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ON RIGHT IDEALS AND DERIVATIONS
IN PRIME RINGS WITH ENGEL CONDITION

Basudeb Dhara and Deepankar Das

Abstract. Let R be an associative ring with center Z(R) and d a nonzero derivation of R.
The main object in this paper is to study the situation [[d(xr)xn, xr]s, [y, d(y)]t]m ∈ Z(R) for all
x, y in some appropriate subset of R, where n ≥ 0, s ≥ 0, t ≥ 0, m ≥ 1, r ≥ 1 are fixed integers
and R is a prime or semiprime ring.

1. Introduction

Throughout this paper, unless specifically stated, R denotes a prime ring with
center Z(R), with extended centroid C, and two-sided Martindale quotient ring
Q. Given x, y ∈ R, we set [x, y]0 = x, [x, y]1 = [x, y] = xy − yx and inductively
[x, y]k = [[x, y]k−1, y] for k > 1. By d, we mean a derivation of R.

In [12], Herstein proved that if char (R) 6= 2 and a derivation d is nonzero
such that [d(x), d(y)] = 0 for all x, y ∈ R, then R is commutative. Chang and
Lin [5] proved that if ρ is a nonzero right ideal of R such that d(x)xn = 0 for all
x ∈ ρ, n ≥ 1 a fixed integer, then d(ρ)ρ = 0. Recently, De Filippis [10] proved
that if char (R) 6= 2 and ρ a nonzero right ideal of R such that [d(x)xn, d(y)] = 0
for all x, y ∈ ρ, then either R is commutative or d(ρ)ρ = 0. In another paper, De
Filippis [11] proved that if char (R) 6= 2, d is nonzero and ρ is a nonzero right ideal
of R such that [[d(x), x], [d(y), y]] = 0 for all x, y ∈ ρ, then either [ρ, ρ]ρ = 0 or
d(ρ)ρ = 0. In [8], the first author of this paper extended the result of De Filippis
by considering Engel conditions. The result of [8] states that if char (R) 6= 2 and
ρ a non-zero right ideal of R such that [[d(x), x]n, [y, d(y)]m]t = 0 for all x, y ∈ ρ,
where n ≥ 0,m ≥ 0, t ≥ 1 are fixed integers and [ρ, ρ]ρ 6= 0, then d(ρ)ρ = 0.

On the other hand, a well known result of Posner [22] states that if [d(x), x] ∈
Z(R) for all x ∈ R, then either d = 0 or R is commutative. In [18], Lee considered
any constant power values of x and proved that if R be a prime ring and λ a
nonzero left ideal of R such that [d(xn), xn]k = 0 for all x ∈ λ, then either d = 0
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or R is commutative. Lee and Shiue [20] proved that if R is noncommutative and
λ a nonzero left ideal of R then: (i) if [d(xm)xn, xr]k = 0 for all x ∈ λ, then d = 0,
except when R ∼= M2(GF (2)); (ii) if [xnd(xm), xr]k = 0 for all x ∈ λ, then either
d = ad(b) with λb = 0 for some b ∈ Q or λ[λ, λ] = 0 and d(λ) ⊆ λC.

From the results above, it is natural to consider the situation when
[[d(xr)xn, xr]s, [y, d(y)]t]m ∈ Z(R) for all x, y in some appropriate subset of R,
where n ≥ 0, s ≥ 0, t ≥ 0, m ≥ 1, r ≥ 1 are fixed integers. As a particular case,
we obtain results, when [x, d(x)]t = 0 for all x in some right ideal of a prime ring
R or for all x in a semiprime ring R.

Let R be a prime ring and Q its two-sided Martindale quotient ring. Then Q
is also a prime ring with center C = Z(Q), a field, which is the extended centroid
of R. It is well known that any derivation of R can be uniquely extended to a
derivation of Q, and hence any derivation of R can be defined on the whole of Q.
We refer to [2, 19] for more details.

Denote by Q ∗C C{x, y, z} the free product of the C-algebra Q and C{x, y, z},
the free C-algebra in noncommuting indeterminates x, y, z.

2. The case: R a prime ring

We need the following lemma.

Lemma 2.1. Let I be a nonzero right ideal of R and d a derivation of R.
Then the following conditions are equivalent: (i) d is an inner derivation induced
by some b ∈ Q such that bI = 0; (ii) d(I)I = 0.

For its proof we refer to [13] or [4, Lemma].

