APPLICATION OF THE INFINITE MATRIX THEORY TO THE SOLVABILITY OF CERTAIN SEQUENCE SPACES EQUATIONS WITH OPERATORS

Bruno de Malafosse

Abstract

In this paper we deal with special sequence spaces equations (SSE) with operators, which are determined by an identity whose each term is a sum or a sum of products of sets of the form $\chi_{a}(T)$ and $\chi_{f(x)}(T)$ where f maps U^{+}to itself, and χ is any of the symbols s, s^{0}, or $s^{(c)}$. We solve the equation $\chi_{x}(\Delta)=\chi_{b}$ where χ is any of the symbols s, s^{0}, or $s^{(c)}$ and determine the solutions of (SSE) with operators of the form $\left(\chi_{a} * \chi_{x}+\chi_{b}\right)(\Delta)=\chi_{\eta}$ and $\left[\chi_{a} *\left(\chi_{x}\right)^{2}+\chi_{b} * \chi_{x}\right](\Delta)=\chi_{\eta}$ and $\chi_{a}+\chi_{x}(\Delta)=\chi_{x}$ where χ is any of the symbols s, or s^{0}.

1. Introduction

In the book entitled Summability through Functional Analysis [15], Wilansky introduced sets of the form $1 / a * E$ where E is a BK space, where $a=\left(a_{n}\right)_{n \geq 1}$ is a sequence satisfying $a_{n} \neq 0$ for all n. Recall that $\xi=\left(\xi_{n}\right)_{n \geq 1}$ belongs to $1 / a * E$ if $a \xi \in E$. In $[12,3]$ the sets s_{r}, s_{r}^{0} and $s_{r}^{(c)}$ were defined by $\left(\left(1 / r^{n}\right)_{n}\right)^{-1} * E$ with $r>0$, where E is ℓ_{∞}, c_{0} and c respectively and the sets s_{a}, s_{a}^{0} and $s_{a}^{(c)}$ by $(1 / a)^{-1} * E$ with $a_{n}>0$ for all n and E is ℓ_{∞}, c_{0} and c respectively. The aim was to study an infinite linear system represented by the matrix equation $M \xi=\beta$ where ξ was the unknown and ξ, β were column matrices, and $M=\left(\mu_{n m}\right)_{n, m \geq 1}$ was an infinite matrix mapping from $(1 / a)^{-1} * E$ to itself, (cf. [12]). In [4, 13] the sum $\chi_{a}+\chi_{b}^{\prime}$ and the product $\chi_{a} * \chi_{b}^{\prime}$ were defined, where χ, χ^{\prime} are any of the symbols s, s^{0}, or $s^{(c)}$, among other things characterizations of matrix transformations mapping in the sets $s_{a}+s_{b}^{0}\left(\Delta^{q}\right)$ and $s_{a}+s_{b}^{(c)}\left(\Delta^{q}\right)$ were given, where Δ is the operator of the first difference. In [7] characterizations of the sets $\left(s_{a}\left(\Delta^{q}\right), F\right)$ can be found, where F is any of the sets c_{0}, c and ℓ_{∞}. In [13] characterizations of matrix transformations mapping were given in the set $\widetilde{s_{\alpha, \beta}}=s_{\alpha}^{0}\left((\Delta-\lambda I)^{h}\right)+s_{\beta}^{(c)}\left((\Delta-\mu I)^{l}\right)$, in some cases the set $\left(\widetilde{s_{\alpha, \beta}}, s_{\gamma}\right)$ that can be reduced to a set of the form $S_{\alpha, \gamma}$. Also cite Hardy's results [9] extended by Móricz and Rhoades, (cf. [10, 11]), de Malafosse and

[^0]Rakočević (cf. [8]) and formulated as follows. In [9] it is said that a series $\sum_{m=1}^{\infty} y_{m}$ is summable $(C, 1)$ if $n^{-1} \sum_{m=1}^{n} s_{m} \rightarrow l$, where $s_{m}=\sum_{i=1}^{m} y_{i}$. It was shown by Hardy that if a series $\sum_{m=1}^{\infty} y_{m}$ is summable $(C, 1)$ then $\sum_{m=1}^{\infty}\left(\sum_{i=m}^{\infty} y_{i} / i\right)$ is convergent. On the other hand cite Hardy's Tauberian theorem for Cesàro means where it was shown that if the sequence $\left(y_{n}\right)_{n}$ satisfies $\sup _{n}\left\{n\left|y_{n}-y_{n-1}\right|\right\}<\infty$, then

$$
\frac{1}{n} s_{n} \rightarrow L \text { implies } y_{n} \rightarrow L \text { for some } L \in \mathbb{C}
$$

In this paper we are led to solve special sequence spaces equations (SSE) with operators, which are determined by an identity whose each term is a sum or a sum of products of sets of the form $\chi_{a}(T)$ and $\chi_{f(x)}(T)$, where f mapa U^{+}to itself, and χ is any of the symbols s, or s^{0}, the sequence x is the unknown and T is a given triangle. Then we determine the set of all sequences $x \in U^{+}$such that

$$
\begin{equation*}
u_{n}=O\left(a_{n}\right) \text { and } v_{n}-v_{n-1}=O\left(x_{n}\right) \tag{1}
\end{equation*}
$$

implies $u_{n}+v_{n}=O\left(x_{n}\right)(n \rightarrow \infty)$ for all $u, v \in s$. Conversely, what are the sequences x for which $y_{n}=O\left(x_{n}\right)(n \rightarrow \infty)$ implies there are sequences u and v such that $y=u+v$ and (1) holds. This problem leads to the solvability of the equation $s_{a}+s_{x}(\Delta)=s_{x}$. We also determine the set of all sequences $y \in s$ such that $\left(y_{n}-y_{n-1}\right) / a_{n} \rightarrow l$ if and only if $y_{n} / b_{n} \rightarrow l^{\prime}$. This statement can be written in the form $s_{a}^{(c)}(\Delta)=s_{b}^{(c)}$.

This paper is organized as follows. In Section 2 we recall some results on matrix transformations between sets of the form χ_{ξ} where χ is any of the symbols s, s^{0}, or $s^{(c)}$ and on the sum and the product of the previous sets. In Section 3 we recall characterizations of $\chi_{a}(\Delta)=\chi_{b}$ and determine the solutions of sequence spaces equations of the form $\left[\chi_{a} * \chi_{x}+\chi_{b}\right](\Delta)=\chi_{\eta}$ and $\left[\chi_{a} *\left(\chi_{x}\right)^{2}+\chi_{b} * \chi_{x}\right](\Delta)=\chi_{\eta}$ and $\chi_{a}+\chi_{x}(\Delta)=\chi_{x}$ where χ is any of the symbols s, or s^{0}.

