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RELATIVE ORDER OF ENTIRE FUNCTIONS
OF SEVERAL COMPLEX VARIABLES

Ratan Kumar Dutta

Abstract. In this paper we introduce the idea of relative order of entire functions of
several complex variables. After proving some basic results, we observe that the relative order
of a transcendental entire function with respect to an entire function is the same as that of its
partial derivatives. Further we study the equality of relative order of two functions when they are
asymptotically equivalent.

1. Introduction

Let f and g be two non-constant entire functions and

F (r) = max{|f(z)| : |z| = r}, G(r) = max{|g(z)| : |z| = r}
be the maximum modulus functions of f and g respectively. Then F (r) is a strictly
increasing and continuous function of r and its inverse

F−1 : (|f(0)|,∞) → (0,∞) exists and lim
R→∞

F−1(R) = ∞.

Bernal [3] introduced the definition of relative order of f with respect to g as

ρg(f) = inf{µ > 0 : F (r) < G(rµ) for all r > r0(µ) > 0}.
During the past decades, several authors made close investigations on the prop-

erties of entire functions related to relative order. In the case of relative order, it
therefore seems reasonable to define suitably the relative order of entire functions of
several complex variables and to investigate its basic properties, which we attempts
in this paper. In this regards we first need the following definition of order of entire
functions.

Let f(z1, z2) be a non-constant entire function of two complex variables z1 and
z2, holomorphic in the closed polydisc

{ (z1, z2) : |zj | ≤ rj , j = 1, 2 for all r1 ≥ 0, r2 ≥ 0 }.
2010 AMS Subject Classification: 32A15
Keywords and phrases: Entire functions; relative order; several complex variables; polydisc;

property (R)

222



Relative order of entire functions 223

Let
F (r1, r2) = max{ |f(z1, z2)| : |zj | ≤ rj , j = 1, 2 }.

Then by the Hartogs theorem and maximum principle [4, p. 2, p. 51] F (r1, r2) is
an increasing function of r1, r2. The order ρ = ρ(f) of f(z1, z2) is defined [4, p.
338] as the infimum of all positive numbers µ for which

F (r1, r2) < exp[(r1r2)µ] (1.1)

holds for all sufficiently large values of r1 and r2. In other words

ρ(f) = inf{µ > 0 : F (r1, r2) < exp[(r1r2)µ] for all r1 ≥ R(µ), r2 ≥ R(µ) }.
Equivalent formula for ρ(f) is [4, p. 339] (see also [1]) is

ρ(f) = lim sup
r1, r2→∞

log log F (r1, r2)
log(r1r2)

.

A more general approach to the problem of relative order of entire functions
has been demonstrated by Kiselman [7].

Let h and k be two functions defined on < such that h, k : < → [−∞,∞]. The
order of h relative to k is

order(h : k) = inf[a > 0 : ∃ ca ∈ <, ∀x ∈ <, f(x) ≤ a−1g(ax) + ca].

If H is an entire function then the growth function of H is defined by

h(t) = sup[log |H(z)|, |z| ≤ et], t ∈ <.

If H and K are two entire functions then the order of H relative to K is now
defined by

order(H : K) = order(h : k).

As observed by Kiselman [7], the expression a−1g(ax) + ca may be replaced by
g(ax) + ca if g(t) = et because then the infimum in the cases coincide. Taking
ca = 0 in the above definition, one may easily verify that

order(H : K) = ρK(H)

i.e., the order (H : K) coincides with the Bernal’s definition of relative order.

Further if K = exp z then order (H : K) coincides with the classical order
of H.

In papers [5, 6, 7] detailed investigations on entire functions and relative order
(H : K) was made, but our analysis of relative order, generated from Bernal’s
relative order, made in the present paper have little relevance to the studies made
in the above papers by Kiselman and others.

