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AN ITERATIVE APPROXIMATION OF FIXED POINTS
OF STRICTLY PSEUDOCONTRACTIVE MAPPINGS

IN BANACH SPACES

Yekini Shehu

Abstract. We prove strong convergence of an iterative scheme for approximation of fixed
point of λ-strict pseudocontractive mapping in a uniformly smooth real Banach space (which is
not necessarily uniformly convex). We apply our result to approximation of common fixed point
of a finite family of strictly pseudocontractive mappings. Our result extends the results of Li
and Yao [M. Li, Y. Yao, Strong convergence of an iterative algorithm for λ-strictly pseudocon-
tractive mappings in Hilbert spaces, An. St. Univ. Ovidius Constanta 18 (2010), 219-228] and
complements other new interesting results in the literature.

1. Introduction

Let E be a real Banach space and E∗ its dual space. We denote by Jq, (q > 1)
the generalized duality mapping from E into 2E∗ given by

Jq(x) = {f ∈ E∗ : 〈x, f〉 = ‖x‖q and ‖f‖ = ‖x‖q−1},
where E∗ denotes the dual space of E and 〈., .〉 denotes the generalized duality
pairing. In particular, J2 is called the normalized duality mapping and it is usually
denoted by J . It is well known (see, for example, [8, 17]) that Jq(x) = ‖x‖q−2J(x) if
x 6= 0, and that if E∗ is strictly convex then Jq is single valued. It is well known that
if E is uniformly smooth then Jq is norm-to-norm uniformly continuous on bounded
sets (see, e.g., [3, 19]). In the sequel we shall denote single-valued generalized
duality mapping by jq.

A mapping T with domain D(T ) and range R(T ) in E is called strictly pseu-
docontractive in the terminology of Browder and Petryshy [2] if there exists λ > 0

〈Tx− Ty, j(x− y)〉 ≤ ‖x− y‖2 − λ‖x− y − (Tx− Ty)‖2 (1.1)

for all x, y ∈ D(T ) and for some j(x − y) ∈ J(x − y). If I denotes the identity
operator, then (1.1) can be written in the form

〈(I − T )x− (I − T )y, j(x− y)〉 ≥ λ‖(I − T )x− (I − T )y‖2. (1.2)
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In Hilbert spaces, (1.1) (and hence (1.2)), for λ ∈ (0, 1
2 ), is equivalent to the

inequality
‖Tx− Ty‖2 ≤ ‖x− y‖2 + k‖(I − T )x− (I − T )y‖2, (1.3)

where k = (1− 2λ) < 1. T is said to be L-Lipschitzian or Lipschitz if there exists
L > 0 such that

‖Tx− Ty‖ ≤ L‖x− y‖ (1.4)

for all x, y ∈ D(T ). If L = 1 then T is called nonexpansive. Clearly, in Hilbert
spaces, every nonexpansive mapping is strictly pseudocontractive.

If E is a q-uniformly smooth Banach space with (single-valued) generalized du-
ality mapping jq : E → E∗, we say that T : C → E is (q)-λ-strict pseudocontractive
(briefly a (q)-strict pseudocontraction) if for all x, y ∈ C

〈Tx− Ty, jq(x− y)〉 ≤ ‖x− y‖q − λ‖x− y − (Tx− Ty)‖q. (1.5)

Remark 1.1. We note that for q = 2, the class of (q)-strict pseudocontractions
coincides with that of strict pseudocontractions. For q < 2, (q)-strict pseudocon-
tractions do represent a subclass of strict pseudocontractions (see Lemma 3 of [9]).

Browder and Petryshyn [2] introduced the class of λ-strict pseudocontractive
mappings in 1967 and proved existence and convergence theorem in real Hilbert
spaces. They proved the following theorem.

Theorem BP. [2] Let H be a real Hilbert space and K a nonempty closed
convex and bounded subset of H. Let T : K → K a λ-strict pseudocontractive
mappings for some 0 ≤ λ < 1. Then for any fixed γ ∈ (1 − λ, 1), the sequence
{xn}∞n=0 generated from an arbitrary x0 ∈ K by

xn+1 = γxn + (1− γ)Txn

converges weakly to a fixed point of T .