1.1. The sets s_{a}, s_{a}^{0} and $s_{a}^{(c)}$ for $a \in U^{+}$

For a given infinite matrix $M=\left(\mu_{n m}\right)_{n, m \geq 1}$ we define the operators A_{n} for any integer $n \geq 1$, by

$$
\begin{equation*}
M_{n}(\xi)=\sum_{m=1}^{\infty} \mu_{n m} \xi_{m} \tag{2}
\end{equation*}
$$

where $\xi=\left(\xi_{m}\right)_{m \geq 1}$, and the series are assumed convergent for all n. So we are led to the study of the operator M defined by $M \xi=\left(M_{n}(\xi)\right)_{n \geq 1}$ mapping between sequence spaces.

A Banach space E of complex sequences with the norm $\left\|\|_{E}\right.$ is a $B K$ space if each projection $P_{n}: \xi \rightarrow P_{n} \xi=\xi_{n}$ is continuous. A BK space E is said to have $A K$ if every sequence $\xi=\left(\xi_{n}\right)_{n \geq 1} \in E$ has a unique representation $\xi=\sum_{n=1}^{\infty} \xi_{n} e_{n}$ where e_{n} is the sequence with 1 in the n-th position and 0 otherwise.

We will denote by s the sets of all sequences. By c_{0}, c, ℓ_{∞} we denote the subsets of s that converge to zero, that are convergent and that are bounded respectively. We shall use the set $U^{+}=\left\{\left(u_{n}\right)_{n \geq 1} \in s: u_{n}>0\right.$ for all $\left.n\right\}$. Using Wilansky's
notations [15], we define for any sequence $a=\left(a_{n}\right)_{n \geq 1} \in U^{+}$and for any set of sequences E, the set

$$
(1 / a)^{-1} * E=\left\{\left(\xi_{n}\right)_{n \geq 1} \in s:\left(\xi_{n} / a_{n}\right)_{n} \in E\right\}
$$

To simplify, we use the diagonal infinite matrix D_{a} defined by $\left[D_{a}\right]_{n n}=a_{n}$ for all n and write $D_{a} * E=(1 / a)^{-1} * E$ and define $s_{a}=D_{a} * \ell_{\infty}, s_{a}^{0}=D_{a} * c_{0}$ and $s_{a}^{(c)}=D_{a} * c$, see $[1,3,4-6,10,13,14]$. Each of the previous spaces $D_{a} * E$ is a BK space normed by $\|\xi\|_{s_{a}}=\sup _{n \geq 1}\left(\left|\xi_{n}\right| / a_{n}\right)$ and s_{a}^{0} has AK, see [6].

Now let $a=\left(a_{n}\right)_{n \geq 1}, b=\left(b_{n}\right)_{n \geq 1} \in U^{+}$. By $S_{a, b}$ we denote the set of infinite matrices $M=\left(\mu_{n m}\right)_{n, m \geq 1}$ such that

$$
\|M\|_{S_{a, b}}=\sup _{n \geq 1}\left(\frac{1}{b_{n}} \sum_{m=1}^{\infty}\left|\mu_{n m}\right| a_{m}\right)<\infty
$$

The set $S_{a, b}$ is a Banach space with the norm $\|M\|_{S_{a, b}}$. Let E and F be any subsets of s. When M maps E into F we write $M \in(E, F)$, see [2]. So for every $\xi \in E$, we have $M \xi \in F,(M \xi \in F$ will mean that for each $n \geq 1$ the series defined by $M_{n}(\xi)=\sum_{m=1}^{\infty} \mu_{n m} \xi_{m}$ is convergent and $\left.\left(M_{n}(\xi)\right)_{n \geq 1} \in F\right)$. It can easily be seen that $\left(s_{a}, s_{b}\right)=S_{a, b}$.

When $s_{a}=s_{b}$ we obtain the Banach algebra with identity $S_{a, b}=S_{a}$, (see for instance $[1,5,6])$ normed by $\|M\|_{S_{a}}=\|M\|_{S_{a, a}}$. We also have $M \in\left(s_{a}, s_{a}\right)$ if and only if $M \in S_{a}$.

If $a=\left(r^{n}\right)_{n \geq 1}$, we denote by s_{r}, s_{r}^{0} and $s_{r}^{(c)}$ the sets s_{a}, s_{a}^{0} and $s_{a}^{(c)}$ respectively. When $r=1$, we obtain $s_{1}=\ell_{\infty}, s_{1}^{0}=c_{0}$ and $s_{1}^{(c)}=c$, and putting $e=(1,1, \ldots)$ we have $S_{1}=S_{e}$. Recall that $\left(\ell_{\infty}, \ell_{\infty}\right)=\left(c_{0}, \ell_{\infty}\right)=\left(c, \ell_{\infty}\right)=S_{1}$. We have $M \in\left(c_{0}, c_{0}\right)$ if and only if $M \in S_{1}$ and $\lim _{n \rightarrow \infty} \mu_{n m}=0$ for all $m \geq 1$; and $M \in(c, c)$ if and only if $M \in S_{1}$ and $\lim _{n \rightarrow \infty} M_{n}(e)=l$ and $\lim _{n \rightarrow \infty} \mu_{n m}=l_{m}$ for all $m \geq 1$ and for some scalars l and l_{m}. Finally for any given subset F of s, we define the domain of M by

$$
F_{M}=F(M)=\{\xi \in s: M \xi \in F\}
$$

1.2. Sum of sets of the form s_{ξ}, or s_{ξ}^{0}

In this subsection among other things we recall some properties of the sum $E+F$ of sets of the form s_{ξ}, or s_{ξ}^{0}.

Let $E, F \subset s$ be two linear vector spaces, we write $E+F$ for the set of all sequences $w=u+v$ where $u \in E$ and $v \in F$. From [4, Proposition 1, p. 244] and [5, Theorem 4, p. 293] we deduce the next results.

Proposition 1. Let $a, b \in U^{+}$and let χ be either of the symbols s, or s^{0}. Then we have
(i) $\chi_{a} \subset \chi_{b}$ if and only if there is $K>0$ such that

$$
a_{n} \leq K b_{n} \text { for all } n
$$

(ii) $\alpha) \chi_{a}=\chi_{b}$ if and only if there are $K_{1}, K_{2}>0$ such that

$$
K_{1} \leq \frac{a_{n}}{b_{n}} \leq K_{2} \text { for all } n
$$

$\beta) s_{a}^{(c)}=s_{b}^{(c)}$ if and only if there is $l \neq 0$ such that $\frac{a_{n}}{b_{n}} \rightarrow l(n \rightarrow \infty)$.
(iii) $\chi_{a}+\chi_{b}=\chi_{a+b}$.
(iv) $\chi_{a}+\chi_{b}=\chi_{a}$ if and only if $b / a \in \ell_{\infty}$.

We immediately deduce the next corollary that will be useful in the following.
Lemma 2. The next statements are equivalent.
i) $a \in s_{b}$,
ii) $s_{a} \subset s_{b}$,
iii) $s_{a}^{0} \subset s_{b}^{0}$,
iv) $a_{n} \leq K b_{n}$ for all n and for some $K>0$.

