GENERALIZATIONS OF PRIMAL IDEALS

 IN COMMUTATIVE RINGS

 IN COMMUTATIVE RINGS}

Ahmad Yousefian Darani

Abstract

Let R be a commutative ring with identity. Let $\phi: \mathfrak{I}(R) \rightarrow \mathfrak{I}(R) \cup\{\emptyset\}$ be a function where $\mathfrak{I}(R)$ denotes the set of all ideals of R. Let I be an ideal of R. An element $a \in R$ is called ϕ-prime to I if $r a \in I-\phi(I)$ (with $r \in R$) implies that $r \in I$. We denote by $S_{\phi}(I)$ the set of all elements of R that are not ϕ-prime to I. I is called a ϕ-primal ideal of R if the set $P:=S_{\phi}(I) \cup \phi(I)$ forms an ideal of R. So if we take $\phi_{\emptyset}(Q)=\emptyset$ (resp., $\phi_{0}(Q)=0$), a ϕ-primal ideal is primal (resp., weakly primal). In this paper we study the properties of several generalizations of primal ideals of R.

1. Introduction

Throughout, R will be a commutative ring with identity. (However, in most places the existence of an identity plays no role.) By a proper ideal I of R we mean an ideal I with $I \neq R$. Fuchs [5] introduced a new class of ideals of R : primal ideals. Later Ebrahimi Atani and the author gave a generalization of primal ideals: weakly primal ideals. Let I be an ideal of R. An element $a \in R$ is called prime (resp. weakly prime) to I if $r a \in I$ (resp. $0 \neq r a \in I$) (where $r \in R$) implies that $r \in I$. Denote by $S(I)$ (resp. $w(I)$) the set of elements of R that are not prime (resp. are not weakly prime) to I. A proper ideal I of R is said to be primal if $S(I)$ forms an ideal of R (so 0 is not necessarily primal); this ideal is always a prime ideal, called the adjoint prime ideal P of I. In this case we also say that I is a P-primal ideal of R [5]. Not that if $r \in R$ and $a \in S(I)$, then clearly $r a \in S(I)$. So what we require for I being primal is that if a and b are not prime to I, then their difference is also not prime to I. Also, a proper ideal I of R is called weakly primal if the set $P=w(I) \cup\{0\}$ forms an ideal; this ideal is always a weakly prime ideal [4, Proposition 4], where a proper ideal P of R is called weakly prime if whenever $a, b \in R$ with $0 \neq a b \in P$, then either $a \in P$ or $b \in P$ [2]. In this case we also say that I is a P-weakly primal ideal. If R is not an integral domain, then 0 is a 0 -weakly primal ideal of R (by definition), so a weakly primal ideal need not be primal.

[^0]Bhatwadekar and Sharma [3] recently defined a proper ideal I of an integral domain R to be almost prime if for $a, b \in R$ with $a b \in I-I^{2}$, then either $a \in I$ or $b \in I$. This definition can obviously be made for any commutative ring R. Thus a weakly prime ideal is almost prime and any proper idempotent ideal is almost prime. The concept of almost primal ideals in a commutative ring was introduced and studied in [6]. Let I be an ideal of R, and let $n \geq 2$ be an integer. An element $a \in R$ is called almost prime (resp. n-almost prime) to I if $r a \in I-I^{2}$ (resp. $r a \in I-I^{n}$) (with $r \in R$) implies that $r \in I$. Denote by $S_{2}(I)$ (resp. $S_{n}(I)$), the set of all elements of R that are not almost prime (resp. n-almost prime) to I. Then I is called almost primal (resp. n-almost primal) if the set $P=S_{2}(I) \cup I^{2}$ (resp. $\left.P=S_{n}(I) \cup I^{n}\right)$ forms an ideal of R. This ideal is an almost prime (resp. n-almost prime) ideal of R [6, Lemma 4], called the almost (resp. n-almost) prime adjoint ideal of I. In this case we also say that I is a P-almost (resp. P - n-almost) primal ideal.

In this paper we give some more generalizations of primal ideals and study the basic properties of these classes of ideals.

