RELATIVE ORDER OF ENTIRE FUNCTIONS OF SEVERAL COMPLEX VARIABLES

Ratan Kumar Dutta

Abstract

In this paper we introduce the idea of relative order of entire functions of several complex variables. After proving some basic results, we observe that the relative order of a transcendental entire function with respect to an entire function is the same as that of its partial derivatives. Further we study the equality of relative order of two functions when they are asymptotically equivalent.

1. Introduction

Let f and g be two non-constant entire functions and

$$
F(r)=\max \{|f(z)|:|z|=r\}, \quad G(r)=\max \{|g(z)|:|z|=r\}
$$

be the maximum modulus functions of f and g respectively. Then $F(r)$ is a strictly increasing and continuous function of r and its inverse

$$
F^{-1}:(|f(0)|, \infty) \rightarrow(0, \infty) \text { exists and } \lim _{R \rightarrow \infty} F^{-1}(R)=\infty
$$

Bernal [3] introduced the definition of relative order of f with respect to g as

$$
\rho_{g}(f)=\inf \left\{\mu>0: F(r)<G\left(r^{\mu}\right) \text { for all } r>r_{0}(\mu)>0\right\}
$$

During the past decades, several authors made close investigations on the properties of entire functions related to relative order. In the case of relative order, it therefore seems reasonable to define suitably the relative order of entire functions of several complex variables and to investigate its basic properties, which we attempts in this paper. In this regards we first need the following definition of order of entire functions.

Let $f\left(z_{1}, z_{2}\right)$ be a non-constant entire function of two complex variables z_{1} and z_{2}, holomorphic in the closed polydisc

$$
\left\{\left(z_{1}, z_{2}\right):\left|z_{j}\right| \leq r_{j}, j=1,2 \text { for all } r_{1} \geq 0, r_{2} \geq 0\right\}
$$

[^0]Let

$$
F\left(r_{1}, r_{2}\right)=\max \left\{\left|f\left(z_{1}, z_{2}\right)\right|:\left|z_{j}\right| \leq r_{j}, j=1,2\right\}
$$

Then by the Hartogs theorem and maximum principle [4, p. 2, p. 51] $F\left(r_{1}, r_{2}\right)$ is an increasing function of r_{1}, r_{2}. The order $\rho=\rho(f)$ of $f\left(z_{1}, z_{2}\right)$ is defined [4, p. 338] as the infimum of all positive numbers μ for which

$$
\begin{equation*}
F\left(r_{1}, r_{2}\right)<\exp \left[\left(r_{1} r_{2}\right)^{\mu}\right] \tag{1.1}
\end{equation*}
$$

holds for all sufficiently large values of r_{1} and r_{2}. In other words

$$
\rho(f)=\inf \left\{\mu>0: F\left(r_{1}, r_{2}\right)<\exp \left[\left(r_{1} r_{2}\right)^{\mu}\right] \text { for all } r_{1} \geq R(\mu), r_{2} \geq R(\mu)\right\}
$$

Equivalent formula for $\rho(f)$ is [4, p. 339] (see also [1]) is

$$
\rho(f)=\limsup _{r_{1}, r_{2} \rightarrow \infty} \frac{\log \log F\left(r_{1}, r_{2}\right)}{\log \left(r_{1} r_{2}\right)}
$$

A more general approach to the problem of relative order of entire functions has been demonstrated by Kiselman [7].

Let h and k be two functions defined on \Re such that $h, k: \Re \rightarrow[-\infty, \infty]$. The order of h relative to k is

$$
\operatorname{order}(h: k)=\inf \left[a>0: \exists c_{a} \in \Re, \forall x \in \Re, f(x) \leq a^{-1} g(a x)+c_{a}\right]
$$

If H is an entire function then the growth function of H is defined by

$$
h(t)=\sup \left[\log |H(z)|,|z| \leq e^{t}\right], t \in \Re
$$

If H and K are two entire functions the the order of H relative to K is now defined by

$$
\operatorname{order}(H: K)=\operatorname{order}(h: k)
$$

As observed by Kiselman [7], the expression $a^{-1} g(a x)+c_{a}$ may be replaced by $g(a x)+c_{a}$ if $g(t)=e^{t}$ because then the infimum in the cases coincide. Taking $c_{a}=0$ in the above definition, one may easily verify that

$$
\operatorname{order}(H: K)=\rho_{K}(H)
$$

i.e., the order $(H: K)$ coincides with the Bernal's definition of relative order.

Further if $K=\exp z$ then order $(H: K)$ coincides with the classical order of H.

In papers $[5,6,7]$ detailed investigations on entire functions and relative order $(H: K)$ was made, but our analysis of relative order, generated from Bernal's relative order, made in the present paper have little relevance to the studies made in the above papers by Kiselman and others.

In 2007 Banerjee and Dutta [2] introduced the definition of relative order of an entire function $f\left(z_{1}, z_{2}\right)$ with respect to an entire function $g\left(z_{1}, z_{2}\right)$ as follows:

Definition 1.1. Let $g\left(z_{1}, z_{2}\right)$ be an entire function holomorphic in the closed polydisc $\left\{\left(z_{1}, z_{2}\right):\left|z_{j}\right| \leq r_{j} ; j=1,2\right\}$ and let

$$
G\left(r_{1}, r_{2}\right)=\max \left\{\left|g\left(z_{1}, z_{2}\right)\right|:\left|z_{j}\right| \leq r_{j}, j=1,2\right\}
$$

The relative order of f with respect to g, denoted by $\rho_{g}(f)$ and is defined by

$$
\rho_{g}(f)=\inf \left\{\mu>0: F\left(r_{1}, r_{2}\right)<G\left(r_{1}^{\mu}, r_{2}^{\mu}\right) ; \text { for } r_{1} \geq R(\mu), r_{2} \geq R(\mu)\right\}
$$

The definition coincides with that of classical (1.1) if $g\left(z_{1}, z_{2}\right)=e^{z_{1} z_{2}}$.
In this paper we introduce the idea of relative order of entire functions of several complex variables.