In the following our aim is to determine the set of all sequences $x=\left(x_{n}\right)_{n \geq 1} \in$ U^{+}such that

$$
\frac{y_{n}}{b_{n}}=O(1)(n \rightarrow \infty)
$$

if and only if there are $u, v \in s$ such that $y=u+v$ and

$$
u_{n}=O\left(a_{n}\right) \text { and } v_{n}=O\left(x_{n}\right)(n \rightarrow \infty)
$$

We have the next result.
Theorem 3. Let $a=\left(a_{n}\right)_{n \geq 1}, b=\left(b_{n}\right)_{n \geq 1} \in U^{+}$and let χ be any of the symbols s, or s^{0}. Consider the equation

$$
\begin{equation*}
\chi_{a}+\chi_{x}=\chi_{b} \tag{3}
\end{equation*}
$$

where $x=\left(x_{n}\right)_{n \geq 1} \in U^{+}$is the unknown. Then
(i) if $a / b \in c_{0}$ then equation (3) holds if and only if there are $K_{1}, K_{2}>0$ depending on x, such that

$$
K_{1} b_{n} \leq x_{n} \leq K_{2} b_{n} \text { for all } n
$$

that is $s_{x}=s_{b}$;
(ii) if $a / b, b / a \in \ell_{\infty}$ then equation (3) holds if and only if there is $K>0$ depending on x such that

$$
0<x_{n} \leq K b_{n} \text { for all } n
$$

that is $x \in s_{b}$;
(iii) if $a / b \notin \ell_{\infty}$ then equation (3) has no solution in U^{+}.

Proof. The proof in the case when $\chi=s$ was given in [1]. When $\chi=s^{0}$ the proof follows exactly the same lines as in the previous case since we have the equivalence of (ii) and (iii) in Lemma 2 and by Proposition 1 we have $s_{\xi}=s_{\eta}$ if and only if $s_{\xi}^{0}=s_{\eta}^{0}$ for $\xi, \eta \in U^{+}$.

We deduce the next corollary.

Corollary 4. Let $r, u>0$ and let χ be any of the symbols s, or s^{0}. Consider the equation

$$
\begin{equation*}
\chi_{r}+\chi_{x}=\chi_{u} \tag{4}
\end{equation*}
$$

where $x=\left(x_{n}\right)_{n \geq 1}$ is the unknown. Then we have
i) If $r<u$ equation (4) is equivalent to

$$
K_{1} u^{n} \leq x_{n} \leq K_{2} u^{n} \text { for all } n
$$

for some $K_{1}, K_{2}>0$;
ii) if $r=u$ equation (4) is equivalent to

$$
x_{n} \leq K u^{n} \text { for all } n
$$

for some $K>0$;
iii) if $r>u$ equation (4) has no solution.

1.3. Product of sequence spaces

In this subsection we will deal with some properties of the product $E * F$ of particular subsets E and F of s. For any sequences $\xi \in E$ and $\eta \in F$ we put $\xi \eta=\left(\xi_{n} \eta_{n}\right)_{n \geq 1}$. Most of the next results were shown in [4]. For any sets of sequences E and F, we put

$$
E * F=\bigcup_{\xi \in E}(1 / \xi)^{-1} * F=\{\xi \eta \in s: \xi \in E \text { and } \eta \in F\}
$$

We immediately have the following results, where we put

$$
\mathcal{S}=\left\{s_{a}: a \in U^{+}\right\} \text {and } \mathcal{S}^{0}=\left\{s_{a}^{0}: a \in U^{+}\right\}
$$

Proposition 5. The set \mathcal{S}, (resp. \mathcal{S}^{0}) with multiplication $*$ is a commutative group and $\ell_{\infty},\left(\right.$ resp. $\left.c_{0}\right)$ is the unit element for \mathcal{S}, (resp. \mathcal{S}^{0}).

Proof. We only deal with the set \mathcal{S} the case of the set \mathcal{S}^{0} can be treated similarly. By [4, Proposition 1, p. 244] we have $\chi_{a} * \chi_{b}=\chi_{a b}$. We deduce that the $\operatorname{map} \psi: U^{+} \mapsto \mathcal{S}$ defined by $\psi(a)=s_{a}$ is a surjective homomorphism and since U^{+}with the multiplication of sequences is a group it is the same for \mathcal{S}. Then the unit element of \mathcal{S} is $\psi(e)=s_{1}=\ell_{\infty}$. ■

REmark 6. Note that the inverse of χ_{a} is $\chi_{1 / a}$ where χ be any of the symbols s, or s^{0}.

As a direct consequence of Proposition 5 we deduce the next corollary.
Corollary 7. Let $a, b, b^{\prime} \in U^{+}$and let χ be any of the symbols s, or s^{0}. We successively have
(i) $\chi_{a} * \chi_{b}=\chi_{a b}$.
(ii) $\chi_{a} * \chi_{b}=\chi_{a} * \chi_{b^{\prime}}$ if and only if $s_{b}=s_{b^{\prime}}$.
(iii) The sequence $x=\left(x_{n}\right)_{n \geq 1} \in U^{+}$satisfies the equation

$$
\begin{equation*}
\chi_{a} * \chi_{x}=s_{b} \tag{5}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
K_{1} \frac{b_{n}}{a_{n}} \leq x_{n} \leq K_{2} \frac{b_{n}}{a_{n}} \text { for all } n \tag{6}
\end{equation*}
$$

for some $K_{1}, K_{2}>0$ depending only on x.

2. On some sequence spaces equations with operators

In this section we consider among other things the equations $s_{a}^{(c)}(\Delta)=s_{b}^{(c)}$, $s_{a x+b}(\Delta)=s_{\eta}, s_{a x^{2}+b x}(\Delta)=s_{\eta}$ and $s_{a}+s_{x}(\Delta)=s_{x}$ for given sequences $a, b \in U^{+}$. The resolution of the equation $s_{a x+b}(\Delta)=s_{\eta}$ is equivalent to determine the set of all sequences $x \in U^{+}$such that

$$
y_{n}-y_{n-1}=O\left(a_{n} x_{n}+b_{n}\right)
$$

if and only if $y_{n}=O\left(\eta_{n}\right)(n \rightarrow \infty)$ for all $y \in s$. Solving the equation $s_{a}+s_{x}(\Delta)=$ s_{x} leads to know the set of all sequences $x \in U^{+}$such that for each sequence y we have

$$
\begin{equation*}
y_{n}=O\left(x_{n}\right) \tag{7}
\end{equation*}
$$

if and only if there are sequences u, v such that $y=u+v$ and

$$
u_{n}=O\left(a_{n}\right) \text { and } v_{n}-v_{n-1}=O\left(x_{n}\right)(n \rightarrow \infty)
$$