2. Results

Let R be a commutative ring, $\phi: \mathcal{I}(R) \rightarrow \mathcal{I}(R) \cup\{\emptyset\}$ a function and I an ideal of R. Since $I-\phi(I)=I-(I \cap \phi(I))$, there is no loss of generality in assuming that $I \subseteq \phi(I)$. We henceforth make this assumption throughout this paper.

Definition 2.1. Let R be a commutative ring and $\phi: \mathcal{I}(R) \rightarrow \mathcal{I}(R) \cup\{\emptyset\}$ a function. Let I be an ideal of R. An element $a \in R$ is called ϕ-prime to I if $r a \in I-\phi(I)$ (with $r \in R$) implies that $r \in I$.

Remarks 2.2. Let R be a commutative ring, and I a proper ideal of R. Denote by $S_{\phi}(I)$ the set of all elements of R that are not ϕ-prime to I. Then
(1) Every element of $\phi(I)$ is ϕ-prime to I.
(2) If an element of R is prime to I, then it is ϕ-prime to I. So $S_{\phi}(I) \subseteq S(I)$.
(3) The converse of (2) is not necessarily true. For example assume that $\phi=\phi_{0}$, where $\phi_{0}(Q)=0$ for every ideal Q of R. Let $R=\mathbb{Z} / 24 \mathbb{Z}$, and $I=8 \mathbb{Z} / 24 \mathbb{Z}$. Then, $\overline{6}$ is ϕ-prime to I, but it is not prime to I since $\overline{12} \cdot \overline{6}=\overline{0} \in I$ with $\overline{12} \notin I$. Consequently $\overline{6}$ is ϕ-prime to I while it is not prime to I.

DEFINITION 2.3. Let R be a commutative ring and $\phi: \mathcal{I}(R) \rightarrow \mathcal{I}(R) \cup\{\emptyset\}$ a function. A proper ideal I of R is said to be a ϕ-primal ideal of R if $S_{\phi}(I) \cup \phi(I)$ forms an ideal of R.

Let R be a commutative ring and $\phi: \mathcal{I}(R) \rightarrow \mathcal{I}(R) \cup\{\emptyset\}$ a function. We recall from [1] that a proper ideal P of R is called ϕ-prime if for every $x, y \in R$, $x y \in P-\phi(P)$ implies $x \in P$ or $y \in P$.

Proposition 2.4. If I is a ϕ-primal ideal of R, then $P=S_{\phi}(I) \cup \phi(I)$ is a ϕ-prime ideal of R.

Proof. Let $x, y \in R$ be such that $x y \in P-\phi(P)$ and $x \notin P$. Then $x y \in S_{\phi}(I)$ so $x y$ is not ϕ-prime to I. Hence $r x y \in I-\phi(I)$ for some $r \in R-I$. There exists $r \in R-I$ with $r x y \in I-\phi(I)$. If $x \notin P$, then $r y \in I-\phi(I)$ implies that y is not ϕ prime to I. So $y \in S_{\phi}(I)=P$. Since x is ϕ-prime to I, from $x(r y)=r x y \in I-\phi(I)$ we get $r y \in I-\phi(I)$. This implies that y is not ϕ-prime to I, that is $y \in S_{\phi}(I) \subseteq P$. So P is ϕ-prime.

Notation 2.5. Let I be a ϕ-primal ideal of R. By Lemma 2.4, $P=S_{\phi}(I) \cup$ $\phi(I)$ is a ϕ-prime ideal of R. In this case P is called the ϕ-prime adjoint ideal (simply adjoint ideal) of I, and I is called a P - ϕ-primal ideal of R.

Theorem 2.6. Let R be a commutative ring with identity. Then every ϕ-prime ideal of R is ϕ-primal.

Proof. Assume that P is a ϕ-prime ideal of R. It suffices to show that $P-\phi(P)$ consists exactly of elements of R that are not ϕ-prime to P. By Lemma 2.7, $P \subseteq S_{\phi}(P) \cup P$. So $P-\phi(P) \subseteq S_{\phi}(P)$. Now assume that $a \in S_{\phi}(P)$. Then $a b \in P-\phi(P)$ for some $b \in R-P$. Since P is ϕ-prime we have $a \in P-\phi(P)$. Consequently $P=S_{\phi}(P) \cup \phi(P)$. This implies that P is a P - ϕ-primal ideal of R.