DEFINITION 1.2. Let $f\left(z_{1}, z_{2}, \ldots, z_{n}\right)$ and $g\left(z_{1}, z_{2}, \ldots, z_{n}\right)$ be two entire functions of n complex variables $z_{1}, z_{2}, \ldots, z_{n}$ with maximum modulus functions $F\left(r_{1}, r_{2}, \ldots, r_{n}\right)$ and $G\left(r_{1}, r_{2}, \ldots, r_{n}\right)$ respectively then relative order of f with respect to g, denoted by $\rho_{g}(f)$ and is defined by

$$
\begin{aligned}
& \rho_{g}(f)=\inf \left\{\mu>0: F\left(r_{1}, r_{2}, \ldots, r_{n}\right)<G\left(r_{1}^{\mu}, r_{2}^{\mu}, \ldots, r_{n}^{\mu}\right)\right. \\
& \left.\quad \text { for } r_{i} \geq R(\mu) ; i=1,2,, \ldots, n\right\}
\end{aligned}
$$

Note 1.3. If we consider $n=2$ then Definition 1.2 coincides with Definition 1.1.

The following definition will be needed.
Definition 1.4. The function $g\left(z_{1}, z_{2}, \ldots, z_{n}\right)$ is said to have the property (R) if for any $\sigma>1$ and for all large $r_{1}, r_{2}, \ldots, r_{n}$,

$$
\left[G\left(r_{1}, r_{2}, \ldots, r_{n}\right)\right]^{2}<G\left(r_{1}^{\sigma}, r_{2}^{\sigma}, \ldots, r_{n}^{\sigma}\right)
$$

The function $g\left(z_{1}, z_{2}, \ldots, z_{n}\right)=e^{z_{1} z_{2}, \ldots, z_{n}}$ has the property (R) but $g\left(z_{1}, z_{2}, \ldots, z_{n}\right)=z_{1} z_{2}, \ldots, z_{n}$ does not have the property (R).

Throughout the paper, we shall assume f, g, h etc. are non-constant entire functions of several complex variables and $F\left(r_{1}, r_{2}, \ldots, r_{n}\right), G\left(r_{1}, r_{2}, \ldots, r_{n}\right)$, $H\left(r_{1}, r_{2}, \ldots, r_{n}\right)$ etc. denote respectively their maximum modulus in the polydisc $\left\{\left(z_{1}, z_{2}, \ldots, z_{n}\right):\left|z_{j}\right| \leq r_{j}, j=1,2, \ldots, n\right\}$. Also we shall consider non-constant polynomials.

2. Lemmas

The following lemmas will be required.
Lemma 2.1. Let g have the property (R). Then for any positive integer p and for all $\sigma>1$,

$$
\left[G\left(r_{1}, r_{2}, \ldots, r_{n}\right)\right]^{p}<G\left(r_{1}^{\sigma}, r_{2}^{\sigma}, \ldots, r_{n}^{\sigma}\right)
$$

holds for all large $r_{1}, r_{2}, \ldots, r_{n}$.

Proof. Let p be any positive integer. Then there exists an integer m such that $2^{m}>p$. Also we have $\sigma^{2^{-m}}>1$. Now

$$
\begin{aligned}
G\left(r_{1}^{\sigma}, r_{2}^{\sigma}, \ldots, r_{n}^{\sigma}\right) & =G\left(\left(r_{1}^{\sigma^{1 / 2}}\right)^{\sigma^{1 / 2}},\left(r_{2}^{\sigma^{1 / 2}}\right)^{\sigma^{1 / 2}}, \ldots,\left(r_{n}^{\sigma^{1 / 2}}\right)^{\sigma^{1 / 2}}\right) \\
& \geq\left[G\left(r_{1}^{\sigma^{1 / 2}}, r_{2}^{\sigma^{1 / 2}}, \ldots, r_{n}^{\sigma^{1 / 2}}\right)\right]^{2} \\
& =\left[G\left(\left(r_{1}^{\sigma^{1 / 4}}\right)^{\sigma^{1} / 4},\left(r_{2}^{\sigma^{1 / 4}}\right)^{\sigma^{1 / 4}}, \ldots,\left(r_{n}^{\sigma^{1 / 4}}\right)^{\sigma^{1 / 4}}\right)\right]^{2} \\
& \geq\left[G\left(r_{1}^{\sigma^{1 / 4}}, r_{2}^{\sigma^{1 / 4}}, \ldots, r_{n}^{\sigma^{1 / 4}}\right)\right]^{4} \\
& \geq \cdots \\
& \geq\left[G\left(r_{1}^{\sigma^{2-m}}, r_{2}^{\sigma^{2-m}}, \ldots, r_{n}^{\sigma^{2-m}}\right)\right]^{2^{m}} \\
& \geq\left[G\left(r_{1}, r_{2}, \ldots, r_{n}\right)\right]^{2^{m}} \text { because } G\left(r_{1}, r_{2}, \ldots, r_{n}\right) \text { is increasing } \\
& \geq\left[G\left(r_{1}, r_{2}, \ldots, r_{n}\right)\right]^{p}
\end{aligned}
$$

This completes the proof.
LEMMA 2.2. Let $f\left(z_{1}, z_{2}, \ldots, z_{n}\right)$ be nonconstant entire and $\alpha>1,0<\beta<\alpha$. Then

$$
F\left(\alpha r_{1}, \alpha r_{2}, \ldots, \alpha r_{n}\right)>\beta F\left(r_{1}, r_{2}, \ldots, r_{n}\right) \quad \text { for all large } r_{1}, r_{2}, \ldots, r_{n}
$$

Proof. Let the $\max \left\{\left|f\left(z_{1}, z_{2}, \ldots, z_{n}\right)\right|:\left|z_{j}\right| \leq r_{j} ; j=1,2, \ldots, n\right\}$ be attained at $\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ where $\left|s_{1}\right|=r_{1},\left|s_{2}\right|=r_{2}, \ldots,\left|s_{n}\right|=r_{n}$. If the maximum is attained at more then one point, we choose any one of them. Consider the function

$$
h\left(z_{1}\right)=f\left(z_{1}, s_{2}, \ldots, s_{n}\right)
$$

Then $h\left(z_{1}\right)$ is an entire function of one variable z_{1} and

$$
\begin{align*}
H\left(r_{1}\right) & =\max \left\{\left|h\left(z_{1}\right)\right|:\left|z_{1}\right| \leq r_{1}\right\} \\
& =\max \left\{\left|f\left(z_{1}, s_{2}, \ldots, s_{n}\right)\right|:\left|z_{1}\right| \leq r_{1}\right\} \\
& =\left|f\left(s_{1}, s_{2}, \ldots, s_{n}\right)\right| \\
& =F\left(r_{1}, r_{2}, \ldots, r_{n}\right) . \tag{2.1}
\end{align*}
$$