2.1. On the identities $\chi_{a}(\Delta)=\chi_{b}$ where $\chi \in\left\{s^{0}, s^{(c)}, s\right\}$

To solve the next equations we need additional definitions and properties. The infinite matrix $T=\left(t_{n m}\right)_{n, m>1}$ is said to be a triangle if $t_{n m}=0$ for $m>n$ and $t_{n n} \neq 0$ for all n. Now let U be the set of all sequences $\left(u_{n}\right)_{n \geq 1} \in s$ with $u_{n} \neq 0$ for all n. The infinite matrix $C(a)$ with $a=\left(a_{n}\right)_{n \geq 1} \in U$ is defined by

$$
[C(a)]_{n m}= \begin{cases}1 / a_{n}, & \text { if } m \leq n \\ 0, & \text { otherwise }\end{cases}
$$

It can be shown that the matrix $\Delta(a)$ defined by

$$
[\Delta(a)]_{n m}= \begin{cases}a_{n}, & \text { if } m=n \\ -a_{n-1}, & \text { if } m=n-1 \text { and } n \geq 2 \\ 0, & \text { otherwise }\end{cases}
$$

is the inverse of $C(a)$, that is $C(a)(\Delta(a) \xi)=\Delta(a)(C(a) \xi)$ for all $\xi \in s$. If $a=e$ we get the well known operator of the first difference represented by $\Delta(e)=\Delta$. We then have $\Delta \xi_{n}=\xi_{n}-\xi_{n-1}$ for all $n \geq 1$, with the convention $\xi_{0}=0$. It is usually written

$$
\Sigma=C(e)=\left(\begin{array}{cccc}
1 & & & \\
1 & 1 & & 0 \\
1 & 1 & 1 & \\
. & . & . & .
\end{array}\right)
$$

Note that $\Delta=\Sigma^{-1}$ and $\Delta, \Sigma \in S_{R}$ for any $R>1$. Consider the sets where $[C(a) a]_{n}=\left(\sum_{m=1}^{n} a_{m}\right) / a_{n}$,

$$
\widehat{C_{1}}=\left\{a \in U^{+}: \quad C(a) a \in \ell_{\infty}\right\}
$$

$$
\begin{aligned}
\widehat{C} & =\left\{a \in U^{+}: \quad[C(a) a]_{n} \rightarrow l \text { for some } l \in \mathbb{C}\right\} \\
\widehat{\Gamma} & =\left\{a \in U^{+}: \lim _{n \rightarrow \infty}\left(\frac{a_{n-1}}{a_{n}}\right)<1\right\} \\
\Gamma & =\left\{a \in U^{+}: \limsup _{n \rightarrow \infty}\left(\frac{a_{n-1}}{a_{n}}\right)<1\right\} .
\end{aligned}
$$

and

$$
G_{1}=\left\{x \in U^{+}: x_{n} \geq k \gamma^{n} \text { for all } n \text { and for some } k>0 \text { and } \gamma>1\right\}
$$

By [3, Proposition 2.1, p. 1786] and [6] we obtain the next lemma.
Lemma 8. We have
(i) $\widehat{\Gamma}=\widehat{C}$.
(ii) $\Gamma \subset \widehat{C_{1}} \subset G_{1}$.

Since $\widehat{\Gamma} \subset \Gamma$ we deduce $\widehat{\Gamma}=\widehat{C} \subset \Gamma \subset \widehat{C_{1}} \subset G_{1}$.
Here among other things we study the equivalence
$\frac{y_{n}-y_{n-1}}{a_{n}} \rightarrow l$ if and only if $\frac{y_{n}}{b_{n}} \rightarrow l^{\prime}(n \rightarrow \infty)$ for all $y \in s$ and for some $l, l^{\prime} \in \mathbb{C}$. This statement can written in the form $s_{a}^{(c)}(\Delta)=s_{b}^{(c)}$. We will use the next elementary lemma.

Lemma 9. Let T_{1}, T_{2} be triangles and E, F be sequence spaces. Then for any triangles T we have $T \in\left(E\left(T_{1}\right), F\left(T_{2}\right)\right)$ if and only if $T_{2} T T_{1}^{-1} \in(E, F)$.

The proof is based on the fact that T_{1}, T_{2} and T being triangles we have $E\left(T_{1}\right)=T_{1}^{-1} E$ and for every $\xi \in E$ we have

$$
T_{2}\left[T\left(T_{1}^{-1} \xi\right)\right]=\left(T_{2} T T_{1}^{-1}\right) \xi
$$

Let us state the next results.
Theorem 10. Let $a, b \in U^{+}$. We have
(i) The following statements are equivalent
a) $s_{a}(\Delta)=s_{b}$,
b) $s_{a}^{0}(\Delta)=s_{b}^{0}$,
c) $s_{a}=s_{b}$ and $b \in \widehat{C_{1}}$.
(ii) Assume $\left(b_{n-1} / b_{n}\right)_{n} \in c$. Then

$$
\begin{equation*}
s_{a}^{(c)}(\Delta)=s_{b}^{(c)} \tag{8}
\end{equation*}
$$

if and only if

$$
\frac{a_{n}}{b_{n}} \rightarrow l \neq 0 \text { for some } l \in \mathbb{C} \text { and } b \in \widehat{\Gamma}
$$

Proof. The statement (i) was shown in [5, Proposition 9, p. 300]. It remains to show (ii). The first identity (8) means that Δ is bijective from $s_{a}^{(c)}$ to $s_{b}^{(c)}$.

Since Δ is a triangle and its inverse is equal to Σ, by Lemma 9 equality (8) is equivalent to $\Sigma \in\left(s_{a}^{(c)}, s_{b}^{(c)}\right)$ and to $\Delta \in\left(s_{b}^{(c)}, s_{a}^{(c)}\right)$. Then also by Lemma 9 we have $D_{1 / b} \Sigma D_{a} \in(c, c)$ and $D_{1 / a} \Delta D_{b} \in(c, c)$. From the characterization of (c, c) we deduce

$$
\begin{equation*}
[C(b) a]_{n}=\frac{\sum_{m=1}^{n} a_{m}}{b_{n}} \rightarrow L \text { for some } L \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{b_{n}+b_{n-1}}{a_{n}} \leq K \text { for all } n \tag{10}
\end{equation*}
$$

Conditions (9) and (10) imply there is K^{\prime} such that

$$
\begin{equation*}
\frac{a_{n}}{b_{n}} \leq K^{\prime} \text { and } \frac{b_{n}}{a_{n}} \leq K \text { for all } n \tag{11}
\end{equation*}
$$

that is $s_{a}=s_{b}$. Then we have $a \in \widehat{C_{1}}$ since (11) implies

$$
[C(a) a]_{n}=[C(b) a]_{n} \frac{b_{n}}{a_{n}} \leq \frac{1}{K^{\prime}}[C(b) a]_{n} \text { for all } n
$$

