COMPACT FAMILIES AND CONTINUITY OF THE INVERSE

Brian L. Davis

Abstract. We generalize a topological game introduced by Kenderov, Kortezov and Moors and use it to establish conditions under which a paratopological group is a topological group.

1. Introduction

A paratopological group is a group equipped with a topology which makes multiplication continuous. In this paper we consider the much studied question of when a paratopological group is a topological group. At this juncture a number of recent results should be mentioned, including [1-4, 13, 14].

A natural starting point for our current research is [9], where Ellis proved the following theorem.

THEOREM 1.1. Let X be an paratopological group with a locally compact Hausdorff topology. Then X is a topological group.

Subsequent results from [7] and [16] were summarized by Pfister in [15], wherein new proofs were constructed that rely on the following lemma.

LEMMA 1.2. Let X be a regular paratopological group and \mathcal{U} be the neighbourhood filter of the neutral element.

- (i) For each $U \in \mathcal{U}$ there exists a sequence $(U_n)_{n \in \mathbb{N}}$ of elements of \mathcal{U} such that $\overline{U}_1^2 \subset U, \ \overline{U}_{n+1}^2 \subset U_n$ for each $n \in \mathbb{N}$.
- (ii) Suppose $(U_n)_{n \in \mathbb{N}}$ is chosen as in (i), $x_n \in U_n$, $y_k := x_1 \cdot x_2 \cdots x_k$ and $(y_k)_{k \in \mathbb{N}}$ has a cluster point. Then for each $n \in \mathbb{N}$ there exists k > n such that $x_k^{-1} \in U_n$.

Later, in [10], Kenderov, Kortezov and Moors defined a topological game and use it to construct *strongly Baire* spaces which, by way of the above lemma, are then used to improve upon the earlier results of Pfister et al. This topological

430

²⁰¹⁰ Mathematics Subject Classification: 54D30

 $Keywords\ and\ phrases:\ cover;\ filter;\ compact\ filter;\ topological\ group;\ paratopological\ group;\ topological\ game$

game implicitly defines a class of families that are, in the language of [8], countably compact relative to their intersection. In what follows, we establish conditions under which a paratopological group is a topological group. In particular, we show that Pfister's lemma, together with its assumption of regularity, is superfluous.

2. Compact families

Let (X, τ) be a topological space. If $A \subset X$, then \overline{A} is the closure of A, $A^{\circ} = X \setminus \overline{X \setminus A}$ is the interior of A, and $A' = X \setminus A$. We use script to denote families of nonempty subsets of X and blackboard bold to denote classes of families.

The *adherence of* a family \mathcal{B} is defined by

$$adh\mathcal{B} = \bigcap \overline{\mathcal{B}} = \bigcap \{\overline{B} : B \in \mathcal{B}\}.$$

If \mathcal{B} is a filter, its *adherent points* (i.e., those in *adh* \mathcal{B}) are called *cluster points*. If \mathcal{B} is a filter base, its adherent points are the cluster points of the filter generated by \mathcal{B} . A subbase of a filter may have adherent points that are not the cluster points of the filter it generates.

Let \mathcal{A} be another family of subsets of X. We write $\mathcal{A}\#\mathcal{B}$, and say that \mathcal{A} meshes with \mathcal{B} , if $A \cap B \neq \emptyset$ for each $A \in \mathcal{A}$ and each $B \in \mathcal{B}$. We write $\mathcal{A} \geq \mathcal{B}$, and say that \mathcal{A} is finer than \mathcal{B} or that \mathcal{B} is coarser than \mathcal{A} , if for each $B \in \mathcal{B}$ there exists $A \in \mathcal{A}$ such that $A \subset B$.

Let \mathcal{P} be a family of subsets of X and $A \subset X$. We say that \mathcal{P} is a *cover* (resp. *overcover* of A) if $A \subset \bigcup \mathcal{P}$ (resp. $A \subset \bigcup \mathcal{P}^{\circ} = \bigcup \{P^{\circ} : P \in \mathcal{P}\}$).