In 2007 Banerjee and Dutta [2] introduced the definition of relative order of
an entire function f(z1, z2) with respect to an entire function g(z1, z2) as follows:
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Definition 1.1. Let g(z1, z2) be an entire function holomorphic in the closed
polydisc {(z1, z2) : |zj | ≤ rj ; j = 1, 2} and let

G(r1, r2) = max{|g(z1, z2)| : |zj | ≤ rj , j = 1, 2}.
The relative order of f with respect to g, denoted by ρg(f) and is defined by

ρg(f) = inf{µ > 0 : F (r1, r2) < G (rµ
1 , rµ

2 ) ; for r1 ≥ R(µ), r2 ≥ R(µ) }.

The definition coincides with that of classical (1.1) if g(z1, z2) = ez1z2 .
In this paper we introduce the idea of relative order of entire functions of

several complex variables.

Definition 1.2. Let f(z1, z2, . . . , zn) and g(z1, z2, . . . , zn) be two entire
functions of n complex variables z1, z2, . . . , zn with maximum modulus functions
F (r1, r2, . . . , rn) and G(r1, r2, . . . , rn) respectively then relative order of f with
respect to g, denoted by ρg(f) and is defined by

ρg(f) = inf{µ > 0 : F (r1, r2, . . . , rn) < G(rµ
1 , rµ

2 , . . . , rµ
n);

for ri ≥ R(µ); i = 1, 2, , . . . , n }.

Note 1.3. If we consider n = 2 then Definition 1.2 coincides with Definition
1.1.

The following definition will be needed.

Definition 1.4. The function g(z1, z2, . . . , zn) is said to have the property
(R) if for any σ > 1 and for all large r1, r2, . . . , rn,

[G(r1, r2, . . . , rn)]2 < G(rσ
1 , rσ

2 , . . . , rσ
n).

The function g(z1, z2, . . . , zn) = ez1z2,...,zn has the property (R) but
g(z1, z2, . . . , zn) = z1z2, . . . , zn does not have the property (R).

Throughout the paper, we shall assume f, g, h etc. are non-constant en-
tire functions of several complex variables and F (r1, r2, . . . , rn), G(r1, r2, . . . , rn),
H(r1, r2, . . . , rn) etc. denote respectively their maximum modulus in the polydisc
{(z1, z2, . . . , zn) : |zj | ≤ rj , j = 1, 2, . . . , n}. Also we shall consider non-constant
polynomials.

2. Lemmas

The following lemmas will be required.

Lemma 2.1. Let g have the property (R). Then for any positive integer p and
for all σ > 1,

[G(r1, r2, . . . , rn)]p < G (rσ
1 , rσ

2 , . . . , rσ
n)

holds for all large r1, r2, . . . , rn.
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Proof. Let p be any positive integer. Then there exists an integer m such that
2m > p. Also we have σ2−m

> 1. Now

G(rσ
1 , rσ

2 , . . . , rσ
n) = G((rσ1/2

1 )σ1/2
, (rσ1/2

2 )σ1/2
, . . . , (rσ1/2

n )σ1/2
)

≥ [G(rσ1/2

1 , rσ1/2

2 , . . . , rσ1/2

n )]2

= [G((rσ1/4

1 )σ1/4, (rσ1/4

2 )σ1/4
, . . . , (rσ1/4

n )σ1/4
)]2

≥ [G(rσ1/4

1 , rσ1/4

2 , . . . , rσ1/4

n )]4

≥ · · ·
≥ [G(rσ2−m

1 , rσ2−m

2 , . . . , rσ2−m

n )]2
m

≥ [G(r1, r2, . . . , rn)]2
m

because G(r1, r2, . . . , rn) is increasing,

≥ [G(r1, r2, . . . , rn)]p.

This completes the proof.

Lemma 2.2. Let f(z1, z2, . . . , zn) be nonconstant entire and α > 1, 0 < β < α.
Then

F (αr1, αr2, . . . , αrn) > βF (r1, r2, . . . , rn) for all large r1, r2, . . . , rn.

Proof. Let the max{|f(z1, z2, . . . , zn)| : |zj | ≤ rj ; j = 1, 2, . . . , n} be attained
at (s1, s2, . . . , sn) where |s1| = r1, |s2| = r2, . . . , |sn| = rn. If the maximum is
attained at more then one point, we choose any one of them. Consider the function

h(z1) = f(z1, s2, . . . , sn).