Lemma 2.7. Let R be a commutative ring and I an ideal of R.
(1) If I is proper in R, then $I \subseteq S_{\phi}(I) \cup \phi(I)$.
(2) If I is a P - ϕ-primal ideal of R, then $I \subseteq P$.

Proof. (1) For every $a \in I-\phi(I)$ we have $a .1_{R}=a \in I-\phi(I)$ with $1_{R} \in R-I$. This implies that a is not ϕ-prime to I, that is $a \in S_{\phi}(I)$.
(2) It follows from (1).

Example 2.8. Lest R be a commutative ring. Define the following functions $\phi_{\alpha}: \Im(R) \rightarrow \Im(R) \cup\{\emptyset\}$ and the corresponding ϕ_{α}-primal ideals:

$(1) \phi_{\emptyset}$	$\phi(I)=\emptyset$	a ϕ-primal ideal is primal.
$(2) \phi_{0}$	$\phi(I)=0$	a ϕ-primal ideal is weakly primal.
$(3) \phi_{2}$	$\phi(I)=I^{2}$	a ϕ-primal ideal is almost primal.
$(4) \phi_{n}(n \geq 2)$	$\phi(I)=I^{n}$	a ϕ-primal ideal is n-almost primal.
$(5) \phi_{\omega}$	$\phi(I)=\bigcap_{n=1}^{\infty} I^{n}$	a ϕ-primal ideal is ω-primal.
$(6) \phi_{1}$	$\phi(I)=I$	a ϕ-primal ideal is any ideal.

The next result provides several characterizations of ϕ-primal ideals of a commutative ring R.

THEOREM 2.9. Let R be a commutative ring and $\phi: \mathcal{I}(R) \rightarrow \mathcal{I}(R) \cup\{\emptyset\} a$ function. Let I and P be proper ideals of R. The following are equivalent.
(1) I is P - ϕ-primal.
(2) For every $x \notin P-\phi(I)$, $\left(I:_{R} x\right)=I \cup\left(\phi(I):_{R} x\right)$; and for every $x \in P-\phi(I)$, $\left(I:_{R} x\right) \supsetneqq I \cup\left(\phi(I):_{R} x\right)$.
(3) for every $x \notin P-\phi(I),\left(I:_{R} x\right)=I$ or $\left(I:_{R} x\right)=\left(\phi(I):_{R} x\right)$; and for every $x \in P-\phi(I),\left(I:_{R} x\right) \supsetneqq I$ and $\left(I:_{R} x\right) \supsetneqq\left(\phi(I):_{R} x\right)$.

Proof. $1 \Rightarrow 2$) Assume that I is P - ϕ-primal. Then $P-\phi(I)$ consists entirely of elements of R that are not ϕ-prime to I. Let $x \notin P-\phi(I)$. Then x is ϕ prime to I. Clearly $I \cup\left(\phi(I):_{R} x\right) \subseteq\left(I:_{R} x\right)$. For every $r \in\left(I:_{R} x\right)$, if $r x \in \phi(I)$, then $r \in\left(\phi(I):_{R} x\right)$, and if $r x \notin \phi(I)$, then $x \phi$-prime to I gives $r \in I$. Hence $r \in I \cup\left(\phi(I):_{R} x\right)$, that is $\left(I:_{R} x\right) \subseteq I \cup\left(\phi(I):_{R} x\right)$. Therefore $\left(I:_{R} x\right)=I \cup\left(\phi(I):_{R} x\right)$.