Denote by \mathbb{P}_0 the class that consists of all finite subfamilies of all the members \mathcal{P} of a class \mathbb{P} . The family $\mathcal{P} \in \mathbb{P}$ is said to be *additive* if it is closed under finite unions, that is, if

$$\mathcal{P}=\mathcal{P}^\cup:=\{igl[\ igr]\mathcal{R}:\mathcal{R}\subset\mathcal{P},\mathcal{R}\in\mathbb{P}_0\}.$$

The class \mathbb{P} is said to be *additively saturated* if, for each $\mathcal{P} \in \mathbb{P}$, $\mathcal{P}^{\cup} \in \mathbb{P}$.

We refrain from using the 'prime' notation at the level of classes to denote complements. This makes it possible to write $\mathbb{P}' = \{\mathcal{P}' : \mathcal{P} \in \mathbb{P}\}$ without any risk of confusion.

We adopt the following notation:

- The symbol \mathcal{P}_* is used to denote the filter generated by the family of complements \mathcal{P}' only if \mathcal{P}' is a filter base (of \mathcal{P}_*). Only such filters are considered to be the filters *dual* to the class \mathbb{P} .
- $-\mathbb{P}_*$ denotes the class of dual filters. Note that if \mathbb{P} is additively saturated, this is the class of *all* filters generated by the families \mathcal{P}' in \mathbb{P}' . This explains the significance of the condition of additive saturation of \mathbb{P} .

The family \mathcal{B} is said to be \mathbb{P} -compact¹ relative to A if it satisfies the condition (i) or (ii) of the following theorem.

¹Or \mathbb{P} -compactoid, see [11].

DUALITY 2.1. Consider the following conditions.

- (i) For each overcover $\mathcal{P} \in \mathbb{P}$ of A there exists $B \in \mathcal{B}$ and a finite subset \mathcal{R} of \mathcal{P} covering B (i.e., such that $B \subset \bigcup \mathcal{R}$).
- (ii) For each $\mathcal{P} \in \mathbb{P}$ such that for each finite subset \mathcal{R} of \mathcal{P} the family \mathcal{B} meshes with $\bigcap \mathcal{R}', \mathcal{P}'$ has an adherent point in A.
- (iii) For each filter $\mathcal{P}_* \in \mathbb{P}_*$ meshing with $\mathcal{B}, \mathcal{P}_*$ has a cluster point in A.

Then $(i) \Leftrightarrow (ii) \Rightarrow (iii)$ and, if \mathbb{P} is additively saturated, all conditions are equivalent.

Let \mathbb{F}_{ω} be the class of filters that is dual to the class of countable families of subsets of X. Clearly, these are the filters on X admitting a countable base. This class is additively saturated so that a family \mathcal{B} is \mathbb{F}_{ω} -compact relative to its intersection if and only if each filter $\mathcal{J} \in \mathbb{F}_{\omega}$ meshing with \mathcal{B} has a cluster point in $\{\bigcap B : B \in \mathcal{B}\}$. The interested reader is referred to [8] for the proof of the above theorem and further results on compact families.

3. Continuity of the inverse

We define the $\mathcal{G}(X)$ game played between players α and β on a topological space (X, τ) as follows: Player β goes first and chooses a non-empty open subset $B_1 \subseteq X$. Player α responds by choosing an non-empty open subset $A_1 \subseteq B_1$. Player β now chooses $B_2 \subseteq A_1$. Continuing in this manner, the players produce a sequence $(A_n, B_n)_{n \in \mathbb{N}}$ of open sets called a play of the $\mathcal{G}(X)$ game. Player α wins the play if the filter generated by $\{A_n : n \in \mathbb{N}\}$ is \mathbb{F}_{ω} -compact relative to its intersection. Otherwise, β wins the play.

A strategy $\sigma = (\sigma_n)_{n \in \mathbb{N}}$ for player β is a sequence of τ -valued functions that specifies the choice of player β for all possible outcomes. A strategy σ is a *winning* strategy for player β if each play of the game according to the strategy results in a win for player β . The interesting case occurs when β does not have a winning strategy in the $\mathcal{G}(X)$ game.

THEOREM 3.1. Let X be a paratopological group in which β does not have a winning strategy in the $\mathcal{G}(X)$ game. Then X is a topological group.

Proof. It suffices to show that the inverse operation is quasi-continuous at the neutral element [10, Lemma 4]. Suppose not and let $U \in \mathcal{U}$ such that $V_{\alpha}^{-1} \not\subseteq U$ for each open set $V_{\alpha} \subseteq U$. We proceed by induction to define a strategy σ for the player β in the $\mathcal{G}(X)$ game.