Then h(z1) is an entire function of one variable z1 and

H(r1) = max{|h(z1)| : |z1| ≤ r1}
= max{|f(z1, s2, . . . , sn)| : |z1| ≤ r1}
= |f(s1, s2, . . . , sn)|
= F (r1, r2, . . . , rn). (2.1)

On the other hand if g(z1) = h(z1)−h(0) then g(0) = 0 and so by Schwarz Lemma

|g(z1)| ≤ G(R)
R

|z1| for |z1| ≤ R.

If R = αr1, then

G(r1) ≤ r1

αr1
G(αr1) =

G(αr1)
α

and so

H(r1)− |h(0)| ≤ G(r1) ≤ G(αr1)
α

≤ H(αr1) + |h(0)|
α

.
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Let q = α−β
1+α . There exists r0 > 0 such that |h(0)| < qH(r1). So for r1 > r0, we

have
H(αr1) > [α− (α + 1)q)]H(r1) = βH(r1). (2.2)

Combining (2.1) and (2.2) we see that

F (αr1, αr2, . . . , αrn) > F (αr1, r2, . . . , rn) = H(αr1) > βH(r1) = βF (r1, r2, . . . , rn).

This proves the lemma.

Lemma 2.3. Let f(z1, z2, . . . , zn) be nonconstant entire function, s > 1, 0 <
µ < λ and n is a positive integer. Then

(a) ∃K = K(s, f) > 0 such that [F (r1, r2, . . . , rn)]s ≤ KF (rs
1, r

s
2, . . . , r

s
n) for

r1, r2, . . . , rn > 0;

(b) lim
r1,r2,...,rn→∞

F (rs
1, rs

2, . . . , r
s
n)

F (r1, r2, . . . , rn)
= ∞ = lim

r1,r2,...,rn→∞
F (rλ

1 , rλ
2 , . . . , rλ

n)
F (rµ

1 , rµ
2 , . . . , rµ

n)
.

The proof is omitted.

3. Preliminary theorem

Theorem 3.1. Let f, g, h be entire functions of several complex variables.
Then

(a) if f is a polynomial and g is transcendental entire, then ρg(f) = 0;
(b) if F (r1, r2, . . . , rn) ≤ H(r1, r2, . . . , rn) for all large r1, r2, . . . , rn, then

ρg(f) ≤ ρg(h).

Proof. (a) If f is a polynomial and g is transcendental entire, then there exists
a positive integer p such that

F (r1, r2, . . . , rn) ≤ Mrp
1rp

2 , . . . , rp
n

and
G(r1, r2, . . . , rn) > Krm

1 rm
2 , . . . , rm

n

for all large r1, r2, . . . , rn, where M and K are constant and m > 0 may be any
real number. We have then for all large r1, r2, . . . , rn and µ > 0,

G(rµ
1 , rµ

2 , . . . , rµ
n) > K(rµ

1 rµ
2 , . . . , rµ

n)m

> Mrp
1rp

2 , . . . , rp
n, by choosing m suitably

≥ F (r1, r2, . . . , rn).

Thus for all large r1, r2, . . . , rn and µ > 0,

F (r1, r2, . . . , rn) < G(rµ
1 , rµ

2 , . . . , rµ
n).

Since µ > 0 is arbitrary, we must have

ρg(f) ≤ 0, i.e., ρg(f) = 0.
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(b) Let ε > 0 be arbitrary then from the definition of relative order, we have

H(r1, r2, . . . , rn) < G(rρg(h)+ε
1 , r

ρg(h)+ε
2 , . . . , rρg(h)+ε

n ).

So for all large r1, r2, . . . , rn,

F (r1, r2, . . . , rn) ≤ H(r1, r2, . . . , rn) < G(rρg(h)+ε
1 , r

ρg(h)+ε
2 , . . . , rρg(h)+ε

n ).

So, ρg(f) ≤ ρg(h) + ε. Since ε > 0 is arbitrary,

ρg(f) ≤ ρg(h).