On the other hand if $g\left(z_{1}\right)=h\left(z_{1}\right)-h(0)$ then $g(0)=0$ and so by Schwarz Lemma

$$
\left|g\left(z_{1}\right)\right| \leq \frac{G(R)}{R}\left|z_{1}\right| \text { for }\left|z_{1}\right| \leq R
$$

If $R=\alpha r_{1}$, then

$$
G\left(r_{1}\right) \leq \frac{r_{1}}{\alpha r_{1}} G\left(\alpha r_{1}\right)=\frac{G\left(\alpha r_{1}\right)}{\alpha}
$$

and so

$$
H\left(r_{1}\right)-|h(0)| \leq G\left(r_{1}\right) \leq \frac{G\left(\alpha r_{1}\right)}{\alpha} \leq \frac{H\left(\alpha r_{1}\right)+|h(0)|}{\alpha}
$$

Let $q=\frac{\alpha-\beta}{1+\alpha}$. There exists $r_{0}>0$ such that $|h(0)|<q H\left(r_{1}\right)$. So for $r_{1}>r_{0}$, we have

$$
\begin{equation*}
\left.H\left(\alpha r_{1}\right)>[\alpha-(\alpha+1) q)\right] H\left(r_{1}\right)=\beta H\left(r_{1}\right) \tag{2.2}
\end{equation*}
$$

Combining (2.1) and (2.2) we see that
$F\left(\alpha r_{1}, \alpha r_{2}, \ldots, \alpha r_{n}\right)>F\left(\alpha r_{1}, r_{2}, \ldots, r_{n}\right)=H\left(\alpha r_{1}\right)>\beta H\left(r_{1}\right)=\beta F\left(r_{1}, r_{2}, \ldots, r_{n}\right)$.
This proves the lemma.
LEMMA 2.3. Let $f\left(z_{1}, z_{2}, \ldots, z_{n}\right)$ be nonconstant entire function, $s>1,0<$ $\mu<\lambda$ and n is a positive integer. Then
(a) $\exists K=K(s, f)>0$ such that $\left[F\left(r_{1}, r_{2}, \ldots, r_{n}\right)\right]^{s} \leq K F\left(r_{1}^{s}, r_{2}^{s}, \ldots, r_{n}^{s}\right)$ for $r_{1}, r_{2}, \ldots, r_{n}>0$;
(b) $\lim _{r_{1}, r_{2}, \ldots, r_{n} \rightarrow \infty} \frac{F\left(r_{1}^{s}, r_{2}^{s}, \ldots, r_{n}^{s}\right)}{F\left(r_{1}, r_{2}, \ldots, r_{n}\right)}=\infty=\lim _{r_{1}, r_{2}, \ldots, r_{n} \rightarrow \infty} \frac{F\left(r_{1}^{\lambda}, r_{2}^{\lambda}, \ldots, r_{n}^{\lambda}\right)}{F\left(r_{1}^{\mu}, r_{2}^{\mu}, \ldots, r_{n}^{\mu}\right)}$.

The proof is omitted.

3. Preliminary theorem

Theorem 3.1. Let f, g, h be entire functions of several complex variables. Then
(a) if f is a polynomial and g is transcendental entire, then $\rho_{g}(f)=0$;
(b) if $F\left(r_{1}, r_{2}, \ldots, r_{n}\right) \leq H\left(r_{1}, r_{2}, \ldots, r_{n}\right)$ for all large $r_{1}, r_{2}, \ldots, r_{n}$, then $\rho_{g}(f) \leq \rho_{g}(h)$.

Proof. (a) If f is a polynomial and g is transcendental entire, then there exists a positive integer p such that

$$
F\left(r_{1}, r_{2}, \ldots, r_{n}\right) \leq M r_{1}^{p} r_{2}^{p}, \ldots, r_{n}^{p}
$$

and

$$
G\left(r_{1}, r_{2}, \ldots, r_{n}\right)>K r_{1}^{m} r_{2}^{m}, \ldots, r_{n}^{m}
$$

for all large $r_{1}, r_{2}, \ldots, r_{n}$, where M and K are constant and $m>0$ may be any real number. We have then for all large $r_{1}, r_{2}, \ldots, r_{n}$ and $\mu>0$,

$$
\begin{aligned}
G\left(r_{1}^{\mu}, r_{2}^{\mu}, \ldots, r_{n}^{\mu}\right) & >K\left(r_{1}^{\mu} r_{2}^{\mu}, \ldots, r_{n}^{\mu}\right)^{m} \\
& >M r_{1}^{p} r_{2}^{p}, \ldots, r_{n}^{p}, \text { by choosing } m \text { suitably } \\
& \geq F\left(r_{1}, r_{2}, \ldots, r_{n}\right)
\end{aligned}
$$

Thus for all large $r_{1}, r_{2}, \ldots, r_{n}$ and $\mu>0$,

$$
F\left(r_{1}, r_{2}, \ldots, r_{n}\right)<G\left(r_{1}^{\mu}, r_{2}^{\mu}, \ldots, r_{n}^{\mu}\right)
$$

Since $\mu>0$ is arbitrary, we must have

$$
\rho_{g}(f) \leq 0, \text { i.e., } \rho_{g}(f)=0
$$

(b) Let $\epsilon>0$ be arbitrary then from the definition of relative order, we have

$$
H\left(r_{1}, r_{2}, \ldots, r_{n}\right)<G\left(r_{1}^{\rho_{g}(h)+\epsilon}, r_{2}^{\rho_{g}(h)+\epsilon}, \ldots, r_{n}^{\rho_{g}(h)+\epsilon}\right)
$$

So for all large $r_{1}, r_{2}, \ldots, r_{n}$,

$$
F\left(r_{1}, r_{2}, \ldots, r_{n}\right) \leq H\left(r_{1}, r_{2}, \ldots, r_{n}\right)<G\left(r_{1}^{\rho_{g}(h)+\epsilon}, r_{2}^{\rho_{g}(h)+\epsilon}, \ldots, r_{n}^{\rho_{g}(h)+\epsilon}\right)
$$

So, $\rho_{g}(f) \leq \rho_{g}(h)+\epsilon$. Since $\epsilon>0$ is arbitrary,

$$
\rho_{g}(f) \leq \rho_{g}(h)
$$

This completes the proof.