Base step. Set $x_1 = e$, $U_1 = U$, and let $\sigma_1(\emptyset) = x_1 \cdot U_1$.

Inductive step. Let $y_k = x_1 \cdot x_2 \cdots x_k$ and suppose that for each sequence $(A_1, \cdots, A_{j-1}), 1 \leq j \leq n$, we have defined x_j, U_j and $\sigma_j(A_1, A_2, \cdots, A_{j-1}) = (y_j) \cdot U_j$ such that:

(i) $x_j \in (y_{j-1})^{-1} \cdot A_{j-1}$ and $x_j^{-1} \notin U$,

(ii) $(y_j) \cdot U_j \subseteq A_{j-1}$,

(iii) $U_j \cdot U_j \subseteq U_{j-1}$.

For each sequence (A_1, A_2, \dots, A_n) of length n we choose x_{n+1} and $U_{n+1} \subseteq U$ such that:

- (i) $x_{n+1} \in (y_n)^{-1} \cdot A_n$ and $x_{n+1}^{-1} \notin U$,
- (ii) $(y_{n+1}) \cdot U_{n+1} \subseteq A_n$,
- (iii) $U_{n+1} \cdot U_{n+1} \subseteq U_n$.

We define $\sigma_{n+1}(A_1, A_2, \dots, A_n) = y_{n+1} \cdot U_{n+1}$. Since player β does not have a winning strategy in the $\mathcal{G}(X)$ game there is a play $(A_n, B_n)_{n \in \mathbb{N}}$ where player α wins, so that the filter generated by $\{A_n : n \in \mathbb{N}\}$ is \mathbb{F}_{ω} -compact relative to its intersection. Note that the family $\{y_n \cdot U_n : n \in \mathbb{N}\}$ is finer than $\{A_n : n \in \mathbb{N}\}$ and also generates a filter that is \mathbb{F}_{ω} -compact relative to its intersection.

The sequence $(y_n)_{n\in\mathbb{N}}$ satisfies $y_{n+1} \in y_n \cdot U_n$ so the filter (base) associated with the sequence, and hence the sequence itself², must have a cluster point $y \in$ $\{\bigcap y_n \cdot U_n : n \in \mathbb{N}\}$. Choose $U_j \in \{U_n : n \in \mathbb{N}\}$ and k > j such that $y_k \in y \cdot U_j$. Then $x_{k+1}^{-1} = y_{k+1}^{-1} \cdot y_k \in y_{k+1}^{-1} \cdot y \cdot U_j$.

We claim $y_{k+1}^{-1} \cdot y \in U_{k+1}$. Indeed, $y \in \{\bigcap y_n \cdot U_n : n \in \mathbb{N}\} \Rightarrow y \in y_n \cdot U_n$ for each $n \in \mathbb{N}$ so that $y_{k+1}^{-1} \cdot y \in y_{k+1} \cdot y_n \cdot U_n$ for each $n \in \mathbb{N}$ as well. It follows that $y_{k+1}^{-1} \cdot y \in y_{k+1}^{-1} \cdot y_{k+1} \cdot U_{k+1} = (y_{k+1}^{-1} \cdot y_{k+1}) \cdot U_{k+1} = U_{k+1}$.

Clearly, $x_{k+1}^{-1} \in y_{k+1}^{-1} \cdot y \cdot U_j = (y_{k+1}^{-1} \cdot y) \cdot U_j \subseteq U_{k+1} \cdot U_j \subseteq U_j \cdot U_j \subseteq U$. This contradiction establishes the continuity of the inverse.

4. Strongly Baire spaces

Let D be a subset of X. Consider the $\mathcal{G}_S(D)$ game, played between players α and β on a topological space (X, τ) , defined as follows: Player β goes first and chooses a non-empty open subset $B_1 \subseteq X$. Player α responds by choosing an non-empty open subset $A_1 \subseteq B_1$. Player β now chooses $B_2 \subseteq A_1$. Continuing in this manner, the players produce a sequence $(A_n, B_n)_{n \in \mathbb{N}}$ of open sets called a play of the $\mathcal{G}_S(D)$ game. Player α wins the play if $\bigcap A_n \neq \emptyset$ and each sequence $(a_n)_{n \in \mathbb{N}}$ with $a_n \in A_n \cap D$ has a cluster point in X. Otherwise, β wins the play.