Theorem 2.2. Let R be a prime ring of char (R) 6= 2 and d a non-zero
derivation of R such that [[d(xr)xn, xr]s, [y, d(y)]t]m = 0 for all x, y ∈ R, where
n, s, t ≥ 0 and m, r ≥ 1 are fixed integers, then R is commutative.

Proof. Assume that R is noncommutative, otherwise we are done. Assume
next that d is Q-inner derivation i.e., d(x) = [a, x] for all x ∈ R and for some
a ∈ Q. Then we have

[[axn, xr]s+1, [y, [a, y]]t]m = 0

for all x, y ∈ R. Since d 6= 0, a /∈ C and hence R satisfies a nontrivial generalized
polynomial identity (GPI). Since Q and R satisfy the same generalized polynomial
identities with coefficients in Q (see [7]), [[axn, xr]s+1, [y, [a, y]]t]m is also satisfied
by Q. Since Q is prime, we may replace R by Q and then assume that a ∈ R and
C = Z(R). In this case R is centrally closed (i.e. RC = R) prime C-algebra [9].
Then by Martindale’s theorem [21], R is a primitive ring. By Jacobson’s theorem
[15, p. 75] R is isomorphic to a dense ring of linear transformations of a vector space
V over a division ring D. Since R is noncommutative, dimDV ≥ 2. We assume
that for some v ∈ V , {av, v} is linearly D-independent. If a2v /∈ spanD{v, av},
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then {v, av, a2v} is linearly D-independent. By density there exist x, y ∈ R such
that

xv = v, xav = 0, xa2v = 0;

yv = 0, yav = v, ya2v = 0

for which we have [a, y]v = −v, [a, y]av = av, [axn, xr]s+1v = av and hence

[y, [a, y]]tv =
t∑

j=0

(−1)j

(
t

j

)
[a, y]jy[a, y]t−jv = 0

and

[y, [a, y]]tav =
t∑

j=0

(−1)j

(
t

j

)
[a, y]jy[a, y]t−jav =

t∑
j=0

(
t

j

)
v = 2tv.

Thus

0 = [[axn, xr]s+1, [y, [a, y]]t]v

= [axn, xr]s+1[y, [a, y]]tv − [y, [a, y]]t[axn, xr]s+1v

= 0− 2tv = −2tv

and hence
0 = [[axn, xr]s+1, [y, [a, y]]t]mv = (−1)m2mtv,

which is a contradiction, since char (R) 6= 2.
If a2v ∈ spanD{v, av}, then a2v = αv + βav for some α, β ∈ D. Then again

by density there exist x, y ∈ R such that xv = v, xav = 0; yv = 0, yav = v for
which we get [a, y]v = −v, [a, y]nav = av or av− βv according as n is even or odd,
[axn, xr]s+1v = av and hence [y, [a, y]]tv =

∑t
j=0(−1)j

(
t
j

)
[a, y]jy[a, y]t−jv = 0 and

[y, [a, y]]tav =
∑t

j=0(−1)j
(

t
j

)
[a, y]jy[a, y]t−jav =

∑t
j=0

(
t
j

)
v = 2tv. Therefore,

[[axn, xr]s+1, [y, [a, y]]t]v = −2tv

and hence
0 = [[axn, xr]s+1, [y, [a, y]]t]mv = (−1)m2mtv,

which is a contradiction, since char (R) 6= 2. Thus we conclude that v and av are
linearly D-dependent for all v ∈ V . Let av = αvv for all v ∈ V , where αv ∈ D. It
is very easy to prove that αv is independent of choice of v ∈ V . Hence av = αv
for all v ∈ V , where α ∈ D is fixed. Then for all r ∈ R and v ∈ V , we have
[a, r]v = a(rv) − r(av) = α(rv) − r(αv) = 0 that is [a, r]V = 0. Since V is a left
faithful irreducible R-modulo, [a, r] = 0 for all r ∈ R, that is a ∈ Z(R). This leads
d = 0, a contradiction.

Assume next that d is not a Q-inner derivation in R. By assumption, we have

[[(
r−1∑
i=0

xid(x)xr−i−1)xn, xr]s, [y, d(y)]t]m = 0
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for all x, y ∈ R. Then by Kharchenko’s theorem [16], we have

[[(
r−1∑
i=0

xiuxr−i−1)xn, xr]s, [y, v]t]m = 0

for all x, y, u, v ∈ R. This is a polynomial identity for R and hence there exists a
field F such that R ⊆ Mk(F ) with k > 1 and Mk(F ) satisfies the same polynomial
identity [17, Lemma 1]. But by choosing u = e21, v = e22, x = e11, y = e12, we get

0 = [[(
r−1∑
i=0

xiuxr−i−1)xn, xr]s, [y, v]t]m = e22 + (−1)me11,

a contradiction.
Our next theorem is to study the central case.

