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COMPACT FAMILIES AND CONTINUITY OF THE INVERSE

Brian L. Davis

Abstract. We generalize a topological game introduced by Kenderov, Kortezov and Moors
and use it to establish conditions under which a paratopological group is a topological group.

1. Introduction

A paratopological group is a group equipped with a topology which makes
multiplication continuous. In this paper we consider the much studied question of
when a paratopological group is a topological group. At this juncture a number of
recent results should be mentioned, including [1–4, 13, 14].

A natural starting point for our current research is [9], where Ellis proved the
following theorem.

Theorem 1.1. Let X be an paratopological group with a locally compact Haus-
dorff topology. Then X is a topological group.

Subsequent results from [7] and [16] were summarized by Pfister in [15], wherein
new proofs were constructed that rely on the following lemma.

Lemma 1.2. Let X be a regular paratopological group and U be the neighbour-
hood filter of the neutral element.
(i) For each U ∈ U there exists a sequence (Un)n∈N of elements of U such that

U
2

1 ⊂ U , U
2

n+1 ⊂ Un for each n ∈ N.
(ii) Suppose (Un)n∈N is chosen as in (i), xn ∈ Un, yk := x1 · x2 · · ·xk and (yk)k∈N

has a cluster point. Then for each n ∈ N there exists k > n such that x−1
k ∈ Un.

Later, in [10], Kenderov, Kortezov and Moors defined a topological game and
use it to construct strongly Baire spaces which, by way of the above lemma, are
then used to improve upon the earlier results of Pfister et al. This topological
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game implicitly defines a class of families that are, in the language of [8], countably
compact relative to their intersection. In what follows, we establish conditions
under which a paratopological group is a topological group. In particular, we show
that Pfister’s lemma, together with its assumption of regularity, is superfluous.

2. Compact families

Let (X, τ) be a topological space. If A ⊂ X, then A is the closure of A,
A◦ = X \ X \A is the interior of A, and A′ = X \ A. We use script to denote
families of nonempty subsets of X and blackboard bold to denote classes of families.

The adherence of a family B is defined by

adhB =
⋂
B =

⋂
{B : B ∈ B}.

If B is a filter, its adherent points (i.e., those in adhB) are called cluster points. If
B is a filter base, its adherent points are the cluster points of the filter generated by
B. A subbase of a filter may have adherent points that are not the cluster points
of the filter it generates.

Let A be another family of subsets of X. We write A#B, and say that A
meshes with B, if A ∩ B 6= ∅ for each A ∈ A and each B ∈ B. We write A ≥ B,
and say that A is finer than B or that B is coarser than A, if for each B ∈ B there
exists A ∈ A such that A ⊂ B.

Let P be a family of subsets of X and A ⊂ X. We say that P is a cover (resp.
overcover of A) if A ⊂ ⋃P (resp. A ⊂ ⋃P◦ =

⋃{P ◦ : P ∈ P}).
Denote by P0 the class that consists of all finite subfamilies of all the members

P of a class P. The family P ∈ P is said to be additive if it is closed under finite
unions, that is, if

P = P∪ := {
⋃
R : R ⊂ P,R ∈ P0}.

The class P is said to be additively saturated if, for each P ∈ P, P∪ ∈ P.
We refrain from using the ‘prime’ notation at the level of classes to denote

complements. This makes it possible to write P′ = {P ′ : P ∈ P} without any risk
of confusion.

We adopt the following notation:
– The symbol P∗ is used to denote the filter generated by the family of comple-

ments P ′ only if P ′ is a filter base (of P∗). Only such filters are considered to
be the filters dual to the class P.

– P∗ denotes the class of dual filters. Note that if P is additively saturated, this
is the class of all filters generated by the families P ′ in P′. This explains the
significance of the condition of additive saturation of P.
The family B is said to be P-compact1 relative to A if it satisfies the condition

(i) or (ii) of the following theorem.

1Or P-compactoid, see [11].
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Duality 2.1. Consider the following conditions.
(i) For each overcover P ∈ P of A there exists B ∈ B and a finite subset R of P

covering B (i.e., such that B ⊂ ⋃R).
(ii) For each P ∈ P such that for each finite subset R of P the family B meshes

with
⋂R′, P ′ has an adherent point in A.