4. Sum and product theorems

THEOREM 4.1. Let f_{1} and f_{2} be entire functions of several complex variables having relative orders $\rho_{g}\left(f_{1}\right)$ and $\rho_{g}\left(f_{2}\right)$ respectively. Then
(i) $\rho_{g}\left(f_{1} \pm f_{2}\right) \leq \max \left\{\rho_{g}\left(f_{1}\right), \rho_{g}\left(f_{2}\right)\right\}$
and
(ii) $\rho_{g}\left(f_{1} \cdot f_{2}\right) \leq \max \left\{\rho_{g}\left(f_{1}\right), \rho_{g}\left(f_{2}\right)\right\}$,
provided g has the property (R). The equality holds in (i) if $\rho_{g}\left(f_{1}\right) \neq \rho_{g}\left(f_{2}\right)$.
Proof. First suppose that relative order of f_{1} and f_{2} are finite, if one of them of both are infinite then the theorem is trivial. Let $f=f_{1}+f_{2}, \rho=\rho_{g}(f), \rho_{i}=\rho_{g}\left(f_{i}\right)$, $i=1,2$ and $\rho_{1} \leq \rho_{2}$. Therefore for any $\epsilon>0$ and for all large $r_{1}, r_{2}, \ldots, r_{n}$

$$
F_{1}\left(r_{1}, r_{2}, \ldots, r_{n}\right)<G\left(r_{1}^{\rho_{1}+\epsilon}, r_{2}^{\rho_{1}+\epsilon}, \ldots, r_{n}^{\rho_{1}+\epsilon}\right) \leq G\left(r_{1}^{\rho_{2}+\epsilon}, r_{2}^{\rho_{2}+\epsilon}, \ldots, r_{n}^{\rho_{2}+\epsilon}\right)
$$

and

$$
F_{2}\left(r_{1}, r_{2}, \ldots, r_{n}\right)<G\left(r_{1}^{\rho_{2}+\epsilon}, r_{2}^{\rho_{2}+\epsilon}, \ldots, r_{n}^{\rho_{2}+\epsilon}\right)
$$

hold. So for all large $r_{1}, r_{2}, \ldots, r_{n}$,

$$
\begin{aligned}
F\left(r_{1}, r_{2}, \ldots, r_{n}\right) & \leq F_{1}\left(r_{1}, r_{2}, \ldots, r_{n}\right)+F_{2}\left(r_{1}, r_{2}, \ldots, r_{n}\right) \\
& <2 G\left(r_{1}^{\rho_{2}+\epsilon}, r_{2}^{\rho_{2}+\epsilon}, \ldots, r_{n}^{\rho_{2}+\epsilon}\right) \\
& <G\left(3 r_{1}^{\rho_{2}+\epsilon}, 3 r_{2}^{\rho_{2}+\epsilon}, \ldots, 3 r_{n}^{\rho_{2}+\epsilon}\right), \text { by Lemma } 2.2 \\
& <G\left(r_{1}^{\rho_{2}+3 \epsilon}, r_{2}^{\rho_{2}+3 \epsilon}, \ldots, r_{n}^{\rho_{2}+3 \epsilon}\right) \\
\therefore \quad & \leq \rho_{2}+3 \epsilon
\end{aligned}
$$

Since $\epsilon>0$ is arbitrary,

$$
\begin{equation*}
\rho \leq \rho_{2} \tag{4.1}
\end{equation*}
$$

Next let $\rho_{1}<\rho_{2}$ and suppose $\rho_{1}<\mu<\lambda<\rho_{2}$. Then for all large $r_{1}, r_{2}, \ldots, r_{n}$

$$
\begin{equation*}
F_{1}\left(r_{1}, r_{2}, \ldots, r_{n}\right)<G\left(r_{1}^{\mu}, r_{2}^{\mu}, \ldots, r_{n}^{\mu}\right) \tag{4.2}
\end{equation*}
$$

and there exists a nondecreasing sequence $\left\{r_{i p}\right\}, r_{i p} \rightarrow \infty ; i=1,2, \ldots, n$ as $p \rightarrow \infty$ such that

$$
\begin{equation*}
F_{2}\left(r_{1 p}, r_{2 p}, \ldots, r_{n p}\right)>G\left(r_{1 p}^{\lambda}, r_{2 p}^{\lambda}, \ldots, r_{n p}^{\lambda}\right) \text { for } p=1,2, \ldots \tag{4.3}
\end{equation*}
$$

Using Lemma 2.3(b), we see that

$$
\begin{equation*}
G\left(r_{1}^{\lambda}, r_{2}^{\lambda}, \ldots, r_{n}^{\lambda}\right)>2 G\left(r_{1}^{\mu}, r_{2}^{\mu}, \ldots, r_{n}^{\mu}\right) \text { for all large } r_{1}, r_{2}, \ldots, r_{n} \tag{4.4}
\end{equation*}
$$

So from (4.2), (4.3) and (4.4),

$$
F_{2}\left(r_{1 p}, r_{2 p}, \ldots, r_{n p}\right)>2 F_{1}\left(r_{1 p}, r_{2 p}, \ldots, r_{n p}\right) \text { for } p=1,2, \ldots
$$

