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EQUIVALENCE RELATIONS OF n-NORMS ON A VECTOR SPACE
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and Hendra Gunawan

Abstract. A vector space can be equipped with more than one n-norm. In such a case, an
equivalence relation of n-norms is usually studied. Here we discuss and present some results on
several equivalence relations of n-norms which may be defined on a vector space. In particular,
our results correct an error that we found in B.S. Reddy, H. Dutta, [On equivalence of n-norms in
n-normed spaces, preprint, http://www.akamaiuniversity.us/PJST11 1 233.pdf, March 7, 2011].
We also discuss an equivalence relation of n-norms on finite dimensional spaces.

1. Introduction

Let X be a (real) vector space of dimension at least n. An n-norm on X is a
mapping ‖·, . . . , ·‖ : Xn → R which satisfies the following four conditions:

(N1) ‖x1, . . . , xn‖ = 0 if and only if x1, . . . , xn are linearly dependent;

(N2) ‖x1, . . . , xn‖ is invariant under permutation;

(N3) ‖αx1, . . . , xn‖ = |α| ‖x1, . . . , xn‖ for α ∈ R;

(N4) ‖x1 + x′1, x2, . . . , xn‖ ≤ ‖x1, x2, . . . , xn‖+ ‖x′1, x2, . . . , xn‖.
The pair (X, ‖·, . . . , ·‖) is called an n-normed space. Note that in this space,

we have ‖x1 + y, x2, . . . , xn‖ = ‖x1, x2, . . . , xn‖ for any y = α2x2 + · · ·+ αnxn.

The theory of n-normed spaces was developed by S. Gähler [1–4] in the 1960’s.
See also [7] for many properties of n-normed spaces.

To give some examples, one may check that for 1 ≤ p ≤ ∞, the following
function

‖x, y‖p :=
[
1
2

d∑
i=1

d∑
j=1

[
abs

∣∣∣∣
xi xj

yi yj

∣∣∣∣
]p]1/p

,
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where x = (x1, . . . , xd) and y = (y1, . . . , yd), defines a 2-norm on Rd (d ≥ 2). In
general, if X is a normed space, then, according to Gähler, the following function

‖x1, . . . , xn‖G := sup
fi∈X′, ‖fi‖≤1

i=1,...,n

∣∣∣∣∣∣∣

f1(x1) · · · f1(xn)
...

. . .
...

fn(x1) · · · fn(xn)

∣∣∣∣∣∣∣
defines an n-norm on X. (Here X ′ denotes the dual of X, which consists of bounded
linear functionals on X.) Moreover, if (X, 〈·, ·〉) is an inner product space, then the
following function

‖x1, . . . , xn‖S :=

∣∣∣∣∣∣∣

〈x1, x1〉 · · · 〈x1, xn〉
...

. . .
...

〈xn, x1〉 · · · 〈xn, xn〉

∣∣∣∣∣∣∣

1/2

defines an n-norm on X. Here ‖x1, . . . , xn‖S represents the volume of the n-
dimensional parallelepiped spanned by x1, . . . , xn in X.

As in [5], a vector space can be equipped with several n-norms. In such a
case, we may have an equivalence relation between them. We found that several
equivalence relations of n-norms may be defined on a given vector space. The aim
of this paper is to study the relationship between these equivalence relations. In
particular, our results correct the error made in [9]. An equivalence relation of
n-norms on finite dimensional spaces will also be discussed.

2. Main results

From now on, let X be a vector space (of dimension at least n) unless otherwise
stated, and suppose that ‖·, . . . , ·‖1 and ‖·, . . . , ·‖2 are two n-norms on X.

Definition 2.1. ‖·, . . . , ·‖1 and ‖·, . . . , ·‖2 are equivalent of type 1 (in short,
E1) if there are constants A < B such that

A ‖x1, x2, . . . , xn‖1 ≤ ‖x1, x2, . . . , xn‖2 ≤ B ‖x1, x2 . . . , xn‖1
for every x1, x2, . . . , xn ∈ X.

For example, on the space `p of p-summable sequences (of real numbers), the
following two n-norms:

‖x1, . . . , xn‖′p := sup
zi∈`p′ , ‖zi‖p′≤1

i=1,...,n

∣∣∣∣∣∣∣

∑
x1jz1j · · · ∑

x1jznj

...
. . .

...∑
xnjz1j · · · ∑

xnjznj

∣∣∣∣∣∣∣

where 1
p + 1

p′ = 1, and

‖x1, . . . , xn‖p :=
[

1
n!

∑
j1

· · ·∑
jn

[
abs

∣∣∣∣∣∣∣

x1j1 · · · xnj1
...