This completes the proof.

4. Sum and product theorems

Theorem 4.1. Let f1 and f2 be entire functions of several complex variables
having relative orders ρg(f1) and ρg(f2) respectively. Then
(i) ρg(f1 ± f2) ≤ max{ρg(f1), ρg(f2)}

and
(ii) ρg(f1.f2) ≤ max{ρg(f1), ρg(f2)},
provided g has the property (R). The equality holds in (i) if ρg(f1) 6= ρg(f2).

Proof. First suppose that relative order of f1 and f2 are finite, if one of them of
both are infinite then the theorem is trivial. Let f = f1+f2, ρ = ρg(f), ρi = ρg(fi),
i = 1, 2 and ρ1 ≤ ρ2. Therefore for any ε > 0 and for all large r1, r2, . . . , rn

F1(r1, r2, . . . , rn) < G(rρ1+ε
1 , rρ1+ε

2 , . . . , rρ1+ε
n ) ≤ G(rρ2+ε

1 , rρ2+ε
2 , . . . , rρ2+ε

n )

and
F2(r1, r2, . . . , rn) < G(rρ2+ε

1 , rρ2+ε
2 , . . . , rρ2+ε

n )

hold. So for all large r1, r2, . . . , rn,

F (r1, r2, . . . , rn) ≤ F1(r1, r2, . . . , rn) + F2(r1, r2, . . . , rn)

< 2G
(
rρ2+ε
1 , rρ2+ε

2 , . . . , rρ2+ε
n

)

< G
(
3rρ2+ε

1 , 3rρ2+ε
2 , . . . , 3rρ2+ε

n

)
, by Lemma 2.2

< G
(
rρ2+3ε
1 , rρ2+3ε

2 , . . . , rρ2+3ε
n

)
.

∴ ρ ≤ ρ2 + 3ε.

Since ε > 0 is arbitrary,
ρ ≤ ρ2. (4.1)

Next let ρ1 < ρ2 and suppose ρ1 < µ < λ < ρ2. Then for all large r1, r2, . . . , rn

F1(r1, r2, . . . , rn) < G(rµ
1 , rµ

2 , . . . , rµ
n) (4.2)
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and there exists a nondecreasing sequence {rip}, rip →∞; i = 1, 2, . . . , n as p →∞
such that

F2(r1p, r2p, . . . , rnp) > G(rλ
1p, r

λ
2p, . . . , r

λ
np) for p = 1, 2, . . . (4.3)

Using Lemma 2.3(b), we see that

G(rλ
1 , rλ

2 , . . . , rλ
n) > 2G(rµ

1 , rµ
2 , . . . , rµ

n) for all large r1, r2, . . . , rn. (4.4)

So from (4.2), (4.3) and (4.4),

F2(r1p, r2p, . . . , rnp) > 2F1(r1p, r2p, . . . , rnp) for p = 1, 2, . . .

Therefore

F (r1p, r2p, . . . , rnp) ≥ F2(r1p, r2p, . . . , rnp)− F1(r1p, r2p, . . . , rnp)

>
1
2
F2(r1p, r2p, . . . , rnp)

>
1
2
G

(
rλ
1p, rλ

2p, . . . , r
λ
np

)
, from (4.3)

> G
(
(1/3)rλ

1p, (1/3)rλ
2p, . . . , (1/3)rλ

np

)

for all large p and by Lemma 2.2

> G
(
rλ−ε
1p , rλ−ε

2p , . . . , rλ−ε
np

)
,

where ε > 0 is arbitrary. This gives ρ ≥ λ − ε and since λ ∈ (ρ1, ρ2) and ε > 0 is
arbitrary, we have

ρ ≥ ρ2. (4.5)

Combining (4.1) and (4.5),

ρg(f1 + f2) = ρg(f2) = max{ρg(f1), ρg(f2)}.
For the second part, we let f = f1 · f2, ρ = ρg(f) and ρg(f1) ≤ ρg(f2). Then