Therefore

$$
\begin{aligned}
F\left(r_{1 p}, r_{2 p}, \ldots, r_{n p}\right) & \geq F_{2}\left(r_{1 p}, r_{2 p}, \ldots, r_{n p}\right)-F_{1}\left(r_{1 p}, r_{2 p}, \ldots, r_{n p}\right) \\
& >\frac{1}{2} F_{2}\left(r_{1 p}, r_{2 p}, \ldots, r_{n p}\right) \\
& >\frac{1}{2} G\left(r_{1 p}^{\lambda}, r_{2 p}^{\lambda}, \ldots, r_{n p}^{\lambda}\right), \text { from }(4.3) \\
& >G\left((1 / 3) r_{1 p}^{\lambda},(1 / 3) r_{2 p}^{\lambda}, \ldots,(1 / 3) r_{n p}^{\lambda}\right)
\end{aligned}
$$

$$
\text { for all large } p \text { and by Lemma } 2.2
$$

$$
>G\left(r_{1 p}^{\lambda-\epsilon}, r_{2 p}^{\lambda-\epsilon}, \ldots, r_{n p}^{\lambda-\epsilon}\right)
$$

where $\epsilon>0$ is arbitrary. This gives $\rho \geq \lambda-\epsilon$ and since $\lambda \in\left(\rho_{1}, \rho_{2}\right)$ and $\epsilon>0$ is arbitrary, we have

$$
\begin{equation*}
\rho \geq \rho_{2} \tag{4.5}
\end{equation*}
$$

Combining (4.1) and (4.5),

$$
\rho_{g}\left(f_{1}+f_{2}\right)=\rho_{g}\left(f_{2}\right)=\max \left\{\rho_{g}\left(f_{1}\right), \rho_{g}\left(f_{2}\right)\right\}
$$

For the second part, we let $f=f_{1} \cdot f_{2}, \rho=\rho_{g}(f)$ and $\rho_{g}\left(f_{1}\right) \leq \rho_{g}\left(f_{2}\right)$. Then

$$
\begin{aligned}
F\left(r_{1}, r_{2}, \ldots, r_{n}\right) & \leq F_{1}\left(r_{1}, r_{2}, \ldots, r_{n}\right) \cdot F_{2}\left(r_{1}, r_{2}, \ldots, r_{n}\right) \\
& <G\left(r_{1}^{\rho_{1}+\epsilon}, r_{2}^{\rho_{1}+\epsilon}, \ldots, r_{n}^{\rho_{1}+\epsilon}\right) \cdot G\left(r_{1}^{\rho_{2}+\epsilon}, r_{2}^{\rho_{2}+\epsilon}, \ldots, r_{n}^{\rho_{2}+\epsilon}\right) \\
& \quad \text { for arbitrary } \epsilon>0 \\
& \leq\left[G\left(r_{1}^{\rho_{2}+\epsilon}, r_{2}^{\rho_{2}+\epsilon}, \ldots, r_{n}^{\rho_{2}+\epsilon}\right)\right]^{2} \\
& <G\left(r_{1}^{\sigma\left(\rho_{2}+\epsilon\right)}, r_{2}^{\sigma\left(\rho_{2}+\epsilon\right)}, \ldots, r_{n}^{\sigma\left(\rho_{2}+\epsilon\right)}\right), \text { for any } \sigma>1
\end{aligned}
$$

since g has the property (R). So

$$
\rho \leq \sigma\left(\rho_{2}+\epsilon\right)
$$

Now letting $\epsilon \rightarrow 0$ and $\sigma \rightarrow 1_{+}$, we have

$$
\begin{aligned}
\rho & \leq \rho_{2} \\
\therefore \quad \rho_{g}\left(f_{1} \cdot f_{2}\right) \leq \rho_{g}\left(f_{2}\right) & =\max \left\{\rho_{g}\left(f_{1}\right), \rho_{g}\left(f_{2}\right)\right\}
\end{aligned}
$$

This completes the proof.

5. Relative order of the partial derivatives

Regarding the relative order of f and its partial derivatives $\frac{\partial f}{\partial z_{1}}, \frac{\partial f}{\partial z_{2}}, \ldots, \frac{\partial f}{\partial z_{n}}$ with respect to g and $\frac{\partial g}{\partial z_{1}}, \frac{\partial g}{\partial z_{2}}, \ldots, \frac{\partial g}{\partial z_{n}}$, we prove the following theorem.

Theorem 5.1. If f and g are transcendental entire functions of several complex variables and g has the property (R) then

$$
\rho_{g}\left(\frac{\partial f}{\partial z_{1}}\right)=\rho_{g}(f)=\rho_{\frac{\partial g}{\partial z_{1}}}(f) .
$$

Proof. We write

$$
\bar{F}\left(r_{1}, r_{2}, \ldots, r_{n}\right)=\max _{\left|z_{j}\right|=r_{j}, j=1,2, \ldots, n}\left|\frac{\partial f\left(z_{1}, z_{2}, \ldots, z_{n}\right)}{\partial z_{1}}\right|
$$

and

$$
\bar{G}\left(r_{1}, r_{2}, \ldots, r_{n}\right)=\max _{\left|z_{j}\right|=r_{j}, j=1,2, \ldots, n}\left|\frac{\partial g\left(z_{1}, z_{2}, \ldots, z_{n}\right)}{\partial z_{1}}\right| .
$$

Let $\left(z_{1}^{\prime}, z_{2}^{\prime}, \ldots, z_{n}^{\prime}\right)$ be such that

$$
\left|f\left(z_{1}^{\prime}, z_{2}^{\prime}, \ldots, z_{n}^{\prime}\right)\right|=\max _{\left|z_{j}\right|=r_{j}, j=1,2, \ldots, n}\left|f\left(z_{1}, z_{2}, \ldots, z_{n}\right)\right| .
$$

Without loss of generality we may assume that $f\left(0, z_{2}^{\prime}, \ldots, z_{n}^{\prime}\right)=0$. Otherwise we set

$$
h\left(z_{1}, z_{2}, \ldots, z_{n}\right)=z_{1} f\left(z_{1}, z_{2}, \ldots, z_{n}\right)
$$