It is well known that for a nonexpansive mapping T with F (T ) := {x ∈ K :
Tx = x} 6= ∅, the classical Picard iteration sequence xn+1 = Txn, x1 ∈ D(T ) does
not always converge. An iterative process commonly used for finding fixed points of
nonexpansive mappings is the following: For a convex subset K of a Banach space
E and T : K → K, the sequence {xn}∞n=1 is defined iteratively by x1 ∈ K,

xn+1 = (1− αn)xn + αnTxn, n ≥ 1, (1.6)

where {αn}∞n=1 is a sequence in [0, 1] satisfying the following conditions:
(i) limn→∞ αn = 0; (ii)

∑∞
n=1 αn = ∞. The sequence of (1.6) is generally

referred to as the Mann sequence in the light of [11].
Construction of fixed points for λ-strict pseudocontractive mappings using the

Mann iteration (1.6) has been studied extensively by many authors (see, for exam-
ple, [1, 4–7, 12–14, 23, 24] and the references contained therein). It is well known
that in an infinite-dimensional Hilbert space, the Mann iteration (1.6) has only
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weak convergence, in general, even for nonexpansive mappings. In order to obtain
strong convergence, one has to modify the Mann iteration (1.6).

In 2007, Marino and Xu [12] obtained weak convergence results using Mann
iteration (1.6) for λ-strict pseudocontractive mappings in Hilbert spaces and used
the “CQ” algorithm to obtain the strong convergence in Hilbert spaces. Further-
more, Acedo and Xu [1] used Mann iteration process to obtain weak convergence
for finite family of λ-strict pseudocontractive mappings in Hilbert spaces and later
used the “CQ” algorithm to obtain the strong convergence for the finite family of
this class of mappings.

In 2008, Zhou [24] proved weak convergence theorem for approximation of
λ-strict pseudocontractive mappings and later made a modification of the Mann
iteration to obtain strong convergence results for λ-strict pseudocontractive map-
pings in a real 2-uniformly smooth Banach space. Thus, he extended the results
of [12] from Hilbert spaces to 2-uniformly smooth Banach spaces. Zhang and Guo
[21] furthermore obtained weak convergence result for λ-strict pseudocontractive
mappings in a real q-uniformly smooth and uniformly convex Banach space which
also improved on the result of Osilike and Udemene [13].

In 2009, Zhang and Su [23] extended the results of [24] and obtained weak con-
vergence results using Mann iteration (1.6) for λ-strict pseudocontractive mappings
in real q-uniformly smooth Banach space and further obtained strong convergence
results for finite family of this same class of maps in q-uniformly smooth Banach
space using a modification of normal Mann iteration (see [22]). For the strong
convergence result, they proved the following theorem.

Theorem 1.2. [22] Let K be a nonempty closed convex subset of a q-uniformly
smooth real Banach space E and let Ti : K → K, i = 1, 2, . . . , N be a finite
family of λi-strict pseudocontractive mappings such that F :=

⋂N
i=1 F (Ti) 6= ∅. Let

λ := min{λi : 1 ≤ i ≤ N}. Assume for each n, {η(n)
i }N

i=1 is a finite sequence of
positive numbers such that

∑N
i=1 η

(n)
i = 1 for all n ≥ 1 and infn≥1 η

(n)
i > 0, for all

1 ≤ i ≤ N . For arbitrary fixed u ∈ K, define a sequence {xn}∞n=1 by x1 ∈ K,



yn = (1− αn)xn + αn

N∑
i=1

η
(n)
i Tixn

xn+1 = βnu + γnxn + δnyn,

for all n ≥ 1, where {αn}∞n=1, {βn}∞n=1, {γn}∞n=1 and {δn}∞n=1 are sequences in
(0, 1) satisfying (i) limn→∞ βn = 0, (ii)

∑∞
n=1 βn = ∞, (iii) limn→∞ |αn+1 −

αn| = 0, (iv)
∑∞

n=1

∑N
i=1 |η(n+1)

i − η
(n)
i | < ∞, (v) 0 < lim infn→∞ γn ≤

lim supn→∞ γn < 1, (vi) βn + γn + δn = 1, (vii) 0 < a ≤ αn ≤ µ, µ =

min
{

1,
(

qλ
cq

) 1
q−1

}
. Then {xn}∞n=1 converges strongly to a common fixed point z

of {Ti}N
i=1, where z = QF u and QF : K → F is the unique sunny nonexpansive

retraction from K onto F .