. . .
...

x1jn · · · xnjn

∣∣∣∣∣∣∣

]p]1/p

,

are equivalent of type 1 (see [6, 8, 10]).
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Recall that for n = 1, two norms ‖ · ‖1 and ‖ · ‖2 on X are equivalent if there
constants A < B such that for every x ∈ X we have

A ‖x‖1 ≤ ‖x‖2 ≤ B ‖x‖1.
Consequently, if ‖ · ‖1 and ‖ · ‖2 are equivalent, then the convergence of a sequence
in the norm ‖ · ‖1 implies the convergence in ‖ · ‖2, and vice versa—that is, for any
sequence {x(k)} and a vector x in X, we have

lim
k→∞

‖x(k)− x‖1 = 0 ⇐⇒ lim
k→∞

‖x(k)− x‖2 = 0.

We say that two norms are sequentially equivalent if the convergence in one norm
implies the convergence in another norm. The statement in the previous paragraph
says that if two norms are equivalent, then they must be sequentially equivalent.
One may verify that the converse of this statement is also true: if two norms are
sequentially equivalent, then they must be equivalent.

Now, in an n-normed space (X, ‖·, . . . , ·‖), a sequence {x(k)} is said to converge
to x in X if

lim
k→∞

‖x(k)− x, x2, . . . , xn‖ = 0

for every x2, . . . , xn ∈ X. With this notion of convergence of a sequence in an
n-normed space, we have the following equivalence relation.

Definition 2.2. ‖·, . . . , ·‖1 and ‖·, . . . , ·‖2 are sequentially equivalent of type 1
(in short, SE1) if the convergence of a sequence in ‖·, . . . , ·‖1 implies the convergence
in ‖·, . . . , ·‖2, and vice versa.

It is easy to see that E1 implies SE1. Recently, B.S. Reddy and H. Dutta
stated that the converse holds, that is, SE1 implies E1 (see [9, Theorem 1). The
proof, however, contains a flaw, which we shall indicate below.

Suppose that ‖·, . . . , ·‖1 and ‖·, . . . , ·‖2 are not E1. Then, without loss of
generality, we may assume that one of the following holds: there is no constant
A > 0 such that

A ‖x1, . . . , xn‖1 ≤ ‖x1, . . . , xn‖2
for every x1, . . . , xn ∈ X; or there is no constant B > 0 such that

‖x1, . . . , xn‖1 ≤ B ‖x1, . . . , xn‖2
for every x1, . . . , xn ∈ X. Suppose that the former holds. Then, Reddy and Dutta
argued that, for every k ∈ N, there exists x(k) ∈ X such that

1
k
‖x(k), x2, . . . , xn‖1 > ‖x(k), x2, . . . , xn‖2. (1)

They then defined y(k) := 1√
k

x(k)
‖x(k),x2,...,xn‖2 , k ∈ N, and claimed that {y(k)}

converges to 0 in ‖·, . . . , ·‖2 but at the same time it does not converge in ‖·, . . . , ·‖1.
From this, they concluded that the two n-norms are not SE1.
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As we clearly see, they missed the fact that the vectors x2, . . . , xn that satisfy
(1) must also depend on k. Therefore, their claim about the convergence of {y(k)}
is not valid, and so their conclusion about the two norms is not justified.

To fix the situation, we introduce two more equivalence relations.

Definition 2.3. ‖·, . . . , ·‖1 and ‖·, . . . , ·‖2 are equivalent of type 2 (in short,
E2) if for every x2, . . . , xn ∈ X, there are constants A < B such that

A ‖x1, x2, . . . , xn‖1 ≤ ‖x1, x2, . . . , xn‖2 ≤ B ‖x1, x2, . . . , xn‖1
for every x1 ∈ X (especially for x1 ∈ X \ span {x2, . . . , xn}).

Definition 2.4. ‖·, . . . , ·‖1 and ‖·, . . . , ·‖2 are sequentially equivalent of type
2 (in short, SE2) if for every x2, . . . , xn ∈ X, we have

lim
k→∞

‖x(k), x2, . . . , xn‖1 = 0 ⇐⇒ lim
k→∞

‖x(k), x2, . . . , xn‖2 = 0.

Note that SE2 is different from SE1. Two n-norms ‖·, . . . , ·‖1 and ‖·, . . . , ·‖2
are SE1 means that

lim
k→∞

‖x(k), x2, . . . , xn‖1 = 0 for every x2, . . . , xn ∈ X

if and only if

lim
k→∞

‖x(k), x2, . . . , xn‖2 = 0 for every x2, . . . , xn ∈ X.

One can verify that SE2 implies SE1, but the converse is not guaranteed.
As for E2, we see that it is weaker than E1 (that is, E1 implies E2). Moreover,

we have the following theorem.

Theorem 2.5 ‖·, . . . , ·‖1 and ‖·, . . . , ·‖2 are E2 if and only if they are SE2.