Theorem 2.3. Let R be a prime ring of char (R) 6= 2 and d a nonzero
derivation of R such that [[d(xr)xn, xr]s, [y, d(y)]t] ∈ Z(R) for all x, y ∈ R, where
n, s, t ≥ 0 and r ≥ 1 are fixed integers, then R is commutative.

Proof. If R is commutative, we are done. So, let R be noncommutative. We
have that R satisfies

[[d(xr)xn, xr]s, [y, d(y)]t] ∈ Z(R). (1)

If for all x, y ∈ R, [[d(xr)xn, xr]s, [y, d(y)]t] = 0, then we are done by Theorem 2.2.
So, let there exist x1, x2 ∈ R, such that 0 6= [[d(xr

1)x
n
1 , xr

1]s, [x2, d(x2)]t] ∈ Z(R).
Then (1) is a central differential identity for R. It follows from [6, Theorem 1]
that R is a prime PI-ring and so RC = Q is a finite-dimensional central simple
C-algebra by Posner’s theorem for prime PI-ring.

Let d be an inner derivation of Q induced by a ∈ Q. Since R and Q satisfy
same GPIs [7], we have

[[[axn, xr]s+1, [y, [a, y]]t], z] = 0 (2)

for all x, y ∈ Q. Since there exist x1, x2 ∈ R, such that [[axn
1 , xr

1]s+1, [x2, [a, x2]]t] 6=
0, (2) is a nontrivial GPI for Q. Since Q is a finite-dimensional central simple
C-algebra, it follows from Lemma 2 in [17] that there exists a suitable field F such
that Q ⊆ Mk(F ), k > 1, the ring of all k×k matrices over F , and moreover Mk(F )
satisfies (2), that is,

[[[axn, xr]s+1, [y, [a, y]]t], z] = 0 (3)

for all x, y, z ∈ Mk(F ). Let e and f be any two orthogonal idempotent elements
in Mk(F ). Now, we replace x with e, y with exf and z with exf in (3) and let
Y = [[aen, e]s+1, [exf, [a, exf ]]t]. Then we compute

Y e = [[aen, e]s+1, [exf, [a, exf ]]t]e

= [aen, e]s+1[exf, [a, exf ]]te− [exf, [a, exf ]]t[aen, e]s+1e

= [aen, e]s+1

t∑
j=0

(−1)j

(
t

j

)
[a, exf ]jexf [a, exf ]t−je
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−
t∑

j=0

(−1)j

(
t

j

)
[a, exf ]jexf [a, exf ]t−j [aen, e]s+1e

= 0−
t∑

j=0

(−1)j

(
t

j

)
(−exfa)jexf(aexf)t−jae

= −2t(exfa)t+1e. (4)

fY = f [[aen, e]s+1, [exf, [a, exf ]]t]

= f [aen, e]s+1[exf, [a, exf ]]t − f [exf, [a, exf ]]t[aen, e]s+1

= f [aen, e]s+1

t∑
j=0

(−1)j

(
t

j

)
[a, exf ]jexf [a, exf ]t−j

− f
t∑

j=0

(−1)j

(
t

j

)
[a, exf ]jexf [a, exf ]t−j [aen, e]s+1

= fae
t∑

j=0

(−1)j

(
t

j

)
(−exfa)jexf(aexf)t−j − 0

= 2t(faex)t+1f. (5)

Hence

0 = [[[aen, e]s+1, [exf, [a, exf ]]t], exf ]

= [Y, exf ]

= {−2t(exfa)t+1exf − 2tex(faex)t+1f}
= −2t+1(exfa)t+1exf. (6)

Since char (R) 6= 2, this implies (faex)t+3 = 0 for all x ∈ Mk(F ). By Levitzki’s
lemma [14, Lemma 1.1], faex = 0 for all x ∈ Mk(F ) and so fae = 0. Since f and e
are any two orthogonal idempotent elements in Mk(F ), we have for any idempotent
e in Mk(F ), (1− e)ae = 0 = ea(1− e) which implies [a, e] = 0. Since a commutes
with all idempotents in Mk(F ), a ∈ C and hence d = 0.