Then b_{n-1} / b_{n} cannot tend to 1 . Indeed we have

$$
\frac{[C(b) a]_{n}}{[C(b) a]_{n-1}}=\frac{\sum_{m=1}^{n-1} a_{m}+a_{n}}{\sum_{m=1}^{n-1} a_{m}} \frac{b_{n-1}}{b_{n}}=\left(1+\frac{a_{n}}{\sum_{m=1}^{n-1} a_{m}}\right) \frac{b_{n-1}}{b_{n}}
$$

Then $L \neq 0$ since

$$
[C(b) a]_{n} \geq \frac{a_{n}}{K^{\prime} a_{n}}=\frac{1}{K^{\prime}}>0 \text { for all } n
$$

and $\lim _{n \rightarrow \infty} \frac{[C(b) a]_{n}}{[C(b) a]_{n-1}}=\frac{L}{L}=1$. So if b_{n-1} / b_{n} tend to 1 we should have

$$
1+\frac{a_{n}}{\sum_{m=1}^{n-1} a_{m}} \rightarrow 1(n \rightarrow \infty)
$$

and

$$
[C(a) a]_{n}=\frac{\sum_{m=1}^{n-1} a_{m}}{a_{n}}+1 \rightarrow \infty(n \rightarrow \infty)
$$

which is contradictory. So we have $b_{n-1} / b_{n} \rightarrow L^{\prime} \neq 1$. Then

$$
\frac{a_{n}}{b_{n}}=\frac{1}{b_{n}}\left(\sum_{m=1}^{n} a_{m}-\sum_{m=1}^{n-1} a_{m}\right)=[C(b) a]_{n}-[C(b) a]_{n-1} \frac{b_{n-1}}{b_{n}}
$$

tends to $L-L L^{\prime}=L\left(1-L^{\prime}\right) \neq 0$ and a_{n} / b_{n} has a nonzero limit l. We deduce

$$
[C(a) a]_{n}=[C(b) a]_{n} \frac{b_{n}}{a_{n}} \rightarrow \frac{L}{l} \neq 0
$$

and $a \in \widehat{C}=\widehat{\Gamma}$. So $\frac{a_{n-1}}{a_{n}} \rightarrow \chi<1(n \rightarrow \infty)$ and

$$
\frac{b_{n-1}}{b_{n}}=\frac{b_{n-1}}{a_{n-1}} \frac{1}{\frac{b_{n}}{a_{n}}} \frac{a_{n-1}}{a_{n}} \rightarrow \frac{1}{l} \frac{1}{\frac{1}{l}} \chi<1
$$

which implies $b \in \widehat{\Gamma}$. This concludes the proof.
Conversely assume $a_{n} / b_{n} \rightarrow l \neq 0$ for some $l \in \mathbb{C}$ and $\lim _{n \rightarrow \infty}\left(b_{n-1} / b_{n}\right)<1$. Then $s_{a}^{(c)}=s_{b}^{(c)}$ and $b \in \widehat{\Gamma}$ implies $s_{a}^{(c)}(\Delta)=s_{a}^{(c)}=s_{b}^{(c)}$.

We can state the next result which is a direct consequence of Theorem 10 (i) b).

Corollary 11. (i) $s_{a}^{(c)}(\Delta)=s_{a}^{(c)}$ if and only if $a \in \widehat{\Gamma}$.
(ii) $c(\Delta) \neq s_{a}^{(c)}$ for any $a \in U^{+}$.
(iii) Let $r, u>0$. Then $s_{r}^{(c)}(\Delta)=s_{u}^{(c)}$ if and only if $r=u>1$.

Let us cite the next lemma where $\left[\Sigma^{q}\right]_{n m}=\binom{q+n-m-1}{n-m}$ with $m \leq n$.
Corollary 12. [5] Let $q \geq 1$ be an integer. Then the following statements are equivalent
(i) $a \in \widehat{C_{1}}$,
(ii) $s_{a}(\Delta)=s_{a}$,
(iii) $s_{a}^{0}(\Delta)=s_{a}^{0}$,
(iv) $s_{a}\left(\Delta^{q}\right)=s_{a}$,
(v) $s_{a}^{0}\left(\Delta^{q}\right)=s_{a}^{0}$,
(vi) $\frac{1}{a_{n}} \sum_{m=1}^{n}\binom{q+n-m-1}{n-m} a_{k}=O(1)(n \rightarrow \infty)$.
2.2. On the (SSE) with operators $\left(\chi_{a} * \chi_{x}+\chi_{b}\right)(\Delta)=\chi_{\eta}$ and $\left[\chi_{a} *\right.$ $\left.\left(\chi_{x}\right)^{2}+\chi_{b} * \chi_{x}\right](\Delta)=\chi_{\eta}$ with $\chi \in\left\{s^{0}, s\right\}$

As consequences of the preceding we can state the next results.
Proposition 13. Let $a, b, \eta \in U^{+}$. Then
i) a) If $b / \eta \in c_{0}$ the (SSE) with operator

$$
\begin{equation*}
\left(s_{a} * s_{x}+s_{b}\right)(\Delta)=s_{\eta} \tag{12}
\end{equation*}
$$

is equivalent to $s_{x}=s_{\eta / a}$ and $\eta \in \widehat{C_{1}}$;
b) If $s_{b}=s_{\eta}$ then (SSE) (12) is equivalent to $x \in s_{\eta / a}$ and $\eta \in \widehat{C_{1}}$;
c) If $b / \eta \notin \ell_{\infty}$ then (SSE) (12) has no solution.
ii) Assume

$$
\begin{equation*}
a \in s_{\eta}^{0} \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
b \in s_{a} . \tag{14}
\end{equation*}
$$

Then the (SSE)

$$
\begin{equation*}
\left[s_{a} *\left(s_{x}\right)^{2}+s_{b} * s_{x}\right](\Delta)=s_{\eta} \tag{15}
\end{equation*}
$$

is equivalent to $\eta \in \widehat{C_{1}}$ and $s_{x}=s_{\sqrt{\eta / a}}$.

