + N(r, 1;G| ≥ l + 2)

+ N(r, 1; G| ≥ l + 2) + N(r, 1;F | ≥ l + 1)

+ N(r, 1; G| ≥ l + 1) + N(r, 1;F | = 2) + · · ·
+ N(r, 1; F | = l) + N(r, 1; F | ≥ l + 1) + N(r, 1;G| = 1)

+ · · ·+ N(r, 1;G| = l) + N(r, 1;G| ≥ l + 1)

≤ 1
2
N(r, 1; F | = 1) + N(r, 1; F | = 2) + · · ·+ 2N(r, 1;F | = l)

+ 2N(r, 1; F | ≥ l + 1) + N(r, 1;F | ≥ l + 2) +
1
2
N(r, 1; G| = 1)

+ N(r, 1; G| = 2) + · · ·+ 2N(r, 1; G| = l) + 2N(r, 1; G| ≥ l + 1)

+ N(r, 1; G| ≥ l + 2)

≤ 1
2
[N(r, 1;F ) + N(r, 1; G)]

≤ 1
2
[T (r, F ) + T (r,G)].

Since
T (r, F ) = T (r, (F ∗)(k)) ≤ T (r, F ∗) + kN(r,∞; F ∗) + S(r, F ∗),

and
T (r,G) = T (r, (G∗)(k)) ≤ T (r,G∗) + kN(r,∞; G∗) + S(r,G∗),

we can get

T (r, F ∗) + T (r,G∗) ≤ (k + 4)N(r,∞; F ∗) + (k + 4)N(r,∞;G∗)

+ 2Nk+1(r, 0;F ∗) + 2Nk+1(r, 0; G∗) + 2N(r, 0; F ∗)

+ 2N(r, 0; G∗) + S(r, F ∗) + S(r,G∗).

Thus, we complete the proof of the lemma.

Lemma 2.12. Let El)(1; (F ∗)(k)) = El)(1; (G∗)(k)), E2)(1; (F ∗)(k)) =
E2)(1; (G∗)(k)) and where l ≥ 4. If

∆2l = (
1
2
k + 2)[Θ(∞; F ∗) + Θ(∞; G∗)] + Θ(0; F ∗)

+ Θ(0; G∗) + δk+1(0; F ∗) + δk+1(0; G∗) > k + 5,

then (F ∗)(k)(G∗)(k) ≡ 1 or F ∗ ≡ G∗.

Proof. We omit the proof since the proof can be carried out in the line of proof
of Lemma 2.11 by using the Lemma 2.12.
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3. Proofs of Theorems

Let F ∗ = fn(µfm + λ), G∗ = gn(µgm + λ), by Lemma 2.2, we can get

Θ(0; F ∗) = 1− lim sup
r→∞

N(r, 0; F ∗)
T (r, F ∗)

≥ 1− lim sup
r→∞

N(r, 0; fn) + N(r, 0; µfm + λ)
(n + m∗)T (r, f)

,

i.e.
Θ(0; F ∗) ≥ 1− m∗ + 1

n + m∗ . (14)

Similarly, we have

Θ(0; G∗) ≥ 1− m∗ + 1
n + m∗ . (15)

And since

Θ(∞; F ∗) = 1− lim sup
r→∞

N(r,∞;F ∗)
T (r, F ∗)

= 1− lim sup
r→∞

N(r,∞; fn)
(n + m∗)T (r, f)

= 1− lim sup
r→∞

N(r,∞; f)
(n + m∗)T (r, f)

≥ 1− lim sup
r→∞

T (r, f)
(n + m∗)T (r, f)

,

we have
Θ(∞; F ∗) ≥ 1− 1

n + m∗ . (16)

Similarly, we have

Θ(∞; G∗) ≥ 1− 1
n + m∗ . (17)

Next, by the definition of Nk(r, a; f) we have

δk+1(0; F ∗) = 1− lim sup
r→∞

Nk+1(r, 0; F ∗)
T (r, F ∗)

≥ 1− lim sup
r→∞

(k + 1)N(r, 0; F ∗)
T (r, F ∗)

.