Furthermore, Yao et al. [20] proved path convergence for a nonexpansive map-
ping in a real Hilbert space. In particular, they proved the following theorem.
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Theorem 1.3. [20] Let C be a nonempty closed convex subset of a real Hilbert
space H. Let T : C → C be a nonexpansive mapping with F (T ) 6= ∅. For t ∈ (0, 1),
let the net {xt} be generated by xt = TPC [(1 − t)xt], then as t → 0, the net {xt}
converges strongly to a fixed point of T .

Furthermore, they applied Theorem 1.3 to prove the following theorem.

Theorem 1.4. [20] Let C be a nonempty closed convex subset of a real Hilbert
space H. Let T : C → C be a nonexpansive mapping such that F (T ) 6= ∅. Let
{αn}∞n=1 and {βn}∞n=1 be two real sequences in (0, 1). For arbitrary x1 ∈ C, let the
sequence {xn}∞n=1 be generated iteratively by

{
yn = PC [(1− αn)xn]

xn+1 = (1− βn)xn + βnTyn, n ≥ 1,
(1.7)

Suppose the following conditions are satisfied:
(a) limαn = 0 and

∑∞
n=1 αn = ∞;

(b) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1. Then the sequence {xn}∞n=1

generated by (1.7) converges strongly to a fixed point of T .

In 2010, Chidume and Shahzad [5] obtained weak convergence results for λ-
strict pseudocontractive mappings in some real uniformly smooth Banach space
which is also uniformly convex. Thus, they extended the results of [12, 24, 23]
and [21] to a real uniformly smooth Banach space which is also uniformly convex.
However, Cholamjiak and Suantai [7] pointed out that the result of [5] (and hence
the recent result of Sahu and Petrusel [15]) does not hold in real Hilbert spaces.
Hence, Cholamjiak and Suantai improved and extended the results of [5] from a real
uniformly smooth and uniformly convex Banach space to a real uniformly convex
Banach space which has the Fréchet differentiable norm.

Motivated by the result of Yao et al. [20], Cholamjiak and Suantai [6] recently
extended the result [20, Theorem 1.4] to countable family of λ-strict pseudocon-
tractive mappings in q-uniformly smooth and uniformly convex real Banach space
which also admits weakly sequentially continuous duality mapping jq. We remark
that the result of [6] does not hold in Lp, 3 < p < ∞.

In [10], Li and Yao introduced the following iterative scheme

xn+1 = (1− βn − αn)xn + βnTxn, n ≥ 1, (1.8)

where {αn} and {βn} are sequences in (0, 1) satisfy some appropriate conditions.
Furthermore, they proved that the sequence {xn} defined iteratively by (1.8) con-
verges strongly to a fixed point of a λ-strictly pseudo-contractive mapping T in a
real Hilbert space H, where T : H → H and F (T ) 6= ∅.

Motivated by the results of [10], we prove strong convergence of the scheme for
approximation of fixed point of λ-strict pseudocontractive mapping in a uniformly
smooth real Banach space (which is not necessarily uniformly convex). Our results
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extend the results of [10] from real Hilbert spaces to uniformly smooth real Banach
spaces and complements other new interesting results in the literature.

2. Preliminaries

In the sequel, we shall need the following.
Let E be a real normed space and let S := {x ∈ E : ‖x‖ = 1}. E is said to

have a Gâteaux differentiable norm (and E is called smooth) if the limit

lim
t→0

‖x + ty‖ − ‖x‖
t

exists for each x, y ∈ S; E is said to have a uniformly Gâteaux differentiable norm
if for each y ∈ S the limit is attained uniformly for x ∈ S. Further, E is said to be
uniformly smooth if the limit exists uniformly for (x, y) ∈ S × S. The modulus of
smoothness of E is defined by

ρE(τ) := sup
{‖x + y‖+ ‖x− y‖

2
− 1 : ‖x‖ = 1, ‖y‖ = τ

}
; τ > 0.

