n-NORMAL AND *n*-QUASINORMAL COMPOSITION AND WEIGHTED COMPOSITION OPERATORS ON $L^2(\mu)$

Anuradha Gupta and Neha Bhatia

Abstract. An operator T is called *n*-normal operator if $T^nT^* = T^*T^n$ and *n*-quasinormal operator if $T^nT^*T = T^*TT^n$. In this paper, the conditions under which composition operators and weighted composition operators become *n*-normal operators and *n*-quasinormal operators have been obtained in terms of Radon-Nikodym derivative h_n .

1. Introduction

Let H be the infinite dimensional complex Hilbert space and $\mathbb{B}(H)$ be the algebra of all bounded linear operators on H. An operator T is called *normal* if $TT^* = T^*T$. If T is a normal operator then Ker $T = \text{Ker } T^*$. An operator T is called *quasinormal* if $T(T^*T) = (T^*T)T$. Every normal operator is a quasinormal operator but converse need not be true. The unilateral shift operator on $\mathbb{B}(H)$ is quasinormal but not normal. An operator T is called *n-normal* [2] if $T^nT^* = T^*T^n$ for $n \in \mathbb{N}$. Also, in [2] Alzuraiqi and Patel proved that T is *n-normal* if and only if T^n is normal. i.e., $T^nT^{*n} = T^{*n}T^n$ for $n \in \mathbb{N}$. The class of *n*-normal operators is denoted by [nN]. An operator T is called *n-quasinormal* operator [1] if $T^nT^*T = T^*TT^n$ for $n \in \mathbb{N}$. The class of *n*-normal operator [1] if $T^nT^*T = T^*TT^n$ for $n \in \mathbb{N}$. The class of *n*-quasinormal operators is denoted by [nQN].

Let (X, Σ, μ) be a σ -finite measure space. A transformation T is said to be *measurable* if $T^{-1}(B) \in \Sigma$ for $B \in \Sigma$. A measurable transformation T is said to be *non-singular* if

$$\mu(T^{-1}(B)) = 0$$
 whenever $\mu(B) = 0$ for every $B \in \Sigma$.

If T is a measurable transformation then T^n is also a measurable transformation. If T is non-singular, then we say that μT^{-1} is absolutely continuous with respect to μ and hence $\mu(T^{-1})^n$ becomes absolutely continuous with respect to μ . Hence,

²⁰¹⁰ Mathematics Subject Classification: 47B20, 47B33, 47B38

Keywords and phrases: normal operator; quasinormal operator; *n*-normal operator; *n*-quasinormal operator; composition operator; weighted composition operator; conditional expectation operator; hyponormal operator; compact operator.

by Radon-Nikodym theorem there exists a unique non-negative essentially bounded measurable function h_n such that

$$\mu(T^{-1})^n(B) = \int_B h_n \, d\mu \quad \text{for } B \in \Sigma$$

and h_n is called the *Radon-Nikodym derivative* and is denoted by $d\mu(T^{-1})^n/d\mu$.

PROPOSITION 1.1. Change of Variables: Let X be a non-empty set and let Σ be a σ -algebra on X. Let μ and μT^{-1} be measures on Σ and let $h: X \to [0, \infty]$ be a measurable function. Then the following are equivalent:

- (i) μT^{-1} is absolutely continuous with respect to μ and h is Radon-Nikodym derivative of μT^{-1} with respect to μ .
- (ii) For every measurable function $f: X \to [0, \infty]$, the equality

$$\int_X f \, d\mu T^{-1} = \int_X f h \, d\mu$$

holds.

Let (X, Σ, μ) be a σ -finite measure space. Then the *conditional expectation* operator $E(\cdot | T^{-1}(\Sigma)) = E(f)$ is defined for each non-negative function f in L^p $(1 \le p < \infty)$ and is uniquely determined by the following set of conditions:

- (i) E(f) is $T^{-1}(\Sigma)$ measurable.
- (ii) If B is any $T^{-1}(\Sigma)$ measurable set for which $\int_B f d\mu$ converges then we have

$$\int_B f \, d\mu = \int_B E(f) \, d\mu.$$

The conditional expectation operator E has the following properties:

- (i) $E(f \cdot g \circ T) = (E(f))(g \circ T).$
- (ii) E is monotonically increasing, i.e., if $f \leq g$ a.e. then $E(f) \leq E(g)$ a.e.