Then $h\left(0, z_{2}^{\prime}, \ldots, z_{n}^{\prime}\right)=0$ and $\rho_{g}(f)=\rho_{g}(h)$. We may write, for fixed z_{i} on $|z|=$ $r_{i} ; i=2,3, \ldots, n$

$$
f\left(z_{1}, z_{2}, \ldots, z_{n}\right)=\int_{0}^{z_{1}} \frac{\partial f\left(t, z_{2}, \ldots, z_{n}\right)}{\partial t} d t
$$

where the line of integration is the segment from $z=0$ to $z=r e^{i \theta_{0}}, r>0$. Now

$$
\begin{align*}
F\left(r_{1}, r_{2}, \ldots, r_{n}\right) & =\left|f\left(z_{1}^{\prime}, z_{2}^{\prime}, \ldots, z_{n}^{\prime}\right)\right| \\
& =\left|\int_{0}^{z_{1}^{\prime}} \frac{\partial f\left(t, z_{2}^{\prime}, \ldots, z_{n}^{\prime}\right)}{\partial t} d t\right| \\
& \leq r_{1} \max _{\left|z_{1}\right|=r_{1}}\left|\frac{\partial f\left(z_{1}, z_{2}^{\prime}, \ldots, z_{n}^{\prime}\right)}{\partial z_{1}}\right| \\
& =r_{1} \bar{F}\left(r_{1}, r_{2}, \ldots, r_{n}\right) . \tag{5.1}
\end{align*}
$$

Let $\left(z_{1}^{\prime \prime}, z_{2}^{\prime \prime}, \ldots, z_{n}^{\prime \prime}\right)$ be such that

$$
\left|\frac{\partial f\left(z_{1}^{\prime \prime}, z_{2}^{\prime \prime}, \ldots, z_{n}^{\prime \prime}\right)}{\partial z_{1}}\right|=\max _{\left|z_{j}\right|=r_{j}, j=1,2, \ldots, n}\left|\frac{\partial f\left(z_{1}, z_{2}, \ldots, z_{n}\right)}{\partial z_{1}}\right| .
$$

Let C denote the circle $\left|t-z_{1}^{\prime \prime}\right|=r_{1}$. So,

$$
\begin{align*}
\bar{F}\left(r_{1}, r_{2}, \ldots, r_{n}\right) & =\max _{\left|z_{j}\right|=r_{j}, j=1,2, \ldots, n}\left|\frac{\partial f\left(z_{1}, z_{2}, \ldots, z_{n}\right)}{\partial z_{1}}\right| \\
& =\left|\frac{\partial f\left(z_{1}^{\prime \prime}, z_{2}^{\prime \prime}, \ldots, z_{n}^{\prime \prime}\right)}{\partial z_{1}}\right| \\
& =\left|\frac{1}{2 \pi i} \oint_{C} \frac{f\left(t, z_{2}^{\prime \prime}, \ldots, z_{n}^{\prime \prime}\right)}{\left(t-z_{1}^{\prime \prime}\right)^{2}} d t\right| \\
& \leq \frac{1}{2 \pi} \frac{F\left(2 r_{1}, r_{2}, \ldots, r_{n}\right)}{r_{1}^{2}} 2 \pi r_{1} \\
& =\frac{F\left(2 r_{1}, r_{2}, \ldots, r_{n}\right)}{r_{1}} \tag{5.2}
\end{align*}
$$

From (5.1) and (5.2) we obtain

$$
\begin{equation*}
\frac{F\left(r_{1}, r_{2}, \ldots, r_{n}\right)}{r_{1}} \leq \bar{F}\left(r_{1}, r_{2}, \ldots, r_{n}\right) \leq \frac{F\left(2 r_{1}, r_{2}, \ldots, r_{n}\right)}{r_{1}} \leq F\left(2 r_{1}, r_{2}, \ldots, r_{n}\right) \tag{5.3}
\end{equation*}
$$

for $r_{1}, r_{2}, \ldots, r_{n} \geq 1$.
Now by the definition of $\rho_{g}\left(\frac{\partial f}{\partial z_{1}}\right)$, for given $\epsilon>0$

$$
\bar{F}\left(r_{1}, r_{2}, \ldots, r_{n}\right)<G\left(r_{1}^{\rho_{g}\left(\frac{\partial f}{\partial z_{1}}\right)+\epsilon}, r_{2}^{\rho_{g}\left(\frac{\partial f}{\partial z_{1}}\right)+\epsilon}, \ldots, r_{n}^{\rho_{g}\left(\frac{\partial f}{\partial z_{1}}\right)+\epsilon}\right)
$$

for $r_{1}, r_{2}, \ldots, r_{n} \geq r_{0}(\epsilon)$. Hence from (5.3)

$$
\begin{aligned}
F\left(r_{1}, r_{2}, \ldots, r_{n}\right) & \leq r_{1} G\left(r_{1}^{\rho_{g}\left(\frac{\partial f}{\partial z_{1}}\right)+\epsilon}, r_{2}^{\rho_{g}\left(\frac{\partial f}{\partial z_{1}}\right)+\epsilon}, \ldots, r_{n}^{\rho_{g}\left(\frac{\partial f}{\partial z_{1}}\right)+\epsilon}\right) \\
& \leq\left[G\left(r_{1}^{\rho_{g}\left(\frac{\partial f}{\partial z_{1}}\right)+\epsilon}, r_{2}^{\rho_{g}\left(\frac{\partial f}{\partial z_{1}}\right)+\epsilon}, \ldots, r_{n}^{\rho_{g}\left(\frac{\partial f}{\partial z_{1}}\right)+\epsilon}\right)\right]^{2} \\
& \leq G\left(r_{1}^{\sigma\left[\rho_{g}\left(\frac{\partial f}{\partial z_{1}}\right)+\epsilon\right]}, r_{2}^{\sigma\left[\rho_{g}\left(\frac{\partial f}{\partial z_{1}}\right)+\epsilon\right]}, \ldots, . r_{n}^{\sigma\left[\rho_{g}\left(\frac{\partial f}{\partial z_{1}}\right)+\epsilon\right]}\right)
\end{aligned}
$$

for every $\sigma>1$, by Lemma 2.1.
Since g has the property (R). So,

$$
\rho_{g}(f) \leq\left[\rho_{g}\left(\frac{\partial f}{\partial z_{1}}\right)+\epsilon\right] \sigma
$$