Now assume that $x \in P-\phi(I)$. Then x is not ϕ-prime to I. So there exists $r \in R-I$ such that $r x \in I-\phi(I)$. Hence $r \in\left(I:_{R} x\right)-\left(I \cup\left(\phi(I):_{R} x\right)\right)$.
$2 \Rightarrow 3$) Let $x \notin P-\phi(I)$. Since $\left(I:_{R} x\right)$ is an ideal of R and $\left(I:_{R} x\right)=$ $I \cup\left(\phi(I):_{R} x\right)$, either $\left(\phi(I):_{R} x\right) \subseteq I$ or $I \subseteq\left(\phi(I):_{R} x\right)$. So either $\left(I:_{R} x\right)=I$ or $\left(I:_{R} x\right)=\left(\phi(I):_{R} x\right)$. Moreover, for every $x \in P-\phi(I),\left(I:_{R} x\right) \supsetneqq I \cup\left(\phi(I):_{R} x\right)$. Hence $\left(I:_{R} x\right) \supsetneqq I$ and $\left(I:_{R} x\right) \supsetneqq\left(\phi(I):_{R} x\right)$.
$3 \Rightarrow 1) \mathrm{By}(3), P-\phi(I)$ consists exactly of all elements of R that are not ϕ-prime to I. Hence I is P - ϕ-primal.

Example 2.10. In this example we show that the concepts "primal ideal" and " ϕ-primal ideal" are different. In fact we show that neither implies the other. Let R be a commutative ring and assume that $\phi=\phi_{0}$. Then
(1) Let us to denote the set of all zero-divisors of R by $Z(R)$. If R is not an integral domain such that $Z(R)$ is not an ideal of R (for example the ring $\mathbb{Z} / 6 \mathbb{Z}$), then the zero ideal of R is a ϕ-primal ideal which is not primal. Hence a ϕ-primal ideal need not be primal.
(2) Let $R=\mathbb{Z} / 24 \mathbb{Z}$, and consider the ideal $I=8 \mathbb{Z} / 24 \mathbb{Z}$ of R. It is not difficult to show that I is not a ϕ-primal ideal of R. Now set $P=2 \mathbb{Z} / 24 \mathbb{Z}$. Then every element of P is not prime to I. Assume that $\bar{a} \notin P$. If $\bar{a} \cdot \bar{n} \in I$ for some $\bar{n} \in R$, then 8 divides n, that is $\bar{n} \in I$. Hence \bar{a} is prime to I. We have shown that $S(I)=P$, that is I is P-primal. This example shows that a primal ideal need not be ϕ-primal.

According to Example 2.10, a ϕ-primal ideal need not necessarily be primal. In Theorems 2.11 and 2.12 we provide some conditions under which a ϕ-primal ideal is primal.

THEOREM 2.11. Let R be a commutative ring and $\phi: \mathcal{I}(R) \rightarrow \mathcal{I}(R) \cup\{\emptyset\} a$ function. Suppose that I is a P - ϕ-primal ideal of R with $I^{2} \nsubseteq \phi(I)$. If P is a prime ideal of R, then I is primal.

Proof. Assume that $a \in P$. Then either $a \in \phi(I)$ or $a \in S_{\phi}(I)$. If the former case holds, then $a \in \phi(I) \subseteq I \subseteq S(I)$, and if the latter case holds, then $a \in S_{\phi}(I) \subseteq S(I)$ by Remark 2.2. So in any case a is not prime to I. Now assume that $b \in R$ is not prime to I. So $r b \in I$ for some $r \in R-I$. If $r b \notin \phi(I)$, then b is not ϕ-prime to I, so $b \in P$. Thus assume that $r b \in \phi(I)$. First suppose that $b I \nsubseteq \phi(I)$. Then, there exists $r_{0} \in I$ such that $b r_{0} \notin \phi(I)$. Then $b\left(r+r_{0}\right)=b r+b r_{0} \in I-\phi(I)$ with $r+r_{0} \in R-I$, implies that b is not ϕ-prime to I, that is $b \in P$. Now we may assume that $b I \subseteq \phi(I)$. If $r I \nsubseteq \phi(I)$, then $r c \notin \phi(I)$ for some $c \in I$. In this case $b+c) r=b r+c r \in I-\phi(I)$ with $r \in R-I$, that is $b \in P$. So we can assume that $r I \subseteq \phi(I)$. Since $I^{2} \nsubseteq \phi(I)$, there are $a_{0}, b_{0} \in I$ with $a_{0} b_{0} \notin \phi(I)$. Then
$\left(b+a_{0}\right)\left(r+b_{0}\right) \in I-\phi(I)$ with $r+b_{0} \in R-I$ implies that $b+a_{0} \in P$. On the other hand $a_{0} \in I \subseteq P$ by Lemma 2.7. So that $b \in P$. We have already shown that P is exactly the set of all elements of R that are not prime to I. Hence I is P-primal.