(iii)
$$E(1) = 1$$

(iv) E(f) has the form $E(f) = g \circ T$ for exactly one Σ -measurable function g provided that the support of g lies in the support of h which is given by

$$\sigma(h) = \{x : h(x) \neq 0\}.$$

E is the projection operator onto the closure of the range of the composition operator C_T on $L^2(\mu)$.

Let ϕ be an essentially bounded function. The multiplication operator M_{ϕ} on the space $L^2(\mu)$ induced by ϕ is given by

$$M_{\phi}f = \phi f \quad \text{for } f \in L^2(\mu)$$

Let T be a measurable transformation on X. The composition operator C_T on the space $L^2(\mu)$ is given by

$$C_T f = f \circ T$$
 for $f \in L^2(\mu)$

Let ϕ be a complex-valued measurable function then the weighted composition operator $W_{\phi,T}$ on the space $L^2(\mu)$ induced by ϕ and T is given by

$$W_{\phi,T}f = \phi \cdot f \circ T \quad \text{for } f \in L^2(\mu).$$

In this paper, we study *n*-normal composition operators, *n*-quasinormal composition operators and weighted composition operators in terms of Radon-Nikodym derivative and expectation operators. We have derived the condition under which the product of two *n*-normal composition operators is also an *n*-normal composition operator.

2. *n*-normal composition operators and *n*-quasinormal composition operators

Let C_T be the composition operator on $L^2(\mu)$. Then the adjoint C_T^* is given by $C_T^* f = hE(f) \circ T^{-1}$ for f in $L^2(\mu)$.

The following lemma [4, 7] plays a significant role in the subsequent results.

LEMMA 2.1. Let P be the projection of $L^2(X, \Sigma, \mu)$ onto $\overline{R(C_T)}$. Then

- (i) $C_T^*C_T f = hf$ and $C_T C_T^* f = (h \circ T)Pf \forall f \in L^2(\mu)$.
- (ii) $\overline{R(C_T)} = \{ f \in L^2(\mu) : f \text{ is } T^{-1}(\Sigma) \text{ measurable} \}.$
- (iii) If f is T⁻¹(Σ) measurable and g and fg belong to L²(μ), then P(fg) = fP(g), (f need not be in L²(μ)).
 Also, for k ∈ N,
- (iv) $(C_T^* C_T)^k f = h^k f.$
- (v) $(C_T C_T^*)^k f = (h \circ T)^k P(f).$
- (vi) E is the identity operator on $L^2(\mu)$ if and only if $T^{-1}(\Sigma) = \Sigma$.

The following theorem characterizes the n-normal composition operators.

THEOREM 2.2 Let C_T be a composition operator on $L^2(\mu)$. Then the following statements are equivalent:

- (i) C_T is n-normal operator.
- (ii) $h_n \circ T^n E(f) = h_n f$.

Proof. For $f \in L^2(\mu)$

 $C_T^n C_T^{*n} f = C_T^n (h_n . E(f) \circ T^{-n}) = (h_n . E(f) \circ T^{-n}) \circ T^n = h_n \circ T^n . E(f).$

Also,

$$C_T^{*n}C_T^n f = C_T^{*n}(f \circ T^n) = h_n \cdot E(f \circ T^n) \circ T^{-n} = h_n f$$

If C_T is *n*-normal composition operator then

$$C_T^n C_T^{*n} = C_T^{*n} C_T^n \iff h_n \circ T^n E(f) = h_n f. \quad \blacksquare$$

COROLLARY 2.3. If $T^{-1}\Sigma = \Sigma$, then C_T is n-normal operator if and only if $h_n \circ T^n = h_n$.

THEOREM 2.4. If C_T is a composition operator on $L^2(\mu)$, then the following statements are equivalent:

(i) C_T is n-normal.

(ii) $||f \circ T^n|| = ||h_n E(f) \circ T^{-n}||$ for $f \in L^2(\mu)$.

COROLLARY 2.5. If C_T is the composition operator and C_T^* is its adjoint, then the following statements are equivalent:

- (i) C_T is n-normal operator.
- (ii) C_T^* is n-normal operator.
- (iii) $||f \circ T^n|| = ||h_n E(f) \circ T^{-n}||$ for $f \in L^2(\mu)$.