Letting $\sigma \rightarrow 1_{+}$, since $\epsilon>0$ is arbitrary, we have

$$
\begin{equation*}
\rho_{g}(f) \leq \rho_{g}\left(\frac{\partial f}{\partial z_{1}}\right) \tag{5.4}
\end{equation*}
$$

Similarly from $\bar{F}\left(r_{1}, r_{2}, \ldots, r_{n}\right) \leq F\left(2 r_{1}, r_{2}, \ldots, r_{n}\right)$ of (5.3) gives

$$
\begin{equation*}
\rho_{g}\left(\frac{\partial f}{\partial z_{1}}\right) \leq \rho_{g}(f) \tag{5.5}
\end{equation*}
$$

So from (5.4) and (5.5)

$$
\rho_{g}\left(\frac{\partial f}{\partial z_{1}}\right)=\rho_{g}(f)
$$

which proves first part of the theorem.
For the second part we see that under the hypothesis, we obtain

$$
\begin{equation*}
\frac{G\left(r_{1}, r_{2}, \ldots, r_{n}\right)}{r_{1}} \leq \bar{G}\left(r_{1}, r_{2}, \ldots, r_{n}\right) \leq G\left(2 r_{1}, r_{2}, \ldots, r_{n}\right) \tag{5.6}
\end{equation*}
$$

Now by the definition of $\rho_{\frac{\partial g}{\partial z_{1}}}(f)$, for given $\epsilon>0$

$$
\begin{aligned}
F\left(r_{1}, r_{2}, \ldots, r_{n}\right) & <\bar{G}\left(r_{1}^{\rho \frac{\partial g}{\partial z_{1}}(f)+\epsilon}, r_{2}^{\rho \frac{\partial g}{\partial z_{1}}(f)+\epsilon}, \ldots, r_{n}^{\rho \frac{\partial g}{\partial z_{1}}(f)+\epsilon}\right) \\
& \leq G\left(r_{1}^{\rho \frac{\partial g}{\partial z_{1}}(f)+\epsilon}, r_{2}^{\rho}{ }^{\frac{\partial g}{\partial z_{1}}(f)+\epsilon}, \ldots, r_{n}{ }^{\frac{\partial g}{\partial z_{1}}(f)+\epsilon}\right) \text { using (5.6) } \\
& <G\left(r_{1}^{\rho \frac{\partial g}{\partial z_{1}}(f)+2 \epsilon}, r_{2}^{\rho \frac{\partial g}{\partial z_{1}}(f)+2 \epsilon}, \ldots, r_{n}^{\rho \frac{\partial g}{\partial z_{1}}(f)+2 \epsilon}\right) .
\end{aligned}
$$

So

$$
\rho_{g}(f) \leq \rho_{\frac{\partial g}{\partial z_{1}}}(f)+2 \epsilon
$$

Since $\epsilon>0$ be arbitrary, this gives

$$
\rho_{g}(f) \leq \rho_{\frac{\partial g}{\partial z_{1}}}(f) .
$$

Again from (5.6)

$$
\begin{aligned}
F\left(r_{1}, r_{2}, \ldots, r_{n}\right) & <G\left(r_{1}^{\rho_{g}(f)+\epsilon}, r_{2}^{\rho_{g}(f)+\epsilon}, \ldots, r_{n}^{\rho_{g}(f)+\epsilon}\right) \\
& <r_{1} \cdot \bar{G}\left(r_{1}^{\rho_{g}(f)+\epsilon}, r_{2}^{\rho_{g}(f)+\epsilon}, \ldots, r_{n}^{\rho_{g}(f)+\epsilon}\right) \\
& <\left[\bar{G}\left(r_{1}^{\rho_{g}(f)+\epsilon}, r_{2}^{\rho_{g}(f)+\epsilon}, \ldots, r_{n}^{\rho_{g}(f)+\epsilon}\right)\right]^{2} \\
& \leq \bar{G}\left(r_{1}^{\sigma\left(\rho_{g}(f)+\epsilon\right)}, r_{2}^{\sigma\left(\rho_{g}(f)+\epsilon\right)}, \ldots, r_{n}^{\sigma\left(\rho_{g}(f)+\epsilon\right)}\right), \text { for any } \sigma>1
\end{aligned}
$$

So

$$
\rho_{\frac{\partial g}{\partial z_{1}}}(f) \leq \sigma\left[\rho_{g}(f)+\epsilon\right] .
$$

Now letting $\sigma \rightarrow 1_{+}$, since $\epsilon>0$ is arbitrary

$$
\rho_{\frac{\partial g}{\partial z_{1}}}(f) \leq \rho_{g}(f)
$$

and so

$$
\rho_{\frac{\partial f}{\partial z_{1}}}(f)=\rho_{g}(f) .
$$

Consequently,

$$
\rho_{g}\left(\frac{\partial f}{\partial z_{1}}\right)=\rho_{g}(f)=\rho_{\frac{\partial g}{\partial z_{1}}}(f) .
$$

This proves the theorem.
Note 5.2. Similar result holds for other partial derivatives.

6. Asymptotic behavior

Definition 6.1. Two entire functions g_{1} and g_{2} are said to be asymptotically equivalent if there exists $l, 0<l<\infty$ such that

$$
\frac{G_{1}\left(r_{1}, r_{2}, \ldots, r_{n}\right)}{G_{2}\left(r_{1}, r_{2}, \ldots, r_{n}\right)} \rightarrow l \text { as } r_{1}, r_{2}, \ldots, r_{n} \rightarrow \infty
$$

and in this case we write $g_{1} \sim g_{2}$.
If $g_{1} \sim g_{2}$ then clearly $g_{2} \sim g_{1}$.
THEOREM 6.2. If $g_{1} \sim g_{2}$ and if f is an entire function of several complex variables then $\rho_{g_{1}}(f)=\rho_{g_{2}}(f)$.