A commutative ring is called decomposable if there exist nontrivial commutative rings R_{1} and R_{2} such that $R \cong R_{1} \times R_{2}$. A ring R that is not decomposable is called indecomposable. An ideal I of $R=R_{1} \times R_{2}$ will have the form $I_{1} \times I_{2}$ where I_{1} and I_{2} are ideals of R_{1} and R_{2}, respectively. It is a well-known, and easily proved, result that I is prime if and only if $I=P_{1} \times R_{2}$ or $I=R_{1} \times P_{2}$ where P_{i} is a prime ideal of R_{i}. It has also proved in [4, Lemma 13] that if I_{1} is a primal ideal of R_{1} and I_{1} is a primal ideal of R_{2}, then $I_{1} \times R_{2}$ and $R_{1} \times I_{2}$ are primal ideals of R. In the following Theorem we provide some conditions under which a ϕ-primal ideal of a decomposable ring is primal.

THEOREM 2.12. Let R_{1} and R_{2} be commutative rings and $R=R_{1} \times R_{2}$. Let $\psi_{i}: \Im\left(R_{i}\right) \rightarrow \Im\left(R_{i}\right) \cup\{\emptyset\} \quad(i=1,2)$ be functions with $\psi_{i}\left(R_{i}\right) \neq R_{i}$, and set $\phi=\psi_{1} \times \psi_{2}$. Assume that P is an ideal of R with $\phi(P) \neq P$. If I is a P - ϕ-primal ideal of R, then either $I=\phi(I)$ or I is primal.

Proof. Suppose that I is a P - ϕ-primal ideal of R. We may assume that $I=I_{1} \times I_{2}$ and $I \neq \phi(I)$. By Proposition 2.4, P is a ϕ-prime ideal of R. Therefore, by [1, Theorem 16], we have the following cases:

Case 1. $P=P_{1} \times P_{2}$ where P_{i} is a proper ideal of R with $\psi_{i}\left(P_{i}\right)=P_{i}$. In this case we have $\phi(P)=\psi_{1}\left(P_{1}\right) \times \psi_{2}\left(P_{2}\right)=P_{1} \times P_{2}=P$ which is a contradiction.