F (r1, r2, . . . , rn) ≤ F1(r1, r2, . . . , rn) · F2(r1, r2, . . . , rn)

< G
(
rρ1+ε
1 , rρ1+ε

2 , . . . , rρ1+ε
n

) ·G (
rρ2+ε
1 , rρ2+ε

2 , . . . , rρ2+ε
n

)

for arbitrary ε > 0

≤ [
G

(
rρ2+ε
1 , rρ2+ε

2 , . . . , rρ2+ε
n

)]2

< G
(
r

σ(ρ2+ε)
1 , r

σ(ρ2+ε)
2 , . . . , rσ(ρ2+ε)

n

)
, for any σ > 1

since g has the property (R). So

ρ ≤ σ(ρ2 + ε).

Now letting ε → 0 and σ → 1+, we have

ρ ≤ ρ2.

∴ ρg(f1 · f2) ≤ ρg(f2) = max{ρg(f1), ρg(f2)}.
This completes the proof.
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5. Relative order of the partial derivatives

Regarding the relative order of f and its partial derivatives ∂f
∂z1

, ∂f
∂z2

, . . . , ∂f
∂zn

with respect to g and ∂g
∂z1

, ∂g
∂z2

, . . . , ∂g
∂zn

, we prove the following theorem.

Theorem 5.1. If f and g are transcendental entire functions of several com-
plex variables and g has the property (R) then

ρg

(
∂f

∂z1

)
= ρg(f) = ρ ∂g

∂z1
(f).

Proof. We write

F (r1, r2, . . . , rn) = max
|zj |=rj , j=1,2,...,n

∣∣∣∣
∂f(z1, z2, . . . , zn)

∂z1

∣∣∣∣

and

G(r1, r2, . . . , rn) = max
|zj |=rj , j=1,2,...,n

∣∣∣∣
∂g(z1, z2, . . . , zn)

∂z1

∣∣∣∣ .

Let (z′1, z
′
2, . . . , z

′
n) be such that

|f(z′1, z
′
2, . . . , z

′
n)| = max

|zj |=rj , j=1,2,...,n
|f(z1, z2, . . . , zn)|.

Without loss of generality we may assume that f(0, z′2, . . . , z
′
n) = 0. Otherwise we

set
h(z1, z2, . . . , zn) = z1f(z1, z2, . . . , zn).

Then h(0, z′2, . . . , z
′
n) = 0 and ρg(f) = ρg(h). We may write, for fixed zi on |z| =

ri; i = 2, 3, . . . , n

f(z1, z2, . . . , zn) =
∫ z1

0

∂f(t, z2, . . . , zn)
∂t

dt,

where the line of integration is the segment from z = 0 to z = reiθ0 , r > 0. Now

F (r1, r2, . . . , rn) = |f(z′1, z
′
2, . . . , z

′
n)|

=
∣∣∣∣
∫ z′1

0

∂f(t, z′2, . . . , z
′
n)

∂t
dt

∣∣∣∣

≤ r1 max
|z1|=r1

∣∣∣∣
∂f(z1, z

′
2, . . . , z

′
n)

∂z1

∣∣∣∣
= r1 F (r1, r2, . . . , rn). (5.1)

Let (z′′1 , z′′2 , . . . , z′′n) be such that
∣∣∣∣
∂f(z′′1 , z′′2 , . . . , z′′n)

∂z1

∣∣∣∣ = max
|zj |=rj , j=1,2,...,n

∣∣∣∣
∂f(z1, z2, . . . , zn)

∂z1

∣∣∣∣ .
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Let C denote the circle |t− z′′1 | = r1. So,

F (r1, r2, . . . , rn) = max
|zj |=rj , j=1,2,...,n

∣∣∣∣
∂f(z1, z2, . . . , zn)

∂z1

∣∣∣∣

=
∣∣∣∣
∂f(z′′1 , z′′2 , . . . , z′′n)

∂z1

∣∣∣∣

=
∣∣∣∣

1
2πi

∮

C

f(t, z′′2 , . . . , z′′n)
(t− z′′1 )2

dt

∣∣∣∣

≤ 1
2π

F (2r1, r2, . . . , rn)
r2
1

2πr1

=
F (2r1, r2, . . . , rn)

r1
. (5.2)

From (5.1) and (5.2) we obtain

F (r1, r2, . . . , rn)
r1

≤ F (r1, r2, . . . , rn) ≤ F (2r1, r2, . . . , rn)
r1

≤ F (2r1, r2, . . . , rn)

(5.3)
for r1, r2, . . . , rn ≥ 1.