Proof. Suppose that ‖·, . . . , ·‖1 and ‖·, . . . , ·‖2 are E2: for every x2, . . . , xn ∈ X,
there are constants A < B such that

A ‖x1, x2, . . . , xn‖1 ≤ ‖x1, x2, . . . , xn‖2 ≤ B ‖x1, x2, . . . , xn‖1
for every x1 ∈ X \ span {x2, . . . , xn}. Hence it follows that limk→∞ ‖x(k) −
x, x2, . . . , xn‖1 = 0 if and only if limk→∞ ‖x(k) − x, x2, . . . , xn‖2 = 0, that is,
‖·, . . . , ·‖1 and ‖·, . . . , ·‖2 are SE2.

Next, suppose that ‖·, . . . , ·‖1 and ‖·, . . . , ·‖2 are not E2, that is, there are
x2, . . . , xn in X such that one of the following holds: there is no constant A > 0
such that

A ‖x1, x2 . . . , xn‖1 ≤ ‖x1, x2, . . . , xn‖2
for every x1 ∈ X \ span {x2, . . . , xn}; or there is no constant B > 0 such that

‖x1, x2, . . . , xn‖1 ≤ B ‖x1, x2, . . . , xn‖2
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for every x1 ∈ X \ span {x2, . . . , xn}. Without loss of generality, suppose that the
former holds. Then, for every k ∈ N, we can find x(k) ∈ X \ span {x2, . . . , xn} such
that

1
k
‖x(k), x2, . . . , xn‖1 > ‖x(k), x2, . . . , xn‖2.

Define y(k) := 1√
k

x(k)
‖x(k),x2,...,xn‖2 , k ∈ N. Then we have

‖y(k), x2, . . . , xn‖2 =
1√
k
→ 0, as k →∞,

while

‖y(k), x2, . . . , xn‖1 =
1√
k

‖x(k), x2, . . . , xn‖1
‖x(k), x2, . . . , xn‖2 >

√
k →∞, as k →∞.

This tells us that ‖·, . . . , ·‖1 and ‖·, . . . , ·‖2 are not SE2.

Corollary 2.6. The following relationships between the four equivalence re-
lations hold:

E1 =⇒ SE1
⇓ ⇑
E2 ⇐⇒SE2

The following is a result on finite dimensional vector spaces.

Theorem 2.7. Let X be a vector space of finite dimension. If ‖·, . . . , ·‖1 and
‖·, . . . , ·‖2 are n-norms on X, then they must be E2.

Proof. Suppose that n ≤ dim(X) = d < ∞. For every linearly independent
set {x1, . . . , xn−1} ⊂ X, choose {xn, . . . , xd} such that {x1, x2, . . . , xd} is a basis
for X. Now consider the subspace S := span {xn, . . . , xd}. Then one may observe
that the following functions

‖x‖1 := ‖x, x1, . . . , xn−1‖1, x ∈ S,

and
‖x‖2 := ‖x, x1, . . . , xn−1‖2, x ∈ S,

define norms on S. Since S is of finite dimension, ‖ · ‖1 and ‖ · ‖2 are equivalent:
there are constants A < B such that

A ‖x‖1 ≤ ‖x‖2 ≤ B ‖x‖1
for every x ∈ S. Accordingly, we have

A ‖x, x1, . . . , xn−1‖1 ≤ ‖x, x1, . . . , xn−1‖2 ≤ B ‖x, x1, . . . , xn−1‖1
for every x ∈ S.
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Now, every z ∈ X can be written as z := x + y with x ∈ S and y = α1x1 +
· · ·+ αn−1xn−1, so that ‖z, x1, . . . , xn−1‖i = ‖x, x1, . . . , xn−1‖i for i = 1 and 2. It
thus follows from the previous inequalities that

A ‖z, x1, . . . , xn−1‖1 ≤ ‖z, x1, . . . , xn−1‖2 ≤ B ‖z, x1, . . . , xn−1‖1
for every z ∈ X. This proves that ‖·, . . . , ·‖1 and ‖·, . . . , ·‖2 are E2.

3. Concluding remarks

We have introduced some equivalence relations of n-norms on a vector space
and discussed some relationships among them, as in Corollary 2.6. At the present,
we do not know if the remaining relationships hold (for instance, whether SE1
implies E1 or not), nor we have counterexamples which show that they do not
hold.

In the previous section, we have also shown that all n-norms on a finite dimen-
sional vector space are equivalent of type 2. We conjecture that all n-norms on a
finite dimensional space are equivalent of type 1, but we have not been able to prove
it up to now. Nevertheless, if X is a two-dimensional space, say X := span{e1, e2},
and ‖·, ·‖1, ‖·, ·‖2 are two n-norms on X, then one may verify that the two n-norms
are equivalent. In fact, one can show that ‖x, y‖2 = A‖x, y‖1 with A = ‖e1,e2‖2

‖e1,e2‖1 .
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