Case 2. $P=P_{1} \times R_{2}$ where P_{1} is a ψ_{1}-prime ideal of R_{1}. Since $\psi_{2}\left(R_{2}\right) \neq R_{2}$, P_{1} is a prime ideal of R_{1} and hence P is a prime ideal of R. We show that $I_{2}=R_{2}$. Since $I \neq \phi(I)$, there exists $(a, b) \in I-\phi(I)$. Then we have $(a, 1)(1, b)=(a, b) \in$ $I-\phi(I)$. If $(a, 1) \notin I$, then $(1, b)$ is not ϕ-prime to I. Hence $(1, b) \in P=P_{1} \times R_{2}$ and so $1 \in P_{1}$ a contradiction. Thus $(a, 1) \in I$ and so $1 \in I_{2}$, that is $I_{2}=R_{2}$. Now we prove that I_{1} is a P_{1}-primal ideal of R_{1}. Pick an element $a_{1} \in P_{1}$. Then $\left(a_{1}, 0\right) \in P_{1} \times R_{2}=P=S_{\phi}(I) \cup \phi(I)$. If $\left(a_{1}, 0\right) \in \phi(I)=\psi_{1}\left(I_{1}\right) \times \psi_{2}\left(R_{2}\right)$, than $a_{1} \in \psi_{1}\left(I_{1}\right) \subseteq I_{1} \subseteq S\left(I_{1}\right)$. Hence a_{1} is not prime to I_{1}. So assume that $\left(a_{1}, 0\right) \in S_{\phi}(I)$. In this case $\left(a_{1}, 0\right)\left(r_{1}, r_{2}\right) \in I-\phi(I)$ for some $\left(r_{1}, r_{2}\right) \in R-I$. So $a_{1} r_{1} \in I_{1}-\psi_{1}\left(I_{1}\right)$ with $r_{1} \in R_{1}-I_{1}$ implies that a_{1} is not ψ_{1}-prime to I_{1}. Hence a_{1} is not prime to I_{1} by Remark 2.2. Conversely, assume that b_{1} is not prime to I_{1}. Then $b_{1} c_{1} \in I_{1}$ for some $c_{1} \in R_{1}-I_{1}$. In this case since $1 \in R_{2}-\psi_{2}\left(R_{2}\right)$, we have $\left(b_{1}, 1\right)\left(c_{1}, 1\right)=\left(b_{1} c_{1}, 1\right) \in I_{1} \times R_{2}-\left(I_{1} \times \psi_{2}\left(R_{2}\right) \subseteq I-\phi(I)\right.$ with $\left(c_{1}, 1\right) \in R-I$. Hence $\left(b_{1}, 1\right)$ is not ϕ-prime to I. Therefore $\left(b_{1}, 1\right) \in P=P_{1} \times R_{2}$ and hence $b_{1} \in P_{1}$. We have already shown that P_{1} consists exactly of those elements of R_{1} that are not prime to I_{1}. Hence I_{1} is a P_{1} primal ideal of R_{1}. Now I is a P-primal ideal of R by [4, Lemma 13].

Case 3. $P=R_{1} \times P_{2}$ where P_{2} is a ψ_{2}-prime ideal of R_{2}. A similar argument as in the Case 2 shows that I is P-primal.

Let J be an ideal of R and $\phi: \Im(R) \rightarrow \Im(R) \cup\{\emptyset\}$ a function. As in [1] we define $\phi_{J}: \mathcal{I}(R / J) \rightarrow \mathcal{I}(R / J) \cup\{\emptyset\}$ by $\phi_{J}(I / J)=(\phi(I)+J) / J$ for every ideal $I \in \Im(R)$ with $J \subseteq I$ (and $\phi_{J}(I / J)=\emptyset$ if $\left.\phi(I)=\emptyset\right)$.

Theorem 2.13. Let R be a commutative ring and $\phi: \mathcal{I}(R) \rightarrow \mathcal{I}(R) \cup\{\emptyset\} a$ function. Let I and J be ideals of R with $J \subseteq \phi(I)$. Then I is a ϕ-primal ideal of R if and only if I / J is a ϕ_{J}-primal ideal of R / J.

Proof. Assume that I is a $P-\phi$-primal ideal of R. Suppose that $a+J$ is an element of R / J that is not ϕ_{J}-prime to I / J. There exists $b \in R-I$ with $(a+J)(b+J) \in I / J-\phi_{J}(I / J)$. In this case $a b \in I-\phi(I)$ with $b \in R-I$ implies that a is not ϕ-prime to I. Hence $a \in S_{\phi}(I) \subseteq P$, and so $a+J \in P / J$. Now assume that $c+J \in P / J$. Then $c \in P=S_{\phi}(I) \cup \phi(I)$. If $c \in \phi(I)$, then $c+J \in \phi_{J}(I / J)$. So assume that $c \in S_{\phi}(I)$, that is c is not ϕ-prime to I. Then $c d \in I-\phi(I)$ for some $d \in R-I$. Consequently, $(c+J)(d+J) \in I / J-(\phi(I) / J)=I / J-\phi_{J}(I / J)$ with $d+J \in R / J-I / J$. This implies that $c+J$ is not ϕ_{J}-prime to I / J; so $c+J \in S_{\phi_{J}}(I / J)$. We have already shown that $P / J=S_{\phi_{J}}(I / J) \cup \phi_{J}(I / J)$. Therefore I / J is ϕ_{J}-primal.