Proof. i) We have $s_{a} * s_{x}+s_{b}=s_{a x}+s_{b}=s_{a x+b}$. So $\left(s_{a} * s_{x}+s_{b}\right)(\Delta)=s_{a x+b}(\Delta)$. By Theorem 10 (ii) we have that (12) is equivalent to

$$
\left\{\begin{array}{c}
s_{a x+b}=s_{\eta} \tag{16}\\
\eta \in \widehat{C_{1}}
\end{array}\right.
$$

and $s_{a x+b}=s_{\eta}$ is equivalent to $s_{b}+s_{a x}=s_{\eta}$. For the study of the (SSE) it is enough to apply Theorem 3. If $b / \eta \in c_{0}$ then $s_{a x}=s_{\eta}$ and $s_{x}=s_{\eta / a}$. The remainder of the proof can be shown similarly.
ii) First show the necessity. Since we have $s_{a} *\left(s_{x}\right)^{2}+s_{b} * s_{x}=s_{a x^{2}+b x}$, by Theorem 10 (iii) identity (15) is equivalent to

$$
\left\{\begin{array}{c}
s_{a x^{2}+b x}=s_{\eta} \tag{17}\\
\eta \in \widehat{C_{1}}
\end{array}\right.
$$

Then $s_{x^{2}+\frac{b}{a} x}=s_{\frac{\eta}{a}}$. Let us show $x_{n} \rightarrow \infty(n \rightarrow \infty)$. Since $\eta \in \widehat{C_{1}}$ we have $\eta_{n} \rightarrow \infty$ and by (17) there is $K>0$ such that $a_{n} x_{n}^{2}+b_{n} x_{n} \geq K \eta_{n}$ and

$$
y_{n}=x_{n}^{2}+\frac{b_{n}}{a_{n}} x_{n} \geq K \frac{\eta_{n}}{a_{n}} \text { for all } n
$$

Then condition (13) implies $\eta_{n} / a_{n} \rightarrow \infty(n \rightarrow \infty)$ and $y_{n} \rightarrow \infty(n \rightarrow \infty)$. Now by the identity $y_{n}=x_{n}^{2}+\left(b_{n} / a_{n}\right) x_{n}$ we have

$$
x_{n}=\frac{1}{2}\left(-\frac{b_{n}}{a_{n}}+\sqrt{\left(\frac{b_{n}}{a_{n}}\right)^{2}+4 y_{n}}\right) \text { for all } n
$$

and by (14) we deduce $x_{n} \rightarrow \infty(n \rightarrow \infty)$. We then have

$$
\frac{a_{n} x_{n}^{2}+b_{n} x_{n}}{a_{n} x_{n}^{2}}=1+\frac{b_{n}}{a_{n}} \frac{1}{x_{n}}=1+O(1) o(1)=1+o(1)(n \rightarrow \infty)
$$

and $\frac{a_{n} x_{n}^{2}+b_{n} x_{n}}{a_{n} x_{n}^{2}} \rightarrow 1(n \rightarrow \infty)$, which shows $s_{a x^{2}+b x}=s_{a x^{2}}$. By Corollary 7 iii $)$ we conclude $s_{x}=s \sqrt{\eta / a}$.

Sufficiency. Assume $s_{x}=s_{\sqrt{\eta / a}}$ and $\eta \in \widehat{C_{1}}$. Then $s_{a x^{2}+b x}=s_{\eta}$. But (14) implies $s_{b} \subset s_{a}$ and

$$
s_{b \sqrt{\frac{n}{a}}} \subset s_{\sqrt{a \eta}}
$$

and by (13) we have $\sqrt{a_{n} \eta_{n}} / \eta_{n}=\sqrt{a_{n} / \eta_{n}}=o(1)(n \rightarrow \infty)$. We conclude $s_{a x^{2}+b x}=$ s_{η} and since $\eta \in \widehat{C_{1}}$ we have $s_{a x^{2}+b x}(\Delta)=s_{\eta}$. This concludes the proof of i).

We deduce the next corollaries.
Corollary 14. Let $u, p>0$ and $R>1$. Consider the (SSE)

$$
\begin{equation*}
\left(s_{\left(u^{n} x_{n}\right)_{n}}+s_{\left(n^{p}\right)_{n}}\right)(\Delta)=s_{R} \text { with } x \in U^{+} \tag{18}
\end{equation*}
$$

Then
(i) if $R>u$ then the solutions x of (18) satisfy $x_{n} \rightarrow \infty(n \rightarrow \infty)$ and for any $\alpha>0$ we have $\lim _{n \rightarrow \infty} \frac{x_{n}}{n^{\alpha}}=\infty$;
(ii) if $R=u$ then the solutions of (18) satisfy $x_{n}=O(1)(n \rightarrow \infty)$;
(iii) if $R<u$ then for any given $\beta>0$ the solutions of (18) satisfy

$$
\lim _{n \rightarrow \infty} n^{\beta} x_{n}=0
$$

Proof. (i) We have $a_{n}=u^{n}, \eta_{n}=R^{n}$ and $b_{n}=n^{p}$. Since $n^{p} R^{-n} \rightarrow 0(n \rightarrow \infty)$ we have $b / \eta \in c_{0}$ and (18) is equivalent to $s_{x}=s_{R / u}$. Then putting $R / u=r$ there is K_{1} such that $x_{n} n^{-\alpha} \geq K_{1} r^{n} n^{-\alpha}$ and since $r>1$ we have $r^{n} n^{-\alpha} \rightarrow \infty$ and $x_{n} n^{-\alpha} \rightarrow \infty(n \rightarrow \infty)$.
(ii) We have $R=u$ and as we have seen above we have $s_{x}=s_{1}$ which implies $x_{n}=O(1)(n \rightarrow \infty)$.
(iii) Here we have $s_{x}=s_{R / u}=s_{r}$ with $r<1$ so there is K_{2} such that $x_{n} n^{\beta} \leq K_{2} r^{n} n^{\beta}$ and since $r^{n} n^{\beta}$ tends to naught we conclude it is the same for $n^{\beta} x_{n}$.

Corollary 15. Let $x \in U^{+}$satisfy the (SSE) with operator

$$
\begin{equation*}
\left(s_{\left(n^{p} x_{n}^{2}\right)_{n}}+s_{\left(x_{n} \ln n\right)_{n}}\right)(\Delta)=s_{R} \tag{19}
\end{equation*}
$$

with $p>0$ and $R>1$. Then for every $\alpha>0$ we have $\lim _{n \rightarrow \infty} \frac{x_{n}}{n^{\alpha}}=\infty$.
Proof. Here we have $a_{n}=n^{p}, b_{n}=\ln n, \eta_{n}=R^{n}$ and conditions (13) and (14) hold since trivially we have $n^{p} / R^{n}=o(1)$ and $\ln n / n^{p}=O(1)(n \rightarrow \infty)$, since $R>1$ we also have $\eta \in \widehat{C_{1}}$. Then the solutions of (19) satisfy $x_{n} \geq K_{1} R^{n / 2} n^{-\frac{p}{2}}$ and $x_{n} / n^{\alpha} \geq K_{1} R^{n / 2} / n^{\frac{p}{2}+\alpha}$ then $R^{n / 2} / n^{\frac{p}{2}+\alpha} \rightarrow \infty$ and $x_{n} / n^{\alpha} \rightarrow \infty(n \rightarrow \infty)$. This concludes the proof.