Now by the definition of ρg( ∂f
∂z1

), for given ε > 0

F (r1, r2, . . . , rn) < G

(
r

ρg

(
∂f

∂z1

)
+ε

1 , r
ρg

(
∂f

∂z1

)
+ε

2 , . . . , r
ρg

(
∂f

∂z1

)
+ε

n

)

for r1, r2, . . . , rn ≥ r0(ε). Hence from (5.3)

F (r1, r2, . . . , rn) ≤ r1 G

(
r

ρg

(
∂f

∂z1

)
+ε

1 , r
ρg

(
∂f

∂z1

)
+ε

2 , . . . , r
ρg

(
∂f

∂z1

)
+ε

n

)

≤
[
G

(
r

ρg

(
∂f

∂z1

)
+ε

1 , r
ρg

(
∂f

∂z1

)
+ε

2 , . . . , r
ρg

(
∂f

∂z1

)
+ε

n

)]2

≤ G

(
r

σ
[
ρg

(
∂f

∂z1

)
+ε

]
1 , r

σ
[
ρg

(
∂f

∂z1

)
+ε

]
2 , . . . , . r

σ
[
ρg

(
∂f

∂z1

)
+ε

]
n

)

for every σ > 1, by Lemma 2.1.
Since g has the property (R). So,

ρg(f) ≤
[
ρg

(
∂f

∂z1

)
+ ε

]
σ.

Letting σ → 1+, since ε > 0 is arbitrary, we have

ρg(f) ≤ ρg

(
∂f

∂z1

)
. (5.4)

Similarly from F (r1, r2, . . . , rn) ≤ F (2r1, r2, . . . , rn) of (5.3) gives

ρg

(
∂f

∂z1

)
≤ ρg(f). (5.5)
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So from (5.4) and (5.5)

ρg

(
∂f

∂z1

)
= ρg(f),

which proves first part of the theorem.
For the second part we see that under the hypothesis, we obtain

G(r1, r2, . . . , rn)
r1

≤ G(r1, r2, . . . , rn) ≤ G(2r1, r2, . . . , rn). (5.6)

Now by the definition of ρ ∂g
∂z1

(f), for given ε > 0

F (r1, r2, . . . , rn) < G

(
r

ρ ∂g
∂z1

(f)+ε

1 , r
ρ ∂g

∂z1

(f)+ε

2 , . . . , r
ρ ∂g

∂z1

(f)+ε

n

)

≤ G

(
2r

ρ ∂g
∂z1

(f)+ε

1 , r
ρ ∂g

∂z1

(f)+ε

2 , . . . , r
ρ ∂g

∂z1

(f)+ε

n

)
, using (5.6)

< G

(
r

ρ ∂g
∂z1

(f)+2ε

1 , r
ρ ∂g

∂z1

(f)+2ε

2 , . . . , r
ρ ∂g

∂z1

(f)+2ε

n

)
.

So
ρg(f) ≤ ρ ∂g

∂z1
(f) + 2ε.

Since ε > 0 be arbitrary, this gives

ρg(f) ≤ ρ ∂g
∂z1

(f).

Again from (5.6)

F (r1, r2, . . . , rn) < G
(
r

ρg(f)+ε
1 , r

ρg(f)+ε
2 , . . . , rρg(f)+ε

n

)

< r1 ·G
(
r

ρg(f)+ε
1 , r

ρg(f)+ε
2 , . . . , rρg(f)+ε

n

)

<
[
G

(
r

ρg(f)+ε
1 , r

ρg(f)+ε
2 , . . . , rρg(f)+ε

n

)]2

≤ G
(
r

σ(ρg(f)+ε)
1 , r

σ(ρg(f)+ε)
2 , . . . , rσ(ρg(f)+ε)

n

)
, for any σ > 1.