A topological space (X, τ) is strongly Baire [10, p. 158] if it is regular and there exists a dense subset D of X such that player β does not have a winning strategy in the $\mathcal{G}_S(D)$ game played on X.

We define the class $\mathbb{F}_{\omega} \vee D$ as the class of filters having a countable base consisting of elements of D and modify the $\mathcal{G}(X)$ game of Section 3 as follows: Player β wins a play $(A_n, B_n)_{n \in \mathbb{N}}$ of the $\mathcal{G}(D)$ game if the filter generated by $\{A_n : n \in \mathbb{N}\}$ is $\mathbb{F}_{\omega} \vee D$ -compact relative to its intersection.

PROPOSITION 4.1. Suppose X is a topological space and $(A_n)_{n \in \mathbb{N}}$ is a sequence of neighbourhoods linearly ordered by containment. The following are equivalent:

(i) Each sequence $(a_n)_{n \in \mathbb{N}}$ with $a_n \in A_n \cap D$ has a cluster point in X.

(ii) The filter generated by $\{A_n : n \in \mathbb{N}\}$ is $\mathbb{F}_{\omega} \vee D$ -compact relative to its adherence.

 $^{^{2}}$ See the article by Bartle, [5], for a rigorous examination of the relationship between cluster points of a sequence and the cluster points of its associated filter base.

B. L. Davis

Proof. Assume each sequence $(a_n)_{n \in \mathbb{N}}$ with $a_n \in A_n \cap D$ has a cluster point in X and let $\mathcal{J} \in \mathbb{F}_{\omega} \vee D$ be a filter meshing with the filter generated by $\{A_n : n \in \mathbb{N}\}$. Let $\{J_n : n \in \mathbb{N}\}$ be a countable base of \mathcal{J} and choose a_n so that $a_n \in A_n \cap J_n \cap D$ for each n. By assumption, $(a_n)_{n \in \mathbb{N}}$ has a cluster point. Clearly, this cluster point is contained in the adherence of the filter generated by $\{A_n : n \in \mathbb{N}\}$.

Now assume the filter generated by $\{A_n : n \in \mathbb{N}\}$ is $\mathbb{F}_{\omega} \vee D$ -compact relative to its adherence and let $(a_n)_{n \in \mathbb{N}}$ be a sequence such that $a_n \in A_n \cap D$ for each n. The filter associated with this sequence is an element of $\mathbb{F}_{\omega} \vee D$ meshing with the filter generated by $\{A_n : n \in \mathbb{N}\}$.

Recall that a point $x \in X$ is a *q*-point [12] if there exists a countable subfamily $\{A_n : n \in \mathbb{N}\}\$ of the neighbourhood filter $\mathcal{U}(x)$ such that each sequence $(a_n)_{n \in \mathbb{N}}$ with $a_n \in A_n$ has a cluster point in X. With D = X we obtain the following.

COROLLARY 4.2. Let $\mathcal{U}(x)$ be the neighbourhood filter of $x \in X$. The point x is a q-point if and only if there exists filter $\mathcal{J} \in \mathbb{F}_{\omega}$, $\mathcal{J} \leq \mathcal{U}(x)$ such that \mathcal{J} is \mathbb{F}_{ω} -compact relative to its adherence.

Proposition 4.1 allows us to reformulate the definition of a strongly Baire space. In particular, player α wins a play of the $\mathcal{G}_S(D)$ game if $\bigcap A_n \neq \emptyset$ and the filter generated by $\{A_n : n \in \mathbb{N}\}$ is $\mathbb{F}_{\omega} \vee D$ -compact relative to its adherence.

PROPOSITION 4.3. If X is a strongly Baire space, then there exists a dense subset D of X such that player β does not have a winning strategy in the $\mathcal{G}(D)$ game played on X.

Proof. Suppose X is regular and let $\sigma = (\sigma_n)_{n \in \mathbb{N}}$ be a winning strategy for β in the $\mathcal{G}(D)$ game played on X. It suffices to show that player β has a winning strategy $\gamma = (\gamma_n)_{n \in \mathbb{N}}$ in the $\mathcal{G}_S(D)$ game played on X.