Therefore

δk+1(0; F ∗) ≥ 1− lim sup
r→∞

(k + 1)N(r, 0; f) + Nk+1(r, 0; µfm + λ))
(n + m∗)T (r, f)

,

i.e.
δk+1(0; F ∗) ≥ 1− m∗ + k + 1

n + m∗ . (18)

Similarly, we get

δk(0; F ∗) ≥ n− k

n + m∗ δk(0; G∗) ≥ n− k

n + m∗ δk+1(0; G∗) ≥ n− k − 1
n + m∗ . (19)

Proof of Theorem 1.1.
From the condition of Theorem 1.1, we have El)(1; F (k)) = El)(1; G(k)),

E1)(1; F (k)) = E1)(1; G(k)), where l ≥ 3.
From (14)–(19) and Lemma 2.10, we have

∆1l ≥ (
5
3
k +

14
3

)
n + m∗ − 1

n + m∗ +
5
3

n− 1
n + m∗ +

2
3

n− k

n + m∗ + 2
n− k − 1
n + m∗ . (20)
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Since n > 13
3 m∗ + 13

3 k + 28
3 , we can get ∆1l > 5

3k + 9. From Lemma 2.10, we have
F ∗ ≡ G∗ or (F ∗)(k)(G∗)(k) ≡ 1.

We will prove the conclusions of Theorem 1.1 with the employment of the same
argument used in Theorem 1 in [16].

We will consider two cases as follows.
Case 1. F ∗ ≡ G∗. That is,

fn(µfm + λ) ≡ gn(µgm + λ). (21)

If λµ = 0, then from |λ|+ |µ| 6= 0, we can get fn+m ≡ gn+m or fn ≡ gn. Then we
can get f(z) ≡ tg(z), where t is a constant satisfying tn+m∗

= 1.

If λµ 6= 0, then we set h = f
g . If h 6≡ 1, then substituting f = hg into (21) we

have

gm = −λ

µ
· 1− hn

1− hn+m
= −λ

µ
· 1 + h + · · ·+ hn−1

1 + h + · · ·+ hn+m−1
. (22)

If m = 1, (22) is g = −λ
µ · 1+h+···+hn−1

1+h+···+hn , from f = hg, we have f = −λ
µ ·

(1+h+···+hn−1)h
1+h+···+hn , where h is a nonconstant meromorphic function. It follows that

T (r, f) = T (r, gh) = (n + 1)T (r, h) + S(r, f). On the other hand, by the second
fundamental theorem, we can get

N(r, f) =
n∑

i=1

N
(
r, ai;h

)
≥ (n− 2)T (r, h) + S(r, f), (23)

where ai(6= 1)(i = 1, 2, . . . , n) are distinct roots of the algebraic equation hn+1 = 1.
From (23), we have

Θ(∞, f) = 1− lim sup
r→∞

N(r, f)
T (r, f)

≤ 1− lim sup
r→∞

(n− 2)T (r, h) + S(r, f)
(n + 1)T (r, h) + S(r, f)

≤ 3
n + 1

.

Thus, we get a contradiction with the assumption Θ(∞, f) > 3
n+1 . Therefore,

h ≡ 1, that is, f(z) ≡ g(z).

If m ≥ 2, from (22), we have fm = −λ
µ · (1+h+···+hn−1)hm

1+h+···+hn+m−1 . It follows that

T (r, f) =
(
1 + n

m

)
T (r, h) + S(r, f) and every poles of f of order p must be a zero

of hn+m − 1 of order mp. Therefore, N(r, f) = 1
m

∑n+m
i=1 N

(
r, ai; h

)
, where ai(6=

1)(i = 1, 2, . . . , (n + m− 1)) are distinct root of the algebraic equation hn+m = 1.
Thus, we have

N(r, f) =
1
m

n+m−1∑

i=1

N
(
r, ai; h

)
≥ 1

m

n+m−1∑

i=1

N
(
r, ai; h

)

≥ n + m− 3
m

T (r, h) + S(r, f). (24)

From (24), we have

δ(∞, f) = 1− lim sup
r→∞

N(r, f)
T (r, f)

≤ 3
n + m

.
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Thus, we can get a contradiction with the assumption δ(∞, f) > 3
n+m .

Case 2. (F ∗)(k)(G∗)(k) ≡ 1. That is,

[fn(µfm + λ)](k)[gn(µgm + λ)](k) ≡ 1. (25)

Next, we consider two subcases.

Subcase 2.1. λµ = 0. By |λ| + |µ| 6= 0, we have λ = 0, µ 6= 0 or λ 6= 0, µ = 0.
If λ = 0, µ 6= 0, from (26), we have [µfn+m](k)[µgn+m](k) ≡ 1.