(iii) For each filter P∗ ∈ P∗ meshing with B, P∗ has a cluster point in A.
Then (i)⇔(ii)⇒(iii) and, if P is additively saturated, all conditions are equiv-

alent.

Let Fω be the class of filters that is dual to the class of countable families
of subsets of X. Clearly, these are the filters on X admitting a countable base.
This class is additively saturated so that a family B is Fω-compact relative to its
intersection if and only if each filter J ∈ Fω meshing with B has a cluster point in
{⋂ B : B ∈ B}. The interested reader is referred to [8] for the proof of the above
theorem and further results on compact families.

3. Continuity of the inverse

We define the G(X) game played between players α and β on a topological
space (X, τ) as follows: Player β goes first and chooses a non-empty open subset
B1 ⊆ X. Player α responds by choosing an non-empty open subset A1 ⊆ B1.
Player β now chooses B2 ⊆ A1. Continuing in this manner, the players produce
a sequence (An, Bn)n∈N of open sets called a play of the G(X) game. Player α
wins the play if the filter generated by {An : n ∈ N} is Fω-compact relative to its
intersection. Otherwise, β wins the play.

A strategy σ = (σn)n∈N for player β is a sequence of τ -valued functions that
specifies the choice of player β for all possible outcomes. A strategy σ is a winning
strategy for player β if each play of the game according to the strategy results in
a win for player β. The interesting case occurs when β does not have a winning
strategy in the G(X) game.

Theorem 3.1. Let X be a paratopological group in which β does not have a
winning strategy in the G(X) game. Then X is a topological group.

Proof. It suffices to show that the inverse operation is quasi-continuous at the
neutral element [10, Lemma 4]. Suppose not and let U ∈ U such that V −1

α * U
for each open set Vα ⊆ U . We proceed by induction to define a strategy σ for the
player β in the G(X) game.

Base step. Set x1 = e, U1 = U , and let σ1(∅) = x1 · U1.
Inductive step. Let yk = x1 · x2 · · ·xk and suppose that for each sequence

(A1, · · · , Aj−1), 1 ≤ j ≤ n, we have defined xj , Uj and σj(A1, A2, · · · , Aj−1) =
(yj) · Uj such that:
(i) xj ∈ (yj−1)−1 ·Aj−1 and x−1

j /∈ U ,
(ii) (yj) · Uj ⊆ Aj−1,
(iii) Uj · Uj ⊆ Uj−1.
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For each sequence (A1, A2, · · · , An) of length n we choose xn+1 and Un+1 ⊆ U
such that:
(i) xn+1 ∈ (yn)−1 ·An and x−1

n+1 /∈ U ,
(ii) (yn+1) · Un+1 ⊆ An,
(iii) Un+1 · Un+1 ⊆ Un.

We define σn+1(A1, A2, · · · , An) = yn+1 · Un+1. Since player β does not have
a winning strategy in the G(X) game there is a play (An, Bn)n∈N where player α
wins, so that the filter generated by {An : n ∈ N} is Fω-compact relative to its
intersection. Note that the family {yn · Un : n ∈ N} is finer than {An : n ∈ N} and
also generates a filter that is Fω-compact relative to its intersection.

The sequence (yn)n∈N satisfies yn+1 ∈ yn · Un so the filter (base) associated
with the sequence, and hence the sequence itself2, must have a cluster point y ∈
{⋂ yn · Un : n ∈ N}. Choose Uj ∈ {Un : n ∈ N} and k > j such that yk ∈ y · Uj .
Then x−1

k+1 = y−1
k+1 · yk ∈ y−1

k+1 · y · Uj .

We claim y−1
k+1 · y ∈ Uk+1. Indeed, y ∈ {⋂ yn · Un : n ∈ N} ⇒ y ∈ yn · Un for

each n ∈ N so that y−1
k+1 · y ∈ yk+1 · yn · Un for each n ∈ N as well. It follows that

y−1
k+1 · y ∈ y−1

k+1 · yk+1 · Uk+1 = (y−1
k+1 · yk+1) · Uk+1 = Uk+1.

