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A NOTE ON GENERALIZED WHITNEY MAPS

Ivan Lončar

Abstract. For metrizable continua, there exists the well-known notion of a Whitney map.
Garcıa-Velazquez extends the definition of Whitney map for C(X), where X is an arbitrary
continuum (not necessarily metrizable). He also shows that the examples he considers do not
admit such generalized Whitney maps. In this paper we shall investigate the properties of continua
which admit such generalized Whitney maps.

1. Introduction

All spaces in this paper are compact Hausdorff and all mappings are continu-
ous. The weight of a space X is denoted by w(X). The cardinality of a set A is
denoted by card(A).

Let X be a space. We define its hyperspaces as the following sets:

2X = {F ⊆ X : F is closed and non-empty},
C(X) = {F ∈ 2X : F is connected},
X(n) = {F ∈ 2X : F has at most n points}, n ∈ N.

For any finitely many subsets S1, . . . , Sn, let

〈S1, . . . , Sn〉 =
{

F ∈ 2X : F ⊂
n⋃

i=1

Si, and F ∩ Si 6= ∅, for each i

}
.

The topology on 2X is the Vietoris topology, i.e., the topology with a base
{〈U1, . . . , Un〉 : Ui is an open subset of X for each i and each n < ∞}, and C(X)
is a subspace of 2X .

Let X and Y be the spaces and let f : X → Y be a mapping. Define 2f : 2X →
2Y by 2f (F ) = {f(x) : x ∈ F} for F ∈ 2X . By [12, Theorem 5.10, p. 170], 2f is
continuous and 2f (C(X)) ⊂ C(Y ). The restriction 2f |C(X) is denoted by C(f).

The concept of Whitney maps is a very powerful tool in hyperspace theory
of metric compact spaces. In the 1930’s, Whitney constructed special types of

2010 Mathematics Subject Classification: 54B20, 54F15
Keywords and phrases: Generalized Whitney map; hyperspace.

233



234 I. Lončar

functions on spaces of sets for the purpose of studying families of curves ([18]
and [19]). In 1942, Kelley made significant use of Whitney’s functions in studying
hyperspaces of metric continua [7]. In 1978, Whitney’s functions are called Whitney
maps (see Chapter XIV of [3]). Whitney maps and Whitney levels are widely used
in the theory of metrizable continua, for details see the book [5].

In [1], first examples are presented of non-metrizable continua X which admit
and ones which do not admit a map µ : C(X) → [0, 1]. Stone [16] gives another
example of non-metrizable continua X which admits a Whitney map µ : C(X) →
[0, 1]. See also [15].

Garcıa-Velazquez [3] extends the definition of Whitney level (for C(X)) so that
it does not depend on Whitney maps and can be given on arbitrary continua (that
is, continua that are not necessarily metrizable). In the paper [4], an example is
given of a non-metrizable continuum admitting a generalized Whitney map. The
author of that paper gives an example of a non-metrizable continuum admitting a
generalized Whitney map. Moreover, the author gives restrictions on what types
of Whitney maps are possible. In this paper the following definitions are given.

Definition 1.1. A generalized arc is a continuum J with its topology given
by a strict linear order B. It is denoted by 〈J, B〉.

Definition 1.2. If X is a continuum, a generalized Whitney map for C(X)
is a map µ : C(X) → 〈J,B〉 where 〈J,B〉 is a generalized arc and the following
conditions hold:
a) µ({x}) = min J for each x ∈ X,
b) µ(A) B µ(B) whenever A,B ∈ C(X) and A ⊂ B, and
c) µ(X) = max J .

For some topological properties P , if X is a continuum with P that admits
a Whitney map p : C(X) → J then the weight of J must be equal to the weight
of X. Among these properties P we find local connectedness, rim-metrizability,
semi-aposyndesis and arcwise-connectedness. The technical condition needed is
one related to the representation of X as an inverse limit.

2. Factorizable inverse systems

We shall use the notion of inverse system as in [2, pp. 135-142]. An inverse
system is denoted by X = {Xa, pab, A}.

An element {xa} of the Cartesian product
∏{Xa : a ∈ A} is called a thread of

X if pab(xb) = xa for any a, b ∈ A satisfying a ≤ b. The subspace of
∏{Xa : a ∈ A}

consisting of all threads of X is called the limit of the inverse system X = {Xa,
pab, A} and is denoted by limX or by lim{Xa, pab, A} [2, p. 135].

Let X = {Xa, pab, A} be an inverse system of compact spaces with the natural
projections pa : limX → Xa, for a ∈ A. Then 2X = {2Xa , 2pab , A} and C(X) =
{C(Xa), C(pab), A} form inverse systems.
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Lemma 2.1. Let X = limX. Then 2X = lim 2X and C(X) = lim C(X).

For a cardinal τ we say that X = {Xa, pab, A} is τ -directed if for each B ⊆ A
with card(B) ≤ τ there is an a ∈ A such that a ≥ b for each b ∈ B. Inverse system
X is σ-directed if X is ℵ0-directed. We say that an inverse system X = {Xa, pab, A}
is λ-system if it is λ-directed.

Theorem 2.2. For each Tychonoff cube Iτ , τ ≥ ℵ1, there exists λ < τ and
an inverse λ-system I = {Ia, Pab, A} of the cubes Ia, card(a) = λ, such that Iτ is
homeomorphic to lim I.