Thus, if z0 is a zero of [µfn+m](k), then z0 is a pole of [µgn+m](k). This
contradicts that g 6= ∞. Hence f(z) 6= 0, g(z) 6= 0. Thus, we have [µfn+m](k)n 6= 0
and [µgn+m](k) 6= 0. From [7], we have f(z) = c1e

cz, g(z) = c2e
−cz, here c1, c2 and c

are three constants satisfying (−1)kµ2(c1c2)n+m[(n+m)c]2k = 1 when k ≥ 2. When
k = 1, we can also get that −µ2(c1c2)n+m[(n + m)c]2 = 1 with the employment of
the same argument used in Theorem 1 in [16].

When λ 6= 0, µ = 0, by using the same argument as above, we can also get the
results which is f(z) = c1e

cz, g(z) = c2e
−cz, where c1, c2 and c are three constants

satisfying (−1)kµ2(c1c2)n+m[(n + m)c]2k = 1.

Subcase 2.2. λµ 6= 0. We can rewrite (25) as

[fn(f − a1) · · · (f − am)](k)[gn(g − a1) · · · (g − am)](k) ≡ 1, (26)

where a1, a2, . . . , am are roots of µωm + λ = 0.

Let z0 be zero of f of order p. From (27) we know that z0 is a pole of g.
Let z0 be a pole of g of order q. From (26), we have np − k = (n + m)q + k,
i.e. n(p − q) = mq + 2k, which implies that p ≥ q + 1 and mq + 2k ≥ n. From
n > 13

3 k + 13
3 m + 28

3 , we can get p ≥ 6.

Let z1
i be a zero of f − ai(i = 1, . . . , m) of order p1

i , then z1
i is a zero of

fn(µfm + λ) of order p1
i − k. Hence, from (26), we get z1

i is a pole of g of order q1
i

and p1
i −k = (n+m)q1

i +k, i.e. p1
i = (n+m)q1

i +2k. Thus, we have p1
i ≥ n+m+2k.

Let z2 be a zero of f ′ of order p2 that not a zero of f(f − a1) · · · (f − am), as
above, we have p2 ≥ n + m + 2k − 1. So we have similar results for the zeros of
gn(µgm + λ).

From (26), we have

N(r, f) ≤ N(r, 0; g) +
m∑

i=1

N(r, ai; f) + N(r, 0; g′)

≤ 1
6
N(r, 0; g) +

1
n + m + 2k

m∑

i=1

N(r, ai; g) +
1

n + m + 2k − 1
N(r, 0; g′).

That is,

N(r, f) ≤
(1

6
+

m

n + m + 2k
+

1
n + m + 2k − 1

)
T (r, g) + S(r, g). (27)
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From (27) and the second fundamental theorem we have

mT (r, f) ≤ N(r, f) +
m∑

i=1

N(r, ai; g) + N(r, 0; f) + S(r, f)

≤
(1

6
+

m

n + m + 2k
+

1
n + m + 2k − 1

)
T (r, g)

+
(1

6
+

m

n + m + 2k

)
T (r, f) + S(r, f) + S(r, g). (28)

Similarly, we have

mT (r, g) ≤
(1

6
+

m

n + m + 2k
+

1
n + m + 2k − 1

)
T (r, f)

+
(1

6
+

m

n + m + 2k

)
T (r, g) + S(r, f) + S(r, g). (29)

From (28) and (29), we have

m(T (r, f) + T (r, g)) ≤
(1

3
+

2m

n + m + 2k
+

1
n + m + 2k − 1

)
[T (r, f) + T (r, g)]

+ S(r, f) + S(r, g).

From this and n > 13
3 k + 13

3 m + 28
3 , we have

T (r, f) + T (r, g) ≤
(1

3
+

1
11

+
1
21

)
[T (r, f) + T (r, g)] + S(r, f) + S(r, g),

i.e. 0.52[T (r, f) + T (r, g)] ≤ S(r, f) + S(r, g). Then, we get a contradiction.
Thus, we complete the proof of Theorem 1.1.

Proof of Theorem 1.2.
From the condition of Theorem 1.2, we have El)(1; F (k)) = El)(1; G(k)),

E2)(1; F (k)) = E2)(1; G(k)), where l ≥ 4. From (14)–(19) and Lemma 2.12, we
have

∆1l ≥ (k + 4)
n + m∗ − 1

n + m∗ + 2
n− 1

n + m∗ + 2
n− k − 1
n + m∗ . (30)

Since n > 3m∗ + 3k + 6, we can get ∆1l > k + 5. From Lemma 2.12, we have
F ∗ ≡ G∗ or (F ∗)(k)(G∗)(k) ≡ 1.

Proceeding as in the proof of Theorem 1.1, we can get the conclusion of The-
orem 1.2. Thus, we complete the proof of Theorem 1.2.
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