Clearly, x−1
k+1 ∈ y−1

k+1 · y · Uj = (y−1
k+1 · y) · Uj ⊆ Uk+1 · Uj ⊆ Uj · Uj ⊆ U . This

contradiction establishes the continuity of the inverse.

4. Strongly Baire spaces

Let D be a subset of X. Consider the GS(D) game, played between players
α and β on a topological space (X, τ), defined as follows: Player β goes first and
chooses a non-empty open subset B1 ⊆ X. Player α responds by choosing an non-
empty open subset A1 ⊆ B1. Player β now chooses B2 ⊆ A1. Continuing in this
manner, the players produce a sequence (An, Bn)n∈N of open sets called a play of
the GS(D) game. Player α wins the play if

⋂
An 6= ∅ and each sequence (an)n∈N

with an ∈ An ∩D has a cluster point in X. Otherwise, β wins the play.
A topological space (X, τ) is strongly Baire [10, p. 158] if it is regular and there

exists a dense subset D of X such that player β does not have a winning strategy
in the GS(D) game played on X.

We define the class Fω ∨ D as the class of filters having a countable base
consisting of elements of D and modify the G(X) game of Section 3 as follows:
Player β wins a play (An, Bn)n∈N of the G(D) game if the filter generated by
{An : n ∈ N} is Fω ∨D-compact relative to its intersection.

Proposition 4.1. Suppose X is a topological space and (An)n∈N is a sequence
of neighbourhoods linearly ordered by containment. The following are equivalent:
(i) Each sequence (an)n∈N with an ∈ An ∩D has a cluster point in X.
(ii) The filter generated by {An : n ∈ N} is Fω∨D-compact relative to its adherence.

2See the article by Bartle, [5], for a rigorous examination of the relationship between cluster
points of a sequence and the cluster points of its associated filter base.
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Proof. Assume each sequence (an)n∈N with an ∈ An ∩D has a cluster point in
X and let J ∈ Fω∨D be a filter meshing with the filter generated by {An : n ∈ N}.
Let {Jn : n ∈ N} be a countable base of J and choose an so that an ∈ An ∩Jn ∩D
for each n. By assumption, (an)n∈N has a cluster point. Clearly, this cluster point
is contained in the adherence of the filter generated by {An : n ∈ N}.

Now assume the filter generated by {An : n ∈ N} is Fω ∨D-compact relative
to its adherence and let (an)n∈N be a sequence such that an ∈ An ∩D for each n.
The filter associated with this sequence is an element of Fω ∨D meshing with the
filter generated by {An : n ∈ N}.

Recall that a point x ∈ X is a q-point [12] if there exists a countable subfamily
{An : n ∈ N} of the neighbourhood filter U(x) such that each sequence (an)n∈N
with an ∈ An has a cluster point in X. With D = X we obtain the following.

Corollary 4.2. Let U(x) be the neighbourhood filter of x ∈ X. The point
x is a q-point if and only if there exists filter J ∈ Fω, J ≤ U(x) such that J is
Fω-compact relative to its adherence.

Proposition 4.1 allows us to reformulate the definition of a strongly Baire space.
In particular, player α wins a play of the GS(D) game if

⋂
An 6= ∅ and the filter

generated by {An : n ∈ N} is Fω ∨D-compact relative to its adherence.

Proposition 4.3. If X is a strongly Baire space, then there exists a dense
subset D of X such that player β does not have a winning strategy in the G(D)
game played on X.

Proof. Suppose X is regular and let σ = (σn)n∈N be a winning strategy for
β in the G(D) game played on X. It suffices to show that player β has a winning
strategy γ = (γn)n∈N in the GS(D) game played on X.

Base step. Player β chooses σ1(∅) = B1 ⊆ X according to the winning strategy
of the G(D) game and we define γ1(∅) = σ1(∅) = BS

1 .

Inductive step. Suppose that for each sequence of plays (AS
1 , · · · , AS

j−1), 1 ≤
j ≤ n we have defined γj(AS

1 , AS
2 , · · · , AS

j−1) = BS
j such that σj(A1, · · · , Aj−1) =

Bj and Aj ⊆ AS
j ⊆ Bj = BS

j .