Equivalently, E is said to be smooth if ρE(τ) > 0, ∀τ > 0. Let q > 1. E is said to
be q-uniformly smooth (or to have a modulus of smoothness of power type q > 1)
if there exists c > 0 such that ρE(τ) ≤ cτ q. Hilbert spaces, Lp (or lp) spaces,
1 < p < ∞, and the Sobolev spaces, W p

m, 1 < p < ∞, are q-uniformly smooth.
Hilbert spaces are 2-uniformly smooth while

Lp(or `p) or W p
m is

{
p-uniformly smooth if 1 < p ≤ 2
2-uniformly smooth if p ≥ 2.

It is shown in [19] that there is no Banach space which is q-uniformly smooth
with q > 2. It is also known that every uniformly smooth space (e.g., Lp space,
1 < p < ∞) has uniformly Gâteaux differentiable norm.

We need the following lemmas in the sequel.

Lemma 2.1. [21] Let E be a real Banach space and C a nonempty closed convex
subset of E. For each 1 ≤ i ≤ N , let Ti : C → C be a λi-strict pseudocontraction.
Assume that {ηi}N

i=1 is a sequence of positive numbers such that
∑N

i=1 ηi = 1. Then,∑N
i=1 ηiTi is a λ-strict pseudocontraction with λ := min{λi : 1 ≤ i ≤ N}. If in

addition, {Ti}N
i=1 has a common fixed point, then F (

∑N
i=1 ηiTi) =

⋂N
i=1 F (Ti).

Lemma 2.2. Let E be a real normed linear space. Then the following inequality
holds

‖x + y‖2 ≤ ‖x‖2 + 2〈y, j(x + y)〉 ∀ x, y ∈ E, ∀ j(x + y) ∈ J(x + y).

Lemma 2.3. [18] Let {an} be a sequence of nonnegative real numbers satisfying
the following relation

an+1 ≤ (1− αn)an + αnσn, n ≥ 1,
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where {an}∞n=1 ⊂ [0, 1] and {σn}∞n=1 is a sequence in R satisfying:
(i)

∑
αn = ∞;

(ii) lim sup σn ≤ 0 or
∑ |αnσn| < ∞.

Then, an → 0 as n →∞.

Lemma 2.4. [3, p. 21] Let E be a real Banach space and J be the normalized
duality map on E. Then J(λx) = λJ(x), ∀λ ∈ R,∀x ∈ E.

Lemma 2.5. [16] Let C be a nonempty closed convex subset of a Banach
space E with a uniformly Gâteaux differentiable, and T : C → C be a continuous
pseudocontractive mapping with a fixed point. If there exists a bounded sequence
{xn} such that limn→∞ ‖xn − Txn‖ = 0, and p = limt→0 zt exists, where {zt} is
defined by zt = tu + (1− t)Tzt. Then

lim sup
n→∞

〈u− p, j(xn − p)〉 ≤ 0.

Lemma 2.6. [7] Let E be a real Banach space with Fréchet differentiable norm.
For x ∈ E, let β∗(t) be defined for 0 < t < ∞ by

β∗(t) = sup
{∣∣∣‖x + ty‖2 − ‖x‖2

t
− 2〈y, j(x)〉

∣∣∣ : ‖y‖ = 1
}

. (2.1)

Then, limt→0+ β∗(t) = 0 and

‖x + h‖2 ≤ ‖x‖2 + 2〈h, j(x)〉+ ‖h‖β∗(‖h‖)
for all h ∈ E \ {0}.

Remark 2.7. In a real Hilbert space, we see that β∗(t) = t for t > 0.
In the result of Cholamjiak and Suantai [7], the authors assumed that β∗(t) ≤

2t for t > 0. This naturally leads to this important question.
Question. What uniformly smooth Banach spaces (except Hilbert spaces)

satisfy the assumption β∗(t) ≤ 2t for t > 0? In particular, do Lp spaces, 1 < p < ∞
satisfy it?

In E = Lp, 2 ≤ p < ∞, we know that

‖x + y‖2 ≤ ‖x‖2 + 2〈y, j(x)〉+ (p− 1)‖y‖2, ∀x, y ∈ E.