Proof. Let $\epsilon>0$, then from Lemma 2.2 and for all large $r_{1}, r_{2}, \ldots, r_{n}$

$$
\begin{equation*}
G_{1}\left(r_{1}, r_{2}, \ldots, r_{n}\right)<(l+\epsilon) G_{2}\left(r_{1}, r_{2}, \ldots, r_{n}\right)<G_{2}\left(\alpha r_{1}, \alpha r_{2}, \ldots, \alpha r_{n}\right) \tag{6.1}
\end{equation*}
$$

where $\alpha>1$ is such that $l+\epsilon<\alpha$. Now,

$$
\begin{aligned}
F\left(r_{1}, r_{2}, \ldots, r_{n}\right) & <G_{1}\left(r_{1}^{\rho_{g_{1}}(f)+\epsilon}, r_{2}^{\rho_{g_{1}}(f)+\epsilon}, \ldots, r_{n}^{\rho_{g_{1}}(f)+\epsilon}\right) \\
& <G_{2}\left(r_{1}^{\rho_{g_{1}}(f)+2 \epsilon}, r_{2}^{\rho_{g_{1}}(f)+2 \epsilon}, \ldots, r_{n}^{\rho_{g_{1}}(f)+2 \epsilon}\right) \operatorname{using}(6.1)
\end{aligned}
$$

Since $\epsilon>0$ is arbitrary, we have for all large $r_{1}, r_{2}, \ldots, r_{n}$

$$
\rho_{g_{2}}(f) \leq \rho_{g_{1}}(f)
$$

The reverse inequality is clear because $g_{2} \sim g_{1}$ and so $\rho_{g_{1}}(f)=\rho_{g_{2}}(f)$.
Note 6.3. Converse of the Theorem 6.2 is not always true and the condition $g_{1} \sim g_{2}$ is not necessary, which are shown by the following examples.

Example 6.4. Consider the functions

$$
\begin{aligned}
f\left(z_{1}, z_{2}, \ldots, z_{n}\right) & =z_{1} z_{2}, \ldots, z_{n} \\
g_{1}\left(z_{1}, z_{2}, \ldots, z_{n}\right) & =z_{1} z_{2}, \ldots, z_{n} \text { and } \\
g_{2}\left(z_{1}, z_{2}, \ldots, z_{n}\right) & =\left(z_{1} z_{2}, \ldots, z_{n}\right)^{2}
\end{aligned}
$$

Then we have

$$
g_{1} \nsim g_{2} \text { and } \rho_{g_{1}}(f)=1, \rho_{g_{2}}(f)=1 / 2
$$

Example 6.5. Consider the functions

$$
\begin{aligned}
f\left(z_{1}, z_{2}, \ldots, z_{n}\right) & =e^{z_{1} z_{2}, \ldots, z_{n}} \\
g_{1}\left(z_{1}, z_{2}, \ldots, z_{n}\right) & =e^{z_{1} z_{2}, \ldots, z_{n}} \text { and } \\
g_{2}\left(z_{1}, z_{2}, \ldots, z_{n}\right) & =e^{2 z_{1} z_{2}, \ldots, z_{n}}
\end{aligned}
$$

Then $g_{1} \nsim g_{2}$ but $\rho_{g_{1}}(f)=\rho_{g_{2}}(f)$.

THEOREM 6.6. Let f_{1}, f_{2}, g be entire functions of several complex variables and $f_{1} \sim f_{2}$. Then $\rho_{g}\left(f_{1}\right)=\rho_{g}\left(f_{2}\right)$.

The proof is similar as the one of Theorem 6.2.
Note 6.7. Converse of the Theorem 6.6 is not always true and the condition $f_{1} \sim f_{2}$ is not necessary, which are shown by the following examples.

Example 6.8. Consider the functions

$$
\begin{aligned}
f_{1}\left(z_{1}, z_{2}, \ldots, z_{n}\right) & =z_{1} z_{2}, \ldots, z_{n} \\
f_{2}\left(z_{1}, z_{2}, \ldots, z_{n}\right) & =\left(z_{1} z_{2}, \ldots, z_{n}\right)^{2} \text { and } \\
g\left(z_{1}, z_{2}, \ldots, z_{n}\right) & =z_{1} z_{2}, \ldots, z_{n}
\end{aligned}
$$

Then $f_{1} \nsim f_{2}$ and $\rho_{g}\left(f_{1}\right) \neq \rho_{g}\left(f_{2}\right)$.
Example 6.9. Consider the functions

$$
\begin{aligned}
f_{1}\left(z_{1}, z_{2}, \ldots, z_{n}\right) & =e^{z_{1} z_{2}, \ldots, z_{n}} \\
f_{2}\left(z_{1}, z_{2}, \ldots, z_{n}\right) & =e^{2 z_{1} z_{2}, \ldots, z_{n}} \text { and } \\
g\left(z_{1}, z_{2}, \ldots, z_{n}\right) & =e^{z_{1} z_{2}, \ldots, z_{n}}
\end{aligned}
$$

Then $f_{1} \nsim f_{2}$ but $\rho_{g}\left(f_{1}\right)=\rho_{g}\left(f_{2}\right)$.
REFERENCES
[1] A.K. Agarwal, On the properties of an entire function of two cpmplex variables, Canadian J. Math. 20 (1968), 51-57.
[2] D. Banerjee, R.K. Dutta, Relative order of entire functions of two complex variables, Internat. J. Math. Sci. \& Engg. Appl. 1 (2007), 141-154
[3] L. Bernal, Orden relative de crecimiento de funciones enteras, Collect. Math. 39 (1988), 209229.
[4] B.A. Fuks, Theory of analytic functions of several complex variables, Moscow, 1963.
[5] S. Halvarsson, Growth properties of entire functions depending on a parameter, Annales Polonici Math. 14 (1996), 71-96.
[6] C.O. Kiselman, Order and type as measures of growth for convex or entire functions, Proc. Lond. Math. Soc. 66 (1993), 152-186.
[7] C.O. Kiselman, Plurisubharmonic functions and potential theory in several complex variables, a contribution to the book project, Development of Mathematics 1950-2000, edited by JeanPaul Pier.
(received 05.07.2011; in revised form 14.12.2011; available online 01.05.2012)
Department of Mathematics, Siliguri Institute of Technology, Hill Cart Road, Post.- Sukna, Siliguri, Dist.-Darjeeling, West Bengal, India
E-mail: ratan_3128@yahoo.com

[^0]: 2010 AMS Subject Classification: 32A15
 Keywords and phrases: Entire functions; relative order; several complex variables; polydisc; property (R)