Conversely, suppose that I / J is ϕ_{J}-primal in R / J with the adjoint ideal P / J. For every $a \in P-\phi(I)$, we have $a+J \in P / J-\phi_{J}(I / J)$. So $a+J$ is not ϕ_{J}-prime to I / J. So $(a+J)(b+J) \in I / J-\phi_{J}(I / J)$ for some $b+J \in R / J-I / J$. In this case $b \in R-I$ and $a b \in I-\phi(I)$ implies that a is not ϕ-prime to I. Conversely, assume that $c \in R$ is not ϕ-prime to I. In this case $c d \in I-\phi(I)$ for some $d \in R-I$. Then $(c+J)(d+J) \in I / J-\phi_{J}(I / J)$ with $d+J \notin I / J$, that is $c+J$ is not ϕ_{J}-prime to I / J. Hence $c+J \in P / J-\phi_{J}(I / J)$, and hence $c \in P-\phi(I)$. It follows that $P=S_{\phi}(I) \cup \phi(I)$ which implies that I is P - ϕ-primal in R.

Until further notice, let T be a multiplicatively closed subset of the commutative ring R and let $f: R \rightarrow R_{T}$ denote the natural ring homomorphism given by $r \mapsto r / 1$. If J is an ideal of R_{T}, define $J \cap R=f^{-1}(J)$. Let $\phi: \Im(R) \rightarrow \Im(R) \cup\{\emptyset\}$ be a function and define $\phi_{T}: \mathcal{I}\left(R_{T}\right) \rightarrow \mathcal{I}\left(R_{T}\right) \cup\{\emptyset\}$ by $\phi_{T}(J)=(\phi(J \cap R))_{T}$ (and $\phi_{T}(J)=\emptyset$ if $\phi(J \cap R)=\emptyset$) for every ideal J of R_{T}. Note that $\phi_{T}(J) \subseteq J$. In the remainder of this paper we study the relations between the set of ϕ-primal ideals of R and ϕ_{T}-primal ideals of R_{T}.

LEMMA 2.14. Let R be a commutative ring and $\phi: \Im(R) \rightarrow \Im(R) \cup\{\emptyset\} a$ function. Let T be a multiplicatively closed subset of R and let I be a P - ϕ-primal ideal of R with $P \cap T=\emptyset$. Let $\lambda \in I_{T}-(\phi(I))_{T}$. Then every representation $\lambda=a / s$ of λ as a formal fraction (with $a \in R$ and $s \in T$) must have its numerator in I. Moreover if $(\phi(I))_{T} \neq I_{T}$, then $I=I_{T} \cap R$.

Proof. Assume that $\lambda=a / s \in I_{T}-(\phi(I))_{T}$. Then $a / s=b / t$ for some $b \in I$ and $t \in T$. In this case $u t a=u s b \in I$ for some $u \in T$. If uta $\in \phi(I)$, then $a / s=(u t a) /(u t s) \in(\phi(I))_{T}$ a contradiction. So we have uta $\in I-\phi(I)$. If $a \notin I$, then $u t$ is not ϕ-prime to I; so $u t \in P \cap T$ which contradicts the hypothesis. Therefore $a \in I$.

For the last part, it is clear that $I \subseteq I_{T} \cap R$. Now pick an element $a \in I_{T} \cap R$. Then $s a \in I$ for some $s \in T$. If $s a \notin \phi(I)$ and $a \notin I$, then s is not ϕ-prime to I, so $s \in P \cap T$ a contradiction. So a must be in I. If $s a \in \phi(I)$, then $a / 1=(s a) / s \in$ $(\phi(I))_{T}$, and so $a \in(\phi(I))_{T} \cap R$. Therefore $I_{T} \cap R=I \cup\left((\phi(I))_{T} \cap R\right)$. Hence
either $I_{T} \cap R=I$ or $I_{T} \cap R=(\phi(I))_{T} \cap R$. But the latter case does not hold, for otherwise $I_{T}=(\phi(I))_{T}$ which is a contradiction.

Let R be a commutative ring and M an R-module. An element $a \in R$ is called a zero-divisor on M if $a m=0$ for some $r m=0$. We denote by $Z_{R}(M)$ the set of all zero-divisors of R on M.