Then β∗ in (2.1) is estimated by β∗(t) ≤ (p− 1)t for t > 0.
In our more general setting, throughout this paper, we will assume that

β∗(t) ≤ ct, t > 0 and for some c > 1,

where β∗ is the function appearing in (2.1).

Lemma 2.8. Let C be a nonempty convex subset of a real Banach space E with
Fréchet differentiable norm and T : C → C be a λ-strict pseudo-contraction. For
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α ∈ (0, 1), we define Tαx := (1−α)x+αTx. Then, as α ∈ (0, µ], µ := min
{
1, 2λ

c

}
,

Tα : C → C is nonexpansive such that F (Tα) = F (T ).

Proof. For any x, y ∈ C, we compute

‖Tαx− Tαy‖2 = ‖(1− α)(x− y) + α(Tx− Ty)‖2
= ‖(x− y)− α(x− y − (Tx− Ty))‖2
≤ ‖x− y‖2 − 2α〈x− y − (Tx− Ty), j(x− y)〉

+ α‖x− y − (Tx− Ty)‖β∗(‖x− y − (Tx− Ty)‖)
≤ ‖x− y‖2 − 2α〈x− y − (Tx− Ty), j(x− y)〉

+ cα2‖x− y − (Tx− Ty)‖2
≤ ‖x− y‖2 − α(2λ− cα)‖x− y − (Tx− Ty)‖2
≤ ‖x− y‖2,

which shows that Tα is a nonexpansive mapping.
It is obvious that x = Tαx ⇔ x = Tx. This proves the assertion.
Remark 2.9. Our Lemma 2.8 extends Lemma 2.2 of Zhang and Su [22] from

q-uniformly smooth Banach space to real Banach space E with Fréchet differen-
tiable norm and Proposition 4.1 of Sahu and Petrusel [15] from uniformly smooth
Banach space to real Banach space E with Fréchet differentiable norm. Further-
more, boundedness assumption imposed on C in [15, Proposition 4.1] is dispensed
with in this our more general setting.

3. Main results

Using our Lemma 2.8 in place of Lemma 2.2 of Zhang and Su [22] and following
the same line of proof of Theorem 3.1 of [22], the following theorem can easily be
proved.

Theorem 3.1. Let K be a nonempty closed convex subset of a uniformly
smooth real Banach space E and let Ti : K → K, i = 1, 2, . . . , N be a finite
family of λi-strict pseudocontractive mappings such that F :=

⋂N
i=1 F (Ti) 6= ∅. Let

λ := min{λi : 1 ≤ i ≤ N}. Assume that, for each n, {η(n)
i }N

i=1 is a finite sequence
of positive numbers such that

∑N
i=1 η

(n)
i = 1 for all n ≥ 1 and infn≥1 η

(n)
i > 0, for

all 1 ≤ i ≤ N . For arbitrary fixed u ∈ K, define a sequence {xn}∞n=1 by x1 ∈ K,




yn = (1− αn)xn + αn

N∑
i=1

η
(n)
i Tixn

xn+1 = βnu + γnxn + δnyn,

for all n ≥ 1, where {αn}∞n=1, {βn}∞n=1, {γn}∞n=1 and {δn}∞n=1 are sequences in
(0, 1) satisfying: (i) limn→∞ βn = 0, (ii)

∑∞
n=1 βn = ∞, (iii) limn→∞ |αn+1 −

αn| = 0, (iv)
∑∞

n=1

∑N
i=1 |η(n+1)

i − η
(n)
i | < ∞, (v) 0 < lim infn→∞ γn ≤
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lim supn→∞ γn < 1, (vi) βn + γn + δn = 1, (vii) 0 < a ≤ αn ≤ µ, µ = min
{
1, 2λ

c

}
.

Then {xn}∞n=1 converges strongly to a common fixed point z of {Ti}N
i=1, where

z = QF u and QF : K → F is the unique sunny nonexpansive retraction from K
onto F .

Remark 3.2. Our Theorem 3.1 extends the results of Zhang and Su [22, 23]
from q-uniformly smooth Banach spaces to uniformly smooth Banach spaces.

Furthermore, using our Lemma 2.8 in place of Proposition 4.1 of [15] and
following the same line of proof of Theorems 4.5 and 4.7 of [15], the following
theorems can easily be proved.