Base step. Player β chooses $\sigma_1(\emptyset) = B_1 \subseteq X$ according to the winning strategy of the $\mathcal{G}(D)$ game and we define $\gamma_1(\emptyset) = \sigma_1(\emptyset) = B_1^S$.

Inductive step. Suppose that for each sequence of plays $(A_1^S, \dots, A_{j-1}^S), 1 \leq j \leq n$ we have defined $\gamma_j(A_1^S, A_2^S, \dots, A_{j-1}^S) = B_j^S$ such that $\sigma_j(A_1, \dots, A_{j-1}) = B_j$ and $\overline{A_j} \subseteq A_j^S \subseteq B_j = B_j^S$.

The space X is regular, so for each sequence of plays $(A_1^S, A_2^S, \dots, A_n^S)$ of length n we choose A_n such that $\overline{A_n} \subseteq A_n^S \subseteq B_n = B_n^S$ and define $B_{n+1}^S = \gamma_{n+1}(A_1^S, A_2^S, \dots, A_n^S)$ to be $B_{n+1} = \sigma_{n+1}(A_1, A_2, \dots, A_n)$.

Each play $(A_n, B_n)_{n \in \mathbb{N}}$ of the $\mathcal{G}(D)$ game results in a filter generated by $\{A_n : n \in \mathbb{N}\}$ that is not $\mathbb{F}_{\omega} \vee D$ -compact relative to $\bigcap_{n \in \mathbb{N}} A_n$. The filter generated by $\{A_n : n \in \mathbb{N}\}$ is finer than the filter generated by $\{A_n^S : n \in \mathbb{N}\}$ so that this filter also is not $\mathbb{F}_{\omega} \vee D$ -compact relative to $\bigcap_{n \in \mathbb{N}} A_n$.

Clearly, $\bigcap_{n \in \mathbb{N}} A_n \subseteq \bigcap_{n \in \mathbb{N}} \overline{A_n^S}$. Now suppose x is an element of $\bigcap_{n \in \mathbb{N}} \overline{A_n^S}$ but is not an element of $\bigcap_{n \in \mathbb{N}} A_n$. In this case, some element A_k of the family $\{A_n : n \in \mathbb{N}\}$ does not contain x. But $x \in \overline{A_{k+1}^S} \subseteq B_{k+1}^S = B_{k+1} \subseteq A_k$. This

contradiction establishes the equality of $\bigcap_{n\in\mathbb{N}}\overline{A_n^S}$ and $\bigcap_{n\in\mathbb{N}}A_n$ and shows that the filter generated by $\{A_n^S: n\in\mathbb{N}\}$ is not $\mathbb{F}_{\omega}\vee D$ -compact relative to $\bigcap_{n\in\mathbb{N}}\overline{A_n^S}$. We conclude that the strategy we have constructed for β in the $\mathcal{G}_S(D)$ game is a winning one.

The following result appears without proof in [10]. We choose to take a more pedestrian approach.

LEMMA 4.4. Suppose U and V are neighborhoods of the neutral element e in a paratopological group X such that $U \cdot U \subseteq V$ and D is any subset of X such that $D^{-1} \subseteq U$. Then $(\overline{D})^{-1} \subseteq V$.

Proof. Assume the result does not hold and choose $x \in \overline{D}$ such that $x^{-1} \notin V$. Then $x^{-1} \notin V \Rightarrow x^{-1} \notin U \Rightarrow x \cdot x^{-1} \notin x \cdot U \Rightarrow e \notin x \cdot U$. Now suppose there exists $y \in D \cap x \cdot U$. Then $y \in D \Rightarrow y^{-1} \in U \Rightarrow y \cdot y^{-1} \in x \cdot U \cdot U \Rightarrow e \in x \cdot U \cdot U \Rightarrow e \in x \cdot V$, a contradiction. But $D \cap x \cdot U = \emptyset \Rightarrow x \notin \overline{D}$.

THEOREM 4.5. Let (X, \cdot, τ) be a paratopological group and suppose there exists a dense subset D of X such that player β does not have a winning strategy in the $\mathcal{G}(D)$ game played on X. Then X is a topological group.

Proof. As before, it suffices to show that the inverse is quasi-continuous at the neutral element. Suppose not and find $U \in \mathcal{U}$ so that $D \cap V_{\alpha}^{-1} \notin U$ for each open $V_{\alpha} \subseteq U$ and player β does not have a winning strategy in the $\mathcal{G}(D)$ game. The above lemma makes this selection possible. Continue in a manner similar to the proof of Theorem 3.1 to obtain the result.