If d is not Q-inner derivation of R, then by Kharchenko’s Theorem [16], we
have 0 = [[[(

∑r−1
i=0 xiuxr−i−1)xn, xr]s, [y, v]t], z] for all x, y, z, u, v ∈ R. Since this

is a polynomial identity for R, there exists a field F such that R ⊆ Mk(F ) with
k > 1 and R and Mk(F ) satisfy the same polynomial identity [17, Lemma 1]. But
by choosing u = e21, v = e22, x = e11, y = e12, we get

[[(
r−1∑
i=0

xiuxr−i−1)xn, xr]s, [y, v]t] = e22 − e11 ∈ Z(Mk(F )),

a contradiction, since char (F ) 6= 2.

Theorem 2.4. Let R be a prime ring of char (R) 6= 2, d a nonzero derivation
of R and I a nonzero right ideal of R such that [[d(xr)xn, xr]s, [y, d(y)]t] ∈ Z(R)
for all x, y ∈ I, where n ≥ 0, s ≥ 0, t ≥ 0, r ≥ 1 are fixed integers. If [I, I]I 6= 0,
then d = ad(b) with bI = 0 for some b ∈ Q.
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We begin with the following lemma.

Lemma 2.5. If d(I)I 6= 0 and [[d(xr)xn, xr]s, [y, d(y)]t] ∈ Z(R) for all x, y ∈ I,
then R satisfies a non-trivial generalized polynomial identity (GPI).

Proof. Suppose on the contrary that R does not satisfy any non-trivial GPI. We
may assume that R is noncommutative, otherwise R satisfies trivially a non-trivial
GPI.

Case I. Suppose that d is a Q-inner derivation induced by an element a ∈ Q.
Then for any u ∈ I

[[[a(ux)n, (ux)r]s+1, [uy, [a, uy]]t], uz]

is a GPI for R, so it is the zero element in Q ∗C C{x, y, z}. Expanding this we get,

{( s+1∑
j=0

(−1)j

(
s + 1

j

)
(ux)rja(ux)n(ux)r(s+1−j)

)
[uy, [a, uy]]t

−
( t∑

j=0

(−1)j

(
t

j

)
(auy − uya)juy[a, uy]t−j

)
[a(ux)n, (ux)r]s+1

}
uz

− uz[[a(ux)n, (ux)r]s+1, [uy, [a, uy]]t] = 0. (7)

If au and u are linearly C-independent for some u ∈ I then

a(ux)n(ux)r(s+1)[uy, [a, uy]]tuz

− auy
t∑

j=1

(−1)j

(
t

j

)
(auy − uya)j−1uy[a, uy]t−j [a(ux)n, (ux)r]s+1uz = 0. (8)

This implies
a(ux)n(ux)r(s+1)[uy, [a, uy]]tuz = 0 (9)

in Q ∗C C{x, y, z}. Expanding this we write

a(ux)n(ux)r(s+1)
t∑

j=0

(−1)j

(
t

j

)
(auy − uya)juy(auy − uya)t−juz = 0.

Again, since au and u are linearly C-independent, in the above expression we see
that a(ux)n(ux)r(s+1)uy(auy)tuz appears nontrivially, a contradiction. Thus for
any u ∈ I, au and u are C-dependent. Then (a − α)I = 0 for some α ∈ C.
Replacing a with a − α, we may assume that aI = 0. But then by Lemma 2.1,
d(I)I = 0, contradiction.

Case II. Suppose that d is not a Q-inner derivation of R. If for all u ∈ I,
d(u) ∈ uC, then [d(u), u] = 0 which implies R to be commutative (see [3]), a
contradiction. Therefore there exists u ∈ I such that d(u) /∈ uC i.e., u and d(u)
are linearly C-independent.

By our assumption we have that R satisfies

[[[d((ux)r)(ux)n, (ux)r]s, [d(uy), uy]t], uz] = 0
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that is

[[[(
r−1∑
i=0

(ux)i(d(u)x + ud(x))(ux)r−1−i)(ux)n, (ux)r]s, [uy, d(u)y + ud(y)]t], uz] = 0.

By Kharchenko’s theorem [16],

[[[
r−1∑
i=0

(ux)i(d(u)x + ux1)(ux)n+r−1−i, ux]s, [uy, d(u)y + uy1]t], uz] = 0 (10)

for all x, y, z, x1, y1 ∈ R. In particular, for x1 = y1 = 0,

[[[
r−1∑
i=0

(ux)i(d(u)x)(ux)n+r−1−i, ux]s, [uy, d(u)y]t], uz] = 0 (11)

which is a non-trivial GPI for R, because u and d(u) are linearly C-independent, a
contradiction.