Theorem 3.3. Let C be a nonempty, closed and convex subset of a real uni-
formly smooth Banach space E and let T : C → C be a λ-strictly pseudocontractive
mapping. Given u, x1 ∈ C, a sequence {xn} in C is defined by

xn+1 = Tw[(1− αn)xn + αnu],

where Tw = (1 − w)I + wT for some w ∈ (0, µ], µ := min
{
1, 2λ

c

}
and {αn} is a

sequence in (0, 1] satisfying the following condition
(C1) limn→∞ αn = 0 and either limn→∞

∣∣1− αn

αn+1

∣∣ = 0 or
∑∞

n=1 |αn+1 − αn| < ∞.

Then {xn} converges strongly to QF (T )(u), where QF (T ) is the sunny nonexpansive
retraction from C onto F (T ).

Theorem 3.4. Let C be a nonempty, closed and convex subset of a real uni-
formly smooth Banach space E and let T : C → C be a λ-strictly pseudocontractive
mapping. Given u, x1 ∈ C, a sequence {xn} in C is defined by

xn+1 = Tw[(1− αn)xn + αnu],

where Tw = (1 − w)I + wT for some w ∈ (0, µ], µ := min
{
1, 2λ

c

}
and {αn} is a

sequence in (0, 1] satisfying the condition (C1). Then {xn} converges strongly to
QF (T )(u), where QF (T ) is the sunny nonexpansive retraction from C onto F (T ).

Remark 3.4. The boundedness assumption on Theorem 4.5 and Theorem 4.7
of [15] is dispensed within our Theorems 3.3 and 3.4.

Lemma 3.6. Let C be a nonempty, closed and convex subset of a real Banach
space E with Fréchet differentiable norm and T : C → C be a λ-strict pseudo-
contraction such that F (T ) 6= ∅. Let {αn} and {βn} be two real sequences in (0, 1).
Assume that the following conditions are satisfied:

(C1) limn→∞ αn = 0;
(C2)

∑∞
n=1 αn = ∞;

(C3) βn ∈ [ε, µ(1− αn)), µ := min
{
1, 2λ

c

}
for some ε > 0.

For a fixed u ∈ C, let the sequence {xn}∞n=1 be generated iteratively by x1 ∈ C,

xn+1 = (1− βn)xn + βnTxn − αn(xn − u), n ≥ 1. (3.1)

Then the sequence {xn} is bounded.
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Proof. Take p ∈ F (T ), then we have from (3.1) that

‖xn+1 − p‖ = ‖(1− αn − βn)(xn − p) + βn(Txn − p) + αn(u− p)‖
≤ ‖(1− αn − βn)(xn − p) + βn(Txn − p)‖+ αn‖u− p‖
= ‖(1− αn)(xn − p)− βn(xn − Txn)‖+ αn‖u− p‖. (3.2)

Furthermore, we obtain from 3.2, (1.2) and Lemma 2.4 that

‖(1− αn)(xn − p)− βn(xn − Txn)‖2
≤ (1− αn)2‖xn − p‖2 + β2

nc‖xn − Txn‖2 − 2βn(1− αn)〈xn − Txn, j(xn − p)〉
≤ (1− αn)2‖xn − p‖2 + β2

nc‖xn − Txn‖2 − 2λβn(1− αn)‖xn − Txn‖2
= (1− αn)2‖xn − p‖2 − βn(2λ(1− αn)− cβn)‖xn − Txn‖2
≤ (1− αn)2‖xn − p‖2. (3.3)

It follows from (3.2) and (3.3) that

‖xn+1 − p‖ ≤ (1− αn)‖xn − p‖+ αn‖u− p‖
≤ max{‖xn − p‖, ‖u− p‖}

≤ ...

≤ max{‖xn − p‖, ‖u− p‖}.
Hence {xn} is bounded and also is {Txn}.

Theorem 3.7. Let C be a nonempty, closed and convex subset of a uniformly
smooth real Banach space E and T : C → C be a λ-strict pseudo-contraction such
that F (T ) 6= ∅. Let {αn} and {βn} be two real sequences in (0, 1). Assume that the
following conditions are satisfied:

(C1) limn→∞ αn = 0;
(C2)

∑∞
n=1 αn = ∞;

(C3) βn ∈ [ε, µ(1− αn)), µ := min
{
1, 2λ

c

}
for some ε > 0.