The space X is regular, so for each sequence of plays (AS
1 , AS

2 , · · · , AS
n) of

length n we choose An such that An ⊆ AS
n ⊆ Bn = BS

n and define BS
n+1 =

γn+1(AS
1 , AS

2 , · · · , AS
n) to be Bn+1 = σn+1(A1, A2, · · · , An).

Each play (An, Bn)n∈N of the G(D) game results in a filter generated by {An :
n ∈ N} that is not Fω ∨D-compact relative to

⋂
n∈NAn. The filter generated by

{An : n ∈ N} is finer than the filter generated by {AS
n : n ∈ N} so that this filter

also is not Fω ∨D-compact relative to
⋂

n∈NAn.

Clearly,
⋂

n∈NAn ⊆ ⋂
n∈NAS

n . Now suppose x is an element of
⋂

n∈NAS
n

but is not an element of
⋂

n∈NAn. In this case, some element Ak of the family
{An : n ∈ N} does not contain x. But x ∈ AS

k+1 ⊆ BS
k+1 = Bk+1 ⊆ Ak. This
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contradiction establishes the equality of
⋂

n∈NAS
n and

⋂
n∈NAn and shows that

the filter generated by {AS
n : n ∈ N} is not Fω ∨D-compact relative to

⋂
n∈NAS

n .
We conclude that the strategy we have constructed for β in the GS(D) game is a
winning one.

The following result appears without proof in [10]. We choose to take a more
pedestrian approach.

Lemma 4.4. Suppose U and V are neighborhoods of the neutral element e in
a paratopological group X such that U ·U ⊆ V and D is any subset of X such that
D−1 ⊆ U . Then (D)−1 ⊆ V .

Proof. Assume the result does not hold and choose x ∈ D such that x−1 /∈ V .
Then x−1 /∈ V ⇒ x−1 /∈ U ⇒ x ·x−1 /∈ x ·U ⇒ e /∈ x ·U . Now suppose there exists
y ∈ D∩x·U . Then y ∈ D ⇒ y−1 ∈ U ⇒ y ·y−1 ∈ x·U ·U ⇒ e ∈ x·U ·U ⇒ e ∈ x·V ,
a contradiction. But D ∩ x · U = ∅ ⇒ x /∈ D.

Theorem 4.5. Let (X, ·, τ) be a paratopological group and suppose there exists
a dense subset D of X such that player β does not have a winning strategy in the
G(D) game played on X. Then X is a topological group.

Proof. As before, it suffices to show that the inverse is quasi-continuous at the
neutral element. Suppose not and find U ∈ U so that D ∩ V −1

α * U for each open
Vα ⊆ U and player β does not have a winning strategy in the G(D) game. The
above lemma makes this selection possible. Continue in a manner similar to the
proof of Theorem 3.1 to obtain the result.

Corollary 4.6. Let (X, ·, τ) be a regular paratopological group.

(i) If X is locally compact, then X is a topological group [9].

(ii) If X is completely metrizable, then X is a topological group [16].

(iii) If X is locally Čech-complete, then X is a topological group [7].

(iv) If X is a strongly Baire space, then X is a topological group [10].

We conclude by providing an example of a topological space in which player β
does not have a winning strategy in the G(D) game played on X and such that X
is not strongly Baire.

Example 4.7. A non-regular topological space in which player β does not
have a winning strategy in the G(D) game played on X.

Let (R, τ) be the set of real numbers with its usual topology. Let A = {1 \ n :
n ∈ N}, D = R \ A, and define a topology τ∗ on the set R such that τ ∪ D is
a subbase of τ∗. Note that (R, τ∗) is not regular3. We claim that player β does
not have a winning strategy in the G(D) game played on (R, τ∗). Indeed, for each
choice Bn ⊆ An−1 for player β, player α responds by choosing An ⊆ Bn such that

3The set D = R \A is dense in (R, τ). See problem 20, page 138 in [6].
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An ∈ τ , An ⊆ An−1 and diam An < 1 \ n. The filter generated by {An : n ∈ N} is
Fω ∨D-compact relative to its intersection, as required.
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