COROLLARY 4.6. Let (X, \cdot, τ) be a regular paratopological group.

- (i) If X is locally compact, then X is a topological group [9].
- (ii) If X is completely metrizable, then X is a topological group [16].
- (iii) If X is locally \check{C} ech-complete, then X is a topological group [7].
- (iv) If X is a strongly Baire space, then X is a topological group [10].

We conclude by providing an example of a topological space in which player β does not have a winning strategy in the $\mathcal{G}(D)$ game played on X and such that X is not strongly Baire.

EXAMPLE 4.7. A non-regular topological space in which player β does not have a winning strategy in the $\mathcal{G}(D)$ game played on X.

Let (\mathbf{R}, τ) be the set of real numbers with its usual topology. Let $A = \{1 \mid n : n \in \mathbb{N}\}$, $D = \mathbf{R} \setminus A$, and define a topology τ^* on the set \mathbf{R} such that $\tau \cup D$ is a subbase of τ^* . Note that (\mathbf{R}, τ^*) is not regular³. We claim that player β does not have a winning strategy in the $\mathcal{G}(D)$ game played on (\mathbf{R}, τ^*) . Indeed, for each choice $B_n \subseteq A_{n-1}$ for player β , player α responds by choosing $A_n \subseteq B_n$ such that

³The set $D = \mathbf{R} \setminus A$ is dense in (\mathbf{R}, τ) . See problem 20, page 138 in [6].

B. L. Davis

 $A_n \in \tau, \overline{A_n} \subseteq A_{n-1}$ and diam $A_n < 1 \setminus n$. The filter generated by $\{A_n : n \in \mathbb{N}\}$ is $\mathbb{F}_{\omega} \vee D$ -compact relative to its intersection, as required.

REFERENCES

- A. V. Arhangel'skii, M. M. Choban and P. S. Kenderov, Topological games and topologies on groups, Math. Maced. 8 (2010), 1–19.
- [2] A. V. Arhangel'skii, M. M. Choban and P. S. Kenderov, Topological games and continuity of group operations, Topology Appl. 157 (2010), 2542–2552.
- [3] A. V. Arhangel'skii and E. A. Reznichenko, Paratopological and semitopological groups versus topological groups, Topology Appl. 151 (2005), 107–119.
- [4] A. V. Arhangel'skii and M. G. Tkachenko, Topological Groups and Related Structures, Atlantic Press, Amsterdam/Paris, 2008.
- [5] Bartle, Nets to filters, Amer. Math. Monthly 62 (1955), 551-557.
- [6] N. Bourbaki, General Topology, Part 1, Addison-Wesley, Reading, 1966.
- [7] N. Brand, Another note on the continuity of the inverse, Arch. Math. 39 (1982), 241-245.
- [8] B.L. Davis and I. Labuda, Unity of compactness, Quaestiones Math. 30 (2007), 193–206.
- [9] R. Ellis, A note on the continuity of the inverse, Proc. Amer. Math. Soc. 8 (1957), 372–373.
- [10] P. Kenderov, I. Kortezov and W. Moors, *Topological games and topological groups*, Topology Appl. 109 (2001), 157–165.
- [11] I. Labuda, Compactoidness, Rocky Mountain J.Math. 36 (2) (2006), 555-574.
- [12] E. Michael, A note on closed maps and compact sets, Israel J. Math. 2 (1964), 173-176.
- [13] W. B. Moors, Any semitopological group that is homeomorphic to a product of Čech-complete spaces is a topological group Set-Valued Var. Anal., 2013.
- [14] W. B. Moors, Semitopological groups, Bouziad spaces and topological groups, Topology Appl. 160 (2013), 2038–2048.
- [15] H. Pfister, Continuity of the inverse, Proc. Amer. Math. Soc. 96 (1985), 312–314.
- [16] W. Zelasko, A theorem on B_0 division algebras, Bull. Acad. Polon. Sci. 8 (1960), 373–375.

(received 24.07.2013; in revised form 13.11.2013; available online 15.12.2013)

Department of Mathematics, Tusculum College, 60 Shiloh Road, Greeneville, TN, USA *E-mail*: bldavis@tusculum.edu