Using similar arguments we immediately obtain the following result.
Proposition 16. Let $a, b, \eta \in U^{+}$. Then
i) α) If $b / \eta \in c_{0}$ then the (SSE)

$$
\begin{equation*}
s_{a x+b}^{0}(\Delta)=s_{\eta}^{0} \tag{20}
\end{equation*}
$$

is equivalent to $s_{x}=s_{\eta / a}$ and $\eta \in \widehat{C_{1}}$.
β) If $s_{b}=s_{\eta}$ then (SSE) (20) is equivalent to $x \in s_{\eta}$ and $\eta \in \widehat{C_{1}}$;
γ) If $b / \eta \notin \ell_{\infty}$ then (SSE) (20) has no solution.
ii) Assume $a \in s_{\eta}^{0}$ and $b \in s_{a}$. Then the (SSE)

$$
\begin{equation*}
s_{a x^{2}+b x}^{0}(\Delta)=s_{\eta}^{0} \tag{21}
\end{equation*}
$$

is equivalent to $\eta \in \widehat{C_{1}}$ and $s_{x}=s_{\sqrt{\eta / a}}$.
We immediately deduce the following.

Corollary 17. The (SSE) with operator

$$
\begin{equation*}
\chi_{x^{2}+x}(\Delta)=s_{\eta} \text { with } \chi=s^{0}, \text { or } s \tag{22}
\end{equation*}
$$

is equivalent to $\eta \in \widehat{C_{1}}$ and $s_{x}=s_{\sqrt{\eta}}$.
Proof. We only consider the (SSE) (22) where $\chi=s$, the other case can be shown similarly. We have $s_{x^{2}+x}(\Delta)=s_{\eta}$ equivalent to $s_{x^{2}+x}=s_{\eta}$ and $\eta \in \widehat{C_{1}}$. So $a=e \in s_{\eta}^{0}$ since $1 / \eta \in c_{0}$ and $b=e \in s_{a}=\ell_{\infty}$, then by Proposition 12 we conclude $s_{x}=s_{\sqrt{\eta}}$. Conversely. Assume $s_{x}=s_{\sqrt{\eta}}$ and $\eta \in \widehat{C_{1}}$. Then $\eta_{n} \rightarrow \infty$, so we have $\left(\eta_{n}+\sqrt{\eta_{n}}\right) / \eta_{n} \rightarrow 1(n \rightarrow \infty)$ and $s_{x^{2}+x}=s_{\eta+\sqrt{\eta}}=s_{\eta}$. We conclude $s_{x^{2}+x}(\Delta)=s_{\eta}(\Delta)=s_{\eta}$.
2.3. On the $(\mathbf{S S E}) \chi_{a x^{2}+x}(\Delta)=\chi_{x}$ and $\chi_{a}+\chi_{x}(\Delta)=\chi_{x}$ with $\chi \in\left\{s^{0}, s\right\}$

Now we are interested in the study of sequence spaces equations with a second member depending on x such as the (SSE) $\chi_{a x^{2}+x}(\Delta)=s_{x}$ and $\chi_{a}+\chi_{x}(\Delta)=\chi_{x}$. We will see that the last equation is equivalent to the equation $s_{a}^{0}+s_{x}^{0}(\Delta)=s_{x}^{0}$.

Proposition 18. The (SSE)

$$
\begin{equation*}
\chi_{a x^{2}+x}(\Delta)=\chi_{x} \tag{23}
\end{equation*}
$$

where χ is any of the symbols s^{0}, or s is equivalent to $x \in \widehat{C_{1}}$ and to

$$
x_{n} \leq \frac{K}{a_{n}} \text { for all } n \text { and for some } K>0
$$

Proof. We only show the proposition for $\chi=s$. The proof being similar for the other case. We have that (23) is equivalent to

$$
\left\{\begin{array}{c}
s_{a x^{2}+x}=s_{x}, \\
x \in \widehat{C_{1}}
\end{array}\right.
$$

Since we have $s_{a x^{2}+x}=s_{a x^{2}}+s_{x}$ the identity $s_{a x^{2}+x}=s_{x}$ is equivalent to $s_{a x^{2}} \subset s_{x}$ and to $s_{x} \subset s_{1 / a}$ by Proposition 1 i). This concludes the proof of the proposition.

Using similar arguments we deduce the following result.
REmARK 19. We immediately deduce that $s_{x^{2}+x}(\Delta)=s_{x}$ has no solution since we have $x \in \widehat{C_{1}}$ implies $x_{n} \rightarrow \infty(n \rightarrow \infty)$ and we cannot have $s_{x} \subset s_{1 / a}=\ell_{\infty}$. It is the same for the equation $s_{x^{2}+x}^{0}(\Delta)=s_{x}^{0}$.

In the following we will use the set $s_{a}^{*}=\left\{x \in U^{+}: a / x \in \ell_{\infty}\right\}$. We can state the next result.

Proposition 20. Assume

$$
\begin{equation*}
\underline{l i m}_{n \rightarrow \infty}\left(\frac{r^{n}}{a_{n}}\right)>0 \text { for all } r>1 \tag{24}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left\{x \in U^{+}: \chi_{a}+\chi_{x}(\Delta)=\chi_{x}\right\}=\widehat{C_{1}} \tag{25}
\end{equation*}
$$

where χ is either s, or s^{0}.

Proof. First show identity (25) with $\chi=s$. Let A_{a} be the set

$$
A_{a}=\left\{x \in U^{+}: s_{a}+s_{x}(\Delta)=s_{x}\right\}
$$

Show that $A_{a}=\widehat{C_{1}} \cap s_{a}^{*}$. First let $x \in A_{a}$. Then $s_{x}(\Delta) \subset s_{x}$ and $I \in\left(s_{x}(\Delta), s_{x}\right)$, by Lemma 9 we have $\Sigma \in\left(s_{x}, s_{x}\right)$ that is

$$
\begin{equation*}
\frac{1}{x_{n}}\left(x_{1}+\cdots+x_{n}\right)=O(1)(n \rightarrow \infty) . \tag{26}
\end{equation*}
$$

We conclude $A_{a} \subset \widehat{C_{1}}$. Then show $A_{a} \subset s_{a}^{*}$. We have $x \in A_{a}$ also implies

$$
s_{a} \subset s_{a}+s_{x}(\Delta)=s_{x}
$$

we deduce $a \in s_{a} \subset s_{x}$ and $x \in s_{a}^{*}$. We conclude $A_{a} \subset \widehat{C_{1}} \cap s_{a}^{*}$. Now show the inclusion $\widehat{C_{1}} \cap s_{a}^{*} \subset A_{a}$. Let $x \in \widehat{C_{1}} \cap s_{a}^{*}$. First $x \in \widehat{C}_{1}$ implies $s_{x}(\Delta)=s_{x}$, then $x \in s_{a}^{*}$ implies $s_{a} \subset s_{x}$ and $s_{a}+s_{x}=s_{x}$. We conclude $s_{a}+s_{x}(\Delta)=s_{x}$ and $x \in A_{a}$. This shows $\widehat{C_{1}} \cap s_{a}^{*} \subset A_{a}$. Now show $\widehat{C}_{1} \subset s_{a}^{*}$. Since by Lemma 8 (ii) we have $\widehat{C_{1}} \subset G_{1}$, the condition $x \in \widehat{C}_{1}$ implies there are $k>0$ and $\gamma>1$ such that $x_{n} \geq k \gamma^{n}$. Since we have $\underline{\lim }_{n \rightarrow \infty}\left(r^{n} / a_{n}\right)>0$ then $\inf _{n}\left(r^{n} / a_{n}\right)>0$ for all $r>1$ and there is $\left.r_{0} \in\right] 1, \gamma[$ such that

$$
\frac{x_{n}}{a_{n}} \geq k\left(\frac{\gamma^{n}}{a_{n}}\right) \geq k \inf _{n}\left(\frac{r_{0}^{n}}{a_{n}}\right)>0 \text { for all } n
$$

and $x \in s_{a}^{*}$. So we have shown $\widehat{C_{1}} \subset s_{a}^{*}$ and $A_{a}=\widehat{C_{1}}$. This completes the first part of the proof.