We are now in a position to prove Theorem 2.4.
Proof of Theorem 2.4. If d(I)I = 0, then by Lemma 2.1 we obtain our con-

clusion. So, let d(I)I 6= 0. By Lemma 2.5, R is a GPI-ring, so is Q [7]. By
[21], Q is a primitive ring with H = Soc(Q) 6= 0. Moreover, we may assume that
[IH, IH]IH 6= 0, otherwise by [7], [IQ, IQ]IQ = 0, which is a contradiction. We
may also assume that d(IH)IH 6= 0, otherwise by Lemma 2.1, d is an inner deriva-
tion induced by an element b ∈ Q such that bIH = 0 that is bI = 0, implying
d(I)I = 0, a contradiction.

Let a ∈ IH. Since H is a regular ring, there exists e2 = e ∈ H such that
eH = aH. Then e ∈ IH and a = ea. By our assumption and by [12, Theorem
2], we may also assume that [[[d(xr)xn, xr]s, [y, d(y)]t], z] is an identity for IQ.
In particular, [[[d(xr)xn, xr]s, [y, d(y)]t], z] is an identity for IH and so for eH.
Replacing x with e, y with ey(1 − e) and z with ey(1 − e), it follows that, for all
y ∈ H,

0 = [[[d(e)en, e]s, [ey(1− e), d(ey(1− e))]t], ey(1− e)]. (12)

Let V = [[d(e)en, e]s, [ey(1 − e), d(ey(1 − e))]t]. We have the facts that for any
idempotent e, d(x(1 − e))e = −x(1 − e)d(e), (1 − e)d(ex) = (1 − e)d(e)ex and
ed(e)e = 0 and hence we compute

V e = [[d(e)en, e]s, [ey(1− e), d(ey(1− e))]t]e

= [d(e)en, e]s[ey(1− e), d(ey(1− e))]te− [ey(1− e), d(ey(1− e))]t[d(e)en, e]se

= [d(e)en, e]s
t∑

j=0

(−1)j

(
t

j

)
d(ey(1− e))jey(1− e)d(ey(1− e))t−je

−
t∑

j=0

(−1)j

(
t

j

)
d(ey(1− e))jey(1− e)d(ey(1− e))t−j [d(e)en, e]se

= 0−
t∑

j=0

(−1)j

(
t

j

)
(−ey(1− e)d(e))jey(1− e)(d(e)ey(1− e))t−jd(e)e

= −2t(ey(1− e)d(e))t+1e (13)
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and

(1− e)V = (1− e)[[d(e)en, e]s, [ey(1− e), d(ey(1− e))]t]

= (1− e)d(e)e[ey(1− e), d(ey(1− e))]t
− (1− e)[ey(1− e), d(ey(1− e))]t[d(e)en, e]s

= (1− e)d(e)e
t∑

j=0

(−1)j

(
t

j

)
d(ey(1− e))jey(1− e)d(ey(1− e))t−j

− (1− e)
t∑

j=0

(−1)j

(
t

j

)
d(ey(1− e))jey(1− e)d(ey(1− e))t−j [d(e)en, e]s

= (1− e)d(e)e
t∑

j=0

(−1)j

(
t

j

)
(−ey(1− e)d(e))jey(1− e)(d(e)ey(1− e))t−j − 0

= 2t((1− e)d(e)ey)t+1(1− e). (14)

Thus (12) gives

0 = [V, ey(1− e)]

= V ey(1− e)− ey(1− e)V

= −2t(ey(1− e)d(e))t+1ey(1− e)− 2tey((1− e)d(e)ey)t+1(1− e)

= −2t+1(ey(1− e)d(e))t+1ey(1− e). (15)

Multiplying on the left by (1 − e)d(e) and on the right by d(e)ey and using char
(R) 6= 2, the above equation gives ((1−e)d(e)ey)t+2 = 0 for all y ∈ H. By Levitzki’s
lemma [14, Lemma 1.1], (1− e)d(e)eH = 0. By primeness of H, (1− e)d(e)e = 0.
This implies (1 − e)d(e) = (1 − e)d(e2) = (1 − e)d(e)e = 0. Thus d(e) = ed(e) ∈
eH ⊆ IH. Now d(a) = d(ea) = d(e)ea + ed(ea) ∈ IH. Hence, d(IH) ⊆ IH. Since
d(lH(IH)) ⊆ lH(IH) holds, d naturally induces a derivation δ on the prime ring
IH = IH

IH∩lH(IH) defined by δ(x) = d(x) for x ∈ IH, where lH(IH) denotes the
left annihilator of IH in H. Thus by assumption we have

[[δ(xr)xn, xr]s, [y, δ(y)]t, z] = 0

for all x, y, z ∈ IH. By Theorem 2.3, we have either δ = 0 or IH is commutative.
Therefore, we have that either d(IH)IH = 0 or [IH, IH]IH = 0. In both cases,
we have contradictions. This completes the proof of the theorem.