Proof. a) Let us recall that the Tychonoff cube Iτ is the Cartesian product∏{Is : s ∈ S}, card(S) = τ , Is = [0, 1] [2, p. 114]. If card(S) = ℵ0, the Tychonoff
cube Iτ is called the Hilbert cube. Let A be the set of all subsets of S of the
cardinality λ ordered by inclusion. If a ⊆ b, then we write a ≤ b. It is clear that
A is λ-directed. For each a ∈ A there exists a cube Ia. If a, b ∈ A and a ≤ b, then
there exists a projection Pab : Ib → Ia. Finally, we have system I = {Ia, Pab, A}.

b) Let us prove that Iτ is homeomorphic to lim I. Let x ∈ Iτ . It is clear
that Pa(x) = xa is a point of Ia and that Pab(xb) = xa if a ≤ b. This means
that (xa) is a thread in I = {Ia, Pab, A}. Set H(x) = (xa). We have the mapping
H : Im → lim I. It is clear that H is continuous, 1-1 and onto. Hence, H is a
homeomorphism.

Theorem 2.3. Let X be a compact Hausdorff space such that w(X) ≥ ℵ1 and
let ℵ0 ≤ λ < w(X). Then there exists an inverse λ-system X = {Xa, pab, A} such
that w(Xa) ≤ λ and X is homeomorphic to limX.

Proof. By [2, Theorem 2.3.23.], the space X is embeddable in Iw(X). From
Theorem 2.2 it follows that Iw(X) is a limit of I = {Ia, Pab, A} where A is the set
from the proof of a) of Therem 2.2. Now, X is homeomorphic to a closed subspace
of lim I. For each a ∈ A let Xa = Pm(X), where Pm : Im → Ia is a projection of
the Tychonoff cube Im onto the cube Ia. Let pab be the restriction of Pab onto Xb.
We have the inverse system X = {Xa, pab, A} such that w(Xa) ≤ λ. By virtue of [2,
Corollary 2.5.7] X is homeomorphic to limX. Moreover, X is an inverse λ-system
since I = {Ia, Pab, A} is an inverse λ-system.

A cover of a set X is a family {As : s ∈ S} of subsets of X such that X =⋃{As : s ∈ S}. Cov(X) is the set of all coverings of topological space X. We say
that a cover B of space X is refinement of a cover A of the same space if for every
B ∈ B there exists A ∈ A such that B ⊂ A. If U ,V ∈ Cov(X) and V refines U , we
write V ≺ U .

Lemma 2.4. Let X = {Xa, pab, A} be aninverse system of compact spaces
with surjective bonding mappings and limit X. For every finite cover U =
{U1, U2, . . . , Un} there exists an a(U) ∈ A such that for each b ≥ a(U) there is a
finite cover Ub = {Ub1, Ub2, . . . , Ubm} of Xb such that p−1

b (Ub} =
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{p−1
b (Ub1), p−1

b (Ub2), . . . , p−1
b (Ubm)} is refinement of U = {U1, U2, . . . , Un}, i.e.,

p−1
b (Ub} ≺ U .

Proof. By virtue of the definition of a base in X, for each Ui ∈ U we have
Ui =

⋃{p−1
a (Ua) : a ∈ Ki ⊂ A}. Now,

⋃{p−1
a (Ua) : a ∈ Ki ∪ K2 ∪ · · · ∪ Kn}

is a cover oh X since U = {U1, U2, . . . , Un} is cover of X. There is a finite
subfamily {p−1

a1 (Ua1), . . . , p−1
am(Uam)} of

⋃{p−1
a (Ua) : a ∈ Ki ∪ K2 ∪ · · · ∪ Kn}

which covers X. We infer that there exists a(U) ∈ A such that a(U) ≥
a1, . . . , am. For each b ≥ a(U) we have a finite cover {Ub1 = p−1

a1b(Ua1), . . . , Ubm =
p−1

amb(Uam)}, i.e., a finite cover Ub = {Ub1, Ub2, . . . , Ubm} of Xb such that p−1
b (Ub) =

{p−1
b (Ub1), p−1

b (Ub2), . . . , p−1
b (Ubm)} is refinement of U = {U1, U2, . . . , Un}.

Theorem 2.5. Let X = {Xa, pab, A} be a λ-directed inverse system of compact
spaces with surjective bonding mappings and limit X. Let Y be a compact space of
weight λ For each surjective mapping f : X → Y there exists an a ∈ A such that
for each b ≥ a there exists a mapping gb : Xb → Y such that f = gbpb.

Proof. Let B be a basis of Y with card(B) = λ and let V be a collection
of all finite subfamilies of B which cover Y . Clearly, card (V) = λ. Consider an
enumeration V = {Vυ : υ < λ}. For each Vυ the family f−1(Vυ) = {f−1(U) : U ∈
Vυ} is a covering of X. By virtue of Lemma 2.4 there exists an a(υ) ∈ A such that
for each b ≥ a(υ) there is a cover Vυb of Xb with p−1

b (Vυb) ≺ f−1(Vυ). From the λ-
directedness of A it follows that there is an a ∈ A such that a ≥ a(υ),for all υ < λ.
Let b ≥ a. We claim that f(p−1

b (xb)) is degenerate. Suppose that there exists a
pair u, v of distinct points of Y such that u, v ∈ f(p−1

b (xb)). Then there exists a
pair x, y of distinct points of p−1

b (xb) such that f(x) = u and f(y) = v. Let U, V be
a pair of disjoint open sets of Y such that u ∈ U and v ∈ V . Consider the covering
{U, V, Y \{u, v}