For a fixed u ∈ C, let the sequence {xn}∞n=1 be generated iteratively by x1 ∈ C,

xn+1 = (1− βn)xn + βnTxn − αn(xn − u), n ≥ 1.

Then the sequence {xn} converges strongly to a point of F (T ).

Proof. Using Lemmas 2.2 and 2.6, and (3.1), we have

‖xn+1 − p‖2 = ‖(1− βn)(xn − p) + βn(Txn − p)− αn(xn − u)‖2
= ‖(xn − p)− βn(Txn − p)− αn(xn − u)‖2
≤ ‖xn − p‖2 − 2βn〈xn − Txn, j(xn − p)〉

+ cβ2
n‖xn − Txn‖2 − 2αn〈xn − u, j(xn+1 − p)〉
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≤ ‖xn − p‖2 − 2βnλ‖xn − Txn‖2 + cβ2
n‖xn − Txn‖2

− 2αn〈xn − u, j(xn+1 − p)〉
= ‖xn − p‖2 − βn(2λ− cβn)‖xn − Txn‖2

− 2αn〈xn − u, j(xn+1 − p)〉.
Since {xn} is bounded, then there exists M > 0 such that

‖xn+1 − p‖2 − ‖xn − p‖2 ≤ αnM − βn(2λ− cβn)‖xn − Txn‖2.
This implies that

0 < ε(2λ(1− αn)− cβn)‖xn − Txn‖2
≤ βn(2λ− cβn)‖xn − Txn‖2
≤ αnM + ‖xn − p‖2 − ‖xn+1 − p‖2. (3.4)

The rest of the proof will be divided into two parts.
Case 1. Suppose that there exists n0 ∈ N such that {‖xn − p‖}∞n=n0

is nonin-
creasing. Then {‖xn−p‖}∞n=0 converges and ‖xn−p‖2−‖xn+1−p‖2 → 0, n →∞.
This implies from (3.4) and condition (C3) that

‖xn − Txn‖ → 0, n →∞.

By Lemma 2.5, we have that

lim sup
n→∞

〈u− p, j(xn − p)〉 ≤ 0.

Using Lemma 2.2 and (3.1) in (3.1), we have

‖xn+1 − p‖2 = ‖(1− αn − βn)(xn − p) + βn(Txn − p) + αn(u− p)‖2
≤ ‖(1− αn − βn)(xn − p) + βn(Txn − p)‖2 + 2αn〈u− p, j(xn+1 − p)〉
≤ (1− αn)‖xn − p‖2 + 2αn〈u− p, j(xn+1 − p)〉.

By Lemma 2.3, we have that xn → p as n →∞.
Case 2. Assume that {‖xn − p‖} is not monotonically decreasing sequence.

Set Γn := ‖xn − p‖2 and let τ : N → N be a mapping for all n ≥ n0 for some n0

large enough by
τ(n) = max{k ∈ N : k ≤ n,Γk ≤ Γk+1}.

Clearly, τ is a non-decreasing sequence such that τ(n) →∞ as n →∞ and Γτ(n) ≤
Γτ(n)+1 for n ≥ n0. From (3.4), it is easy to see that

‖xτ(n) − Txτ(n)‖2 ≤
ατ(n)M

ε(2λ(1− ατ(n))− cβτ(n))
→ 0,

thus ‖xτ(n) − Txτ(n)‖ → 0. By similar argument as above in Case 1, we conclude
immediately that

lim sup
n→∞

〈u− p, j(xτ(n) − p)〉 ≤ 0.
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At the same time, we note that for all n ≥ n0,

0 ≤ ‖xτ(n)+1 − p‖2 − ‖xτ(n) − p‖2
≤ ατ(n)(〈u− p, j(xτ(n)+1 − p)〉 − ‖xτ(n) − p‖2).

Hence, we deduce that limn→∞ ‖xτ(n) − p‖ = 0. Therefore,

lim
n→∞

Γτ(n) = lim
n→∞

Γτ(n)+1 = 0.