THEOREM 2.15. Let R be a commutative ring and $\phi: \Im(R) \rightarrow \Im(R) \cup\{\emptyset\} a$ function. Suppose that T is a multiplicatively closed subset of R and I a P - ϕ-primal ideal of R with $P \cap T=\emptyset, T \cap Z_{R}(R / \phi(I))=\emptyset$ and $(\phi(I))_{T} \subseteq \phi_{T}\left(I_{T}\right)$. Then I_{T} is a ϕ_{T}-primal ideal of R_{T} with the adjoint ideal P_{T}.

Proof. Suppose that $a / s \in P_{T}-\phi_{T}\left(I_{T}\right)$. Since $(\phi(I))_{T} \subseteq \phi_{T}\left(I_{T}\right)$ we have $a \notin \phi(I)$. Hence, by Theorem 2.6 and $2.14, a \in P-\phi(I)$. Thus a is not ϕ-prime to I; so $a b \in I-\phi(I)$ for some $b \in R-I$. If $(a b) / s \in \phi_{T}\left(I_{T}\right)$, then $(a b) / s=c / t$ for some $c \in \phi\left(I_{T} \cap R\right)$ and $t \in T$. One can shows that $c \in \phi(I)$ and so utab $=u s c \in \phi(I)$ shows that $u t \in T \cap Z_{R}(R / \phi(I))$ a contradiction. So $(a b) / s \notin \phi_{T}\left(I_{T}\right)$. In this case, by Lemma 2.14, b/1 $\notin I_{T}$ and $(a / s)(b / 1)=(a b) / s \in I_{T}-\phi_{T}\left(I_{T}\right)$ implies that a / s is not ϕ_{T}-prime to I_{T}. Conversely assume that $a / s \in R_{T}$ is not ϕ_{T}-prime to I_{T}. Then $a / s \notin \phi_{T}\left(I_{T}\right)$ and $(a / s)(b / t) \in I_{T}-\phi_{T}\left(I_{T}\right)$ for some $b / t \in R_{T}-I_{T}$. Since $(\phi(I))_{T} \subseteq \phi_{T}\left(I_{T}\right)$ we have $(a b) /(s t) \in I_{T}-(\phi(I))_{T}$. Then, by Lemma 2.14, $a b \in I-\phi(I)$ and $b \in R-I$ implies that a is not ϕ-prime to I. So $a \in P$ and hence $a / s \in P_{T}-\phi_{T}\left(I_{T}\right)$. Consequently $P_{T}=S_{\phi_{T}}\left(I_{T}\right) \cup \phi_{T}\left(I_{T}\right)$ shows that I_{T} is a $P_{T^{-}} \phi_{T^{-}}$-primal ideal of R_{T}.

Acknowledgement. The author thanks the referees for their valuable comments.

REFERENCES

[1] D.D. Anderson, M. Bataineh, Generalizations of prime ideals, Comm. Algebra 36 (2008), 686-696.
[2] D.D. Anderson, E. Smith, Weakly prime ideals, Houston J. Math. 29 (2003), 831-840.
[3] S.M. Bhatwadekar, P.K. Sharma, Unique factorization and birth of almost primes, Comm. Algebra 33 (2005), 43-49.
[4] S. Ebrahimi Atani, A. Yousefian Darani, On weakly primal ideals(I), Demonstratio Math. 40 (2007), 23-32.
[5] L. Fuchs, On primal ideals, Proc. Amer. Math. Soc. 1 (1950), 1-6.
[6] A. Yousefian Darani, Almost primal ideals in commutative rings, Chiang Mai J. Sci. to appear.
(received 09.08.2010; in revised form 18.11.2010; available online 20.12.2010)
Department of Mathematics, University of Mohaghegh Ardabili, P. O. Box 179, Ardabil, Iran E-mail: yousefian@uma.ac.ir, youseffian@gmail.com

[^0]: 2010 AMS Subject Classification: 13A15, 13A10.
 Keywords and phrases: Primal ideal; weakly primal ideal; ϕ-primal ideal.