COROLLARY 2.6. If C_T is n-normal composition operator then $\operatorname{Ker}(C_T^n) = \operatorname{Ker}(C_T^{*n})$.

The following example shows that there exists a composition operator which is quasinormal but not *n*-normal operator for any $n \in \mathbb{N}$.

EXAMPLE 2.7. Let $\mathbb{X} = \mathbb{Z}_+$ with μ as the counting measure. Let T^n be the transformation defined as $T^n(j) = j - n$ for all $j \in \mathbb{N}$. Then C_T^n is a unilateral shift operator on l^2 which is quasinormal but not *n*-normal.

In [3], it has been shown that if $h \circ T \leq h$ then C_T^n is hyponormal for each $n \in \mathbb{N}$. Also, we know that if C_T is *n*-hyponormal and compact then C_T is *n*-normal.

EXAMPLE 2.8. Let $\{e_i\}_{i=-\infty}^{+\infty}$ be an orthonormal basis of H. Define T as

$$Te_{i} = \begin{cases} e_{i+1}, & \text{if } i \leq 0\\ 4e_{i+1}, & \text{if } i \geq 0 \end{cases} \quad \text{where} \quad b_{i} = \begin{cases} 1, & \text{if } i \leq 0\\ 4, & \text{if } i \geq 0 \end{cases}$$

Then $T^k e_i = b_{i,k} e_{i+k}$ where $|b_{i,k}| \leq |b_{i+1,k}|$. So C_T^k is hyponormal and is not compact. Thus C_T is not *n*-normal operator.

LEMMA 2.9. Let C_T , $M_h \in \mathbb{B}(L^2(\mu))$. Then $C_T^n M_h = M_h C_T^n$ if and only if $h = h \circ T^n$ a.e., where M_h is the multiplication operator induced by h.

THEOREM 2.10. If C_T and $C_S \in \mathbb{B}(L^2(\mu))$ are n-normal composition operators. Then the following statements are equivalent:

(i) $C_T^n C_S^n$ and $C_S^n C_T^n$ are normal operators.

(ii) $h_{S^nT^n} = h_{T^nS^n} = h_{S^n}h_{T^n}$ a.e., where $h_{S^nT^n}$, $h_{T^nS^n}$ are the Radon-Nikodym derivatives of $\mu(T^n \circ S^n)^{-1}$, $\mu(S^n \circ T^n)^{-1}$ with respect to μ , respectively.

Proof. (1) \Rightarrow (2).

For $f \in L^2(\mu)$ and using Proposition 1.1.,

$$\langle C_T^n C_S^n f, f \rangle = \int |f|^2 \circ S^n \circ T^n \, d\mu = \int |f|^2 \, d\mu (S^n \circ T^n)^{-1} = h_{S^n T^n}$$

Also,

$$\langle C_{S}^{n}, C_{T}^{n}f, f \rangle = \int |f|^{2} \circ T^{n} \circ S^{n} \, d\mu = \int |f|^{2} \, d\mu (T^{n} \circ S^{n})^{-1} = h_{T^{n}S^{n}} \, d\mu$$

If $C_T^n C_S^n$ is a normal operator then

$$(C_{T^n}C_{S^n})^*(C_{T^n}C_{S^n}) = (C_{T^n}C_{S^n})(C_{T^n}C_{S^n})^*$$
$$C_{S^n}^*C_{T^n}^*C_{T^n}C_{S^n} = C_{T^n}C_{S^n}C_{S^n}^*C_{T^n}^*$$
$$C_{S^n}^*C_{S^n}M_{h_{T^n}} = C_{T^n}M_{h_{S^n}}C_{T^n}^*$$
$$M_{h_{T^n}}M_{h_{S^n}} = M_{h_{S^n}}M_{h_{T^n}}.$$

Also,

$$M_{h_{T^nS^n}} = (C_{T^n}C_{S^n})^*(C_{T^n}C_{S^n}) = C_{S^n}^*C_{T^n}^*C_{T^n}C_{S^n}$$
$$= C_{S^n}^*M_{h_{T^n}}C_{S^n} = C_{S^n}^*C_{S^n}M_{h_{T^n}} = M_{h_{S^n}}M_{h_{T^n}}.$$

Similarly, $M_{h_{S^nT^n}} = M_{h_{T^n}} M_{h_{S^n}}$.