So
ρ ∂g

∂z1
(f) ≤ σ[ρg(f) + ε].

Now letting σ → 1+, since ε > 0 is arbitrary

ρ ∂g
∂z1

(f) ≤ ρg(f)

and so
ρ ∂f

∂z1
(f) = ρg(f).

Consequently,

ρg

(
∂f

∂z1

)
= ρg(f) = ρ ∂g

∂z1
(f).

This proves the theorem.
Note 5.2. Similar result holds for other partial derivatives.
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6. Asymptotic behavior

Definition 6.1. Two entire functions g1 and g2 are said to be asymptotically
equivalent if there exists l, 0 < l < ∞ such that

G1(r1, r2, . . . , rn)
G2(r1, r2, . . . , rn)

→ l as r1, r2, . . . , rn →∞,

and in this case we write g1 ∼ g2.

If g1 ∼ g2 then clearly g2 ∼ g1.

Theorem 6.2. If g1 ∼ g2 and if f is an entire function of several complex
variables then ρg1(f) = ρg2(f).

Proof. Let ε > 0, then from Lemma 2.2 and for all large r1, r2, . . . , rn

G1(r1, r2, . . . , rn) < (l + ε)G2(r1, r2, . . . , rn) < G2(αr1, αr2, . . . , αrn), (6.1)

where α > 1 is such that l + ε < α. Now,

F (r1, r2, . . . , rn) < G1

(
r

ρg1 (f)+ε
1 , r

ρg1 (f)+ε
2 , . . . , r

ρg1 (f)+ε
n

)

< G2

(
r

ρg1 (f)+2ε
1 , r

ρg1 (f)+2ε
2 , . . . , r

ρg1 (f)+2ε
n

)
using (6.1).

Since ε > 0 is arbitrary, we have for all large r1, r2, . . . , rn

ρg2(f) ≤ ρg1(f).

The reverse inequality is clear because g2 ∼ g1 and so ρg1(f) = ρg2(f).
Note 6.3. Converse of the Theorem 6.2 is not always true and the condition

g1 ∼ g2 is not necessary, which are shown by the following examples.
Example 6.4. Consider the functions

f(z1, z2, . . . , zn) = z1z2, . . . , zn,

g1(z1, z2, . . . , zn) = z1z2, . . . , zn and

g2(z1, z2, . . . , zn) = (z1z2, . . . , zn)2.

Then we have
g1 � g2 and ρg1(f) = 1, ρg2(f) = 1/2.

Example 6.5. Consider the functions

f(z1, z2, . . . , zn) = ez1z2,...,zn ,

g1(z1, z2, . . . , zn) = ez1z2,...,zn and

g2(z1, z2, . . . , zn) = e2z1z2,...,zn .

Then g1 � g2 but ρg1(f) = ρg2(f).
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Theorem 6.6. Let f1, f2 , g be entire functions of several complex variables
and f1 ∼ f2. Then ρg(f1) = ρg(f2).

The proof is similar as the one of Theorem 6.2.
Note 6.7. Converse of the Theorem 6.6 is not always true and the condition

f1 ∼ f2 is not necessary, which are shown by the following examples.
Example 6.8. Consider the functions

f1(z1, z2, . . . , zn) = z1z2, . . . , zn,

f2(z1, z2, . . . , zn) = (z1z2, . . . , zn)2 and

g(z1, z2, . . . , zn) = z1z2, . . . , zn.

Then f1 � f2 and ρg(f1) 6= ρg(f2).
Example 6.9. Consider the functions

f1(z1, z2, . . . , zn) = ez1z2,...,zn ,

f2(z1, z2, . . . , zn) = e2z1z2,...,zn and

g(z1, z2, . . . , zn) = ez1z2,...,zn .

Then f1 � f2 but ρg(f1) = ρg(f2).
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