Furthermore, for n ≥ n0, it is easy to see that Γτ(n) < Γτ(n)+1 if n 6= τ(n) (that is,
τ(n) < n), because Γj > Γj+1 for τ(n) + 1 ≤ j ≤ n. As a consequence, we obtain
for all n ≥ n0,

0 ≤ Γn ≤ max{Γτ(n),Γτ(n)+1} = Γτ(n)+1.

Hence, limn→∞ Γn = 0, that is, {xn} converges strongly to p. This completes the
proof.

Corollary 3.8. Let C be a nonempty, closed and convex subset of a 2-
uniformly smooth real Banach space E and T : C → C be a λ-strict pseudo-
contraction such that F (T ) 6= ∅. Let {αn} and {βn} be two real sequences in (0, 1).
Assume that the following conditions are satisfied:

(C1) limn→∞ αn = 0;
(C2)

∑∞
n=1 αn = ∞;

(C3) βn ∈ [ε, µ(1− αn)), µ := min
{
1, 2λ

c

}
for some ε > 0.

For a fixed u ∈ C, let the sequence {xn}∞n=1 be generated iteratively by x1 ∈ C,

xn+1 = (1− βn)xn + βnTxn − αn(xn − u), n ≥ 1.

Then the sequence {xn} converges strongly to a point of F (T ).

By following the same line of proof of Theorem 3.6, we can prove the following
corollary.

Corollary 3.9. [10] Let H be a real Hilbert space. Let T : H → H be a
λ-strictly pseudo-contractive mapping such that F (T ) 6= ∅. Let {αn} and {βn} be
two real sequences in (0, 1). Assume that the following conditions are satisfied:

(C1) limn→∞ αn = 0;
(C2)

∑∞
n=1 αn = ∞;

(C3) βn ∈ [ε, 2λ(1− αn)) for some ε > 0.
Let the sequence {xn}∞n=1 be generated iteratively by x1 ∈ H,

xn+1 = (1− βn − αn)xn + βnTxn, n ≥ 1.

Then the sequence {xn} converges strongly to a point of F (T ).

We next apply the result of Theorem 3.6 to approximate the common fixed
point of a finite family of λ-strict pseudocontractive mappings in real Banach spaces.
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Theorem 3.10. Let C be a nonempty, closed and convex subset of a uniformly
smooth real Banach space E. For each i = 1, 2, . . . , N , let Ti : C → C be a λi-
strict pseudocontractive mapping such that ∩N

i=1F (Ti) 6= ∅. Assume that {ki}N
i=1 is

a finite sequence of positive numbers such that
∑N

i=1 ki = 1. Let {αn} and {βn} be
two real sequences in (0, 1). Assume that the following conditions are satisfied:

(C1) limn→∞ αn = 0;

(C2)
∑∞

n=1 αn = ∞;

(C3) βn ∈ [ε, µ(1− αn)), µ := min
{
1, 2λ

c

}
for some ε > 0.

For a fixed u ∈ C, let the sequence {xn}∞n=1 be generated iteratively by x1 ∈ C,

xn+1 = (1− βn)xn + βn

N∑

i=1

kiTixn − αn(xn − u), n ≥ 1. (3.5)

Then the sequence {xn} converges strongly to a common point p in ∩N
i=1F (Ti).

Proof. Define A :=
∑N

i=1 kiTi. Then, by Lemma 2.6, A is λ-strict pseudo-
contractive mapping and F (A) =

⋂N
i=1 F (Ti). We can rewrite the scheme (3.5)

as
xn+1 = (1− βn)xn + βnAxn − αn(xn − u), n ≥ 1.

Now, Theorem 3.6 guarantees that {xn} converges strongly to a common fixed
point of the family {Ti}N

i=1.

Remark 3.11. Our Corollary 3.9 extends the result of [10] from approxima-
tion of fixed points of a λ-strictly pseudocontractive mapping in a Hilbert space
to approximation of fixed points of a λ-strictly pseudocontractive mapping in a
uniformly smooth real Banach space.

Remark 3.12. The prototypes of our control sequences in Theorem 3.6 are

αn =
1

n + 1
, n ≥ 1 and βn = ε +

n

n + 1

(2λ

c

n

n + 1
− ε

)
, n ≥ 1.
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