Corollary 2.6. Let R be a prime ring of char (R) 6= 2, d a nonzero derivation
of R and I a nonzero right ideal of R such that [d(xr)xn, xr]s = 0 for all x ∈ I,
where n ≥ 0, s ≥ 0, r ≥ 1 are fixed integers. If [I, I]I 6= 0, then d(I)I = 0.

Corollary 2.7. Let R be a prime ring of char (R) 6= 2, d a nonzero derivation
of R and I a nonzero right ideal of R such that [x, d(x)]t = 0 for all x ∈ I, where
t ≥ 1 is a fixed integer. If [I, I]I 6= 0, then d(I)I = 0.
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3. The case: R a semiprime ring

In this section we extend Theorems 2.2 and 2.3 to the case of semiprime ring.
Let R be a semiprime ring and U be its right Utumi quotient ring. The center of
U is called extended centroid of R and is denoted by C. It is well known fact that
any derivation of a semiprime ring R can be uniquely extended to a derivation of
its right Utumi quotient ring U and so any derivation of R can be defined on the
whole of U [19, Lemma 2]. Let M(C) be the set of all maximal ideals of C. Now
by the standard theory of orthogonal completions for semiprime rings (see [19, p.
31-32]), we have the following lemma.

Lemma 3.1. [1, Lemma 1 and Theorem 1] Let R be a 2-torsion free semiprime
ring and P a maximal ideal of C. Then PU is a prime ideal of U invariant under all
derivations of U . Moreover,

⋂{PU | P ∈ M(C) with U/PU 2-torsion free} = 0.

Theorem 3.2. Let R be a 2-torsion free semiprime ring, d a non-zero deriva-
tion of R such that [[d(xr)xn, xr]s, [y, d(y)]t]m = 0 for all x, y ∈ R, where n, s, t ≥ 0
and m, r ≥ 1 are fixed integers. Then d maps R into its centre.

Proof. By assumption and by [19, Theorem 3], we can write [[d(xr)xn, xr]s,
[y, d(y)]t]m = 0 for all x, y ∈ U . Note that U is also a 2-torsion free semiprime ring.
Let P ∈ M(C) such that U/PU is 2-torsion free. Then by Lemma 3.1, PU is a
prime ideal of U invariant under d. Set U = U/PU . Then derivation d canonically
induces a derivation d on U defined by d(x) = d(x) for all x ∈ U . Therefore,
[[d(xr)xn, xr]s, [y, d(y)]t]m = 0 for all x, y ∈ U . By Theorem 2.2, either d = 0 or
[U, U ] = 0 i.e., d(U) ⊆ PU or [U,U ] ⊆ PU . In any case d(U)[U,U ] ⊆ PU for any
P ∈ M(C). By Lemma 3.1,

⋂{PU | P ∈ M(C) with U/PU 2-torsion free } = 0.
Thus d(U)[U,U ] = 0. Without loss of generality, we have d(R)[R, R] = 0. This
implies d(R)R[R, R] = 0 and so [R, d(R)]R[R, d(R)] = 0. Since R is semiprime, we
have [R, d(R)] = 0, that is, d(R) ⊆ Z(R), as desired.

By a similar proof, Theorem 2.3 can be extended to semiprime ring as follows:

Theorem 3.3. Let R be a 2-torsion free semiprime ring, d a non-zero deriva-
tion of R such that [[d(xr)xn, xr]s, [y, d(y)]t] ∈ Z(R) for all x, y ∈ R, where
n, s, t ≥ 0 and r ≥ 1 are fixed integers. Then d maps R into its centre.

Corollary 3.4. Let R be a 2-torsion free semiprime ring, d a non-zero
derivation of R such that [d(xr)xn, xr]s = 0 for all x ∈ R, where n, s ≥ 0 and r ≥ 1
are fixed integers. Then d maps R into its center.

Corollary 3.5. Let R be a 2-torsion free semiprime ring, d a non-zero
derivation of R such that [x, d(x)]t = 0 for all x ∈ R, where t ≥ 0 is a fixed integer.
Then d maps R into its center.
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