 $(2) \Rightarrow (1)$ is obvious.

COROLLARY 2.11. If C_T is n-normal operator then any positive power of C_T is also n-normal.

The following theorem follows from the definition of the n-quasinormal operator.

THEOREM 2.12. Let $C_T \in \mathbb{B}(L^2(\mu))$ be a composition operator. Then C_T is n-Quasinormal operator if and only if it commutes with the multiplication operator M_h induced by h.

COROLLARY 2.13. Let $C_T \in \mathbb{B}(L^2(\mu))$ be a composition operator. Then C_T is n-quasinormal operator if and only if it $h \circ T^n = h$ a.e. for $n \in \mathbb{N}$.

THEOREM 2.14. Let $C_T \in \mathbb{B}(L^2(\mu))$ be a composition operator. Then C_T^* is n-quasinormal operator then $h = h \circ T^n$.

Proof. Suppose that C_T^* is *n*-quasinormal. Then

$$C_T^{*n}(C_T^*C_T) = (C_T^*C_T)C_T^{*n}.$$

By taking adjoint on both the sides, we get

$$C_T^* C_T C_T^n = C_T^n C_T^* C_T$$
$$M_h C_T^n = C_T^n M_h$$
$$M_h C_T^n = M_{h \circ T^n} C_T^n.$$

Hence, $h = h \circ T^n$ a.e.

COROLLARY 2.15. Let $C_T \in \mathbb{B}(L^2(\mu))$ be a composition operator. Then the following statements are equivalent:

(i) C_T is n-quasinormal operator.

- (ii) C_T^* is n-quasinormal operator.
- (iii) $h = h \circ T^n \ a.e.$

3. *n*-normal weighted composition operators and *n*-quasinormal weighted composition operators

Let (X, Σ, μ) be a σ -finite measure space and $W \equiv W_{\phi,T}$ be the weighted composition operator on $L^2(\mu)$ induced by the complex valued function ϕ and a measurable transformation T. The adjoint W^* of W is given by $W^*f = hE(\phi f) \circ T^{-1}$ for f in $L^2(\mu)$. For a natural number n, we put $\phi_n = \phi.(\phi \circ T).(\phi \circ T^2) \cdots (\phi \circ T^{(n-1)})$. For $f \in L^2(\mu)$, $W^n f = \phi_n.f \circ T^n$ and $W^{*n} f = h_n.E(\phi_n.f) \circ T^{-n}$.

368

- (i) W is n-normal operator.
- (ii) $\phi_n(h_n \circ T^n.E(\phi_n f)) = h_n.E(\phi_n^2) \circ T^{-n}f.$

Proof. For $f \in L^2(\mu)$,

$$\begin{split} W^n W^{*n} f &= W^n(h_n.E(\phi_n f) \circ T^{-n}) = \phi_n(h_n.E(\phi_n f) \circ T^{-n}) \circ T^n \\ &= \phi_n(h_n \circ T^n.E(\phi_n f)). \end{split}$$

Also,

$$W^{*n}W^n f = W^{*n}(\phi_n \cdot f \circ T^n) = h_n \cdot E(\phi_n^2 \cdot f \circ T^n) \circ T^{-n}$$
$$= h_n \cdot E(\phi_n^2) \circ T^{-n} f.$$

Suppose that W is a n-normal weighted composition operator. Then

$$\begin{aligned} \phi_n h_n. E(\phi_n f) \circ T^{-n} &= h_n. E(\phi_n^2. f \circ T^n) \circ T^{-n} \\ \iff & \phi_n(h_n \circ T^n. E(\phi_n f)) = h_n. E(\phi_n^2) \circ T^{-n} f. \end{aligned}$$

COROLLARY 3.2. Let W be a weighted composition operator on $L^2(\mu)$. Then the following statements are equivalent:

- (i) W is n-normal operator.
- (ii) W^* is n-normal operator.
- (iii) $\phi_n(h_n \circ T^n.E(\phi_n f)) = h_n.E(\phi_n^2)f$ for $f \in L^2(\mu)$.

PROPOSITION 3.3. For $\phi \geq 0$,

- (i) $W^*Wf = hE[(\phi^2)] \circ T^{-1}f.$
- (ii) $WW^*f = \phi(h \circ T)E(\phi f).$

THEOREM 3.4. Let W be a weighted composition operator on $L^2(\mu)$. Then the following statements are equivalent:

(i) W is n-quasinormal operator.