Now show identity (25) holds with $\chi=s^{0}$. Let A_{a}^{0} be the set

$$
A_{a}^{0}=\left\{x \in U^{+}: s_{a}^{0}+s_{x}^{0}(\Delta)=s_{x}^{0}\right\}
$$

Show that $A_{a}^{0}=\widehat{C_{1}} \cap s_{a}^{*}$. First let $x \in A_{a}^{0}$. Again by Lemma 9 we have $s_{x}^{0}(\Delta) \subset$ s_{x}^{0} and $\Sigma \in\left(s_{x}^{0}, s_{x}^{0}\right)$. So we have

$$
\begin{equation*}
\frac{1}{x_{n}}\left(x_{1}+\cdots+x_{n}\right)=O(1) \text { and } \frac{1}{x_{n}}=o(1)(n \rightarrow \infty) . \tag{27}
\end{equation*}
$$

But since we have $x \in \widehat{C_{1}}$ implies $1 / x_{n} \rightarrow 0$, conditions given by (27) are equivalent to $x \in \widehat{C_{1}}$. So we have shown $A_{a}^{0} \subset \widehat{C}_{1}$. Then show $A_{a}^{0} \subset s_{a}^{*}$. We have $x \in A_{a}^{0}$ implies $s_{a}^{0} \subset s_{a}^{0}+s_{x}^{0}(\Delta)=s_{x}^{0}$ and $s_{a}^{0} \subset s_{x}^{0}$. By Lemma 2 we deduce $s_{a} \subset s_{x}$ and $a \in s_{a} \subset s_{x}$, this means that $x \in s_{a}^{*}$. We conclude $A_{a}^{0} \subset \widehat{C_{1}} \cap s_{a}^{*}$. The proof of the inclusion $\widehat{C_{1}} \cap s_{a}^{*} \subset A_{a}$ follows exactly the same lines that in the proof of $\widehat{C_{1}} \cap s_{a}^{*} \subset A_{a}^{0}$. So $A_{a}^{0}=\widehat{C_{1}} \cap s_{a}^{*}$. Finally reasoning as above condition (24) permits us to conclude (25) holds with $\chi=s^{0}$.

The next corollary can be easily deduced.
Corollary 21. We have
(i) $s_{a}+s_{x}(\Delta) \subset s_{x}$ if and only if $x \in \widehat{C_{1}} \cap s_{a}^{*}$;
(ii) if $x \in \widehat{C_{1}}$ then $s_{x} \subset s_{a}+s_{x}(\Delta)$.

Example 22. Let $\alpha>0$. Then the set of all sequences $x \in U^{+}$such that

$$
u_{n}=O\left(n^{\alpha}\right) \text { and } v_{n}-v_{n-1}=O\left(x_{n}\right)
$$

implies

$$
u_{n}+v_{n}=O\left(x_{n}\right)(n \rightarrow \infty) \text { for all } u, v \in s
$$

is equal to $\widehat{C_{1}}$. Indeed for any $r>1$ we have $\underline{\lim }_{n \rightarrow \infty}\left(r^{n} / n^{\alpha}\right)>0$ and $s_{a}+s_{x}(\Delta) \subset$ s_{x}.

REFERENCES

[1] A. Farés, B. de Malafosse, Sequence spaces equations and application to matrix transformations, Intern. Forum 3 (2008), 911-927.
[2] I.J. Maddox, Infinite Matrices of Operators, Springer-Verlag, Berlin, Heidelberg and New York, 1980.
[3] B. de Malafosse, On some BK space, Intern. J. Math. Math. Sci. 28 (2003), 1783-1801.
[4] B. de Malafosse, Sum and product of certain BK spaces and matrix transformations between these spaces, Acta Math. Hung. 104 (2004), 241-263.
[5] B. de Malafosse, Sum of sequence spaces and matrix transformations, Acta Math. Hung. 113 (2006), 289-313.
[6] B. de Malafosse, The Banach algebra $B(X)$, where X is a BK space and applications, Mat. Vesnik 57 (2005), 41-60.
[7] B. de Malafosse, E. Malkowsky, Sets of difference sequences of order m, Acta Sci. Math. (Szeged) 70 (2004), 659-682.
[8] B. de Malafosse, V. Rakočević, A generalization of a Hardy theorem, Linear Algebra Appl. 421 (2007), 306-314
[9] G.H. Hardy, Divergent Series, Oxford University Press, Oxford, 1949.
[10] F. Móricz, B.E. Rhoades, An equivalent reformulation of summability by weighted mean methods, Linear Algebra Appl. 268 (1998), 171-181.
[11] F. Móricz, B.E. Rhoades, An equivalent reformulation of summability by weighted mean methods, revisited, Linear Algebra Appl. 349 (2002), 187-192.
[12] B. de Malafosse, Contribution à l'étude des systèmes infinis, Thèse de Doctorat de $3^{\text {è }}$ cycle, Université Paul Sabatier, Toulouse III, 1980.
[13] B. de Malafosse, Properties of some sets of sequences and application to the spaces of bounded difference sequences of order μ, Hokkaido Math. J. 31 (2002), 283-299.
[14] B. de Malafosse, V. Rakočević, Applications of measure of noncompactness in operators on the spaces $s_{a}, s_{a}^{0}, s_{a}^{(c)}$ and l_{a}^{p}, J. Math. Anal. Appl. 323 (2006), 131-145.
[15] A. Wilansky, Summability through Functional Analysis, North-Holland Mathematics Studies 85, 1984.
(received 13.09.2010; available online 20.02.2011)
LMAH Université du Havre, I.U.T Le Havre BP 4006 76610, Le Havre, France.
E-mail: bdemalaf@wanadoo.fr

[^0]: 2010 AMS Subject Classification: 40C05, 46A15.
 Keywords and phrases: Sequence space; operator of the first difference; BK space; infinite matrix; sequence spaces equations (SSE); (SSE) with operators.