(ii)
$$\phi_n h.E(\phi^2) \circ T^{-1}.f \circ T^n = h.E(\phi_{n+2}) \circ T^{-1}.f \circ T^n.$$

Proof. For $f \in L^{2}(\mu)$, $W^{n}(W^{*}W)f = W^{n}(h.E(\phi^{2}) \circ T^{-1}f) = \phi_{n}h.E(\phi^{2}) \circ T^{-1}.f \circ T^{n}.$

Also,

$$\begin{split} (W^*W)W^nf &= (W^*W)(\phi_n.f \circ T^n) = W^*(\phi_{n+1}f \circ T^{n+1}) \\ &= h.E(\phi_{n+2}.f \circ T^{n+1}) \circ T^{-1} = h.E(\phi_{n+2}) \circ T^{-1}.f \circ T^n. \end{split}$$

Suppose that W is a n-quasinormal operator. Then

$$\begin{split} W^n(W^*W) &= (W^*W)W^n\\ \phi_n h. E(\phi^2) \circ T^{-1}. f \circ T^n &= h. E(\phi_{n+2}) \circ T^{-1}. f \circ T^n. \end{split}$$

THEOREM 3.5. Let W be a weighted composition operator on $L^2(\mu)$. Then the following statements are equivalent:

(i) W^* is n-quasinormal operator.

(ii)
$$h_n \cdot E(\phi_n \cdot hE(\phi^2) \circ T^{-1} \cdot f) = h \circ T^{-1} \cdot E(\phi^2 \cdot h_n E(\phi_n \cdot f) \cdot f)$$

Proof.

$$W^{*n}(W^*W)f = W^{*n}(h.E((\phi^2) \circ T^{-1}.f))$$

= $h_n.E(\phi_n.hE(\phi^2) \circ T^{-1}.f) \circ T^{-n}.$

Also,

$$\begin{split} (W^*W)W^{*n}f &= (W^*W)(h_n.E(\phi_n.f) \circ T^{-n}) \\ &= W^*(\phi.(h_n.E(\phi_n.f)) \circ T^{-n} \circ T)) \\ &= h.E(\phi^2.h_n.E(\phi_n.f) \circ T^{-n} \circ T \circ T^{-1} \\ &= h \circ T^{-1}.E(\phi^2.h_nE(\phi_n.f) \circ T^{-n}. \end{split}$$

Suppose that W^* is a *n*-quasinormal weighted composition operator. Then

$$W^{*n}(W^*W) = (W^*W)W^{*n}$$

$$h_n.E(\phi_n.hE(\phi^2) \circ T^{-1}.f) = h \circ T^{-1}.E(\phi^2.h_nE(\phi_n.f). \quad \bullet$$

REFERENCES

- O. Ahmed and M.S. Ahmed, On the class of n-power quasi-normal operators on Hilbert space, Bull. Math. Anal. Appl. 2 (2011), 213–228.
- [2] S.A. Alzuraiqi and A.B. Patel, On n-normal operators, General Math. Notes 1 (2010), 61–73.
- [3] P. Dibrell and J.T. Campbell, Hyponormal powers of composition operators, Proc. Amer. Math. Soc. 102 (1988), 914–918.
- [4] D.J. Harrington and R. Whitley, Seminormal composition operator, J. Operator Theory 11 (1981), 125–135.
- [5] J. Campbell and J. Jamison, On some classes of weighted composition operators, Glasgow Math.J. 32 (1990), 82–94.
- [6] S. Panayappan, D. Senthilkumar and K. Thirugnanasambandam, A note on powers of phyponormal and product of quasinormal composition operators, Int. J. Math. Anal. 3 (2009), 49–54.
- [7] R.K. Singh, Compact and quasinormal composition operators, Proc. Amer. Math. Soc. 45 (1974), 80–82.

(received 30.03.2013; available online 15.11.2013)

Department of Mathematics, Delhi College of Arts and Commerce, University of Delhi, Delhi 110023, India

E-mail: dishna2@yahoo.in

Department of Mathematics, University of Delhi, Delhi 110007, India

E-mail: nehaphd@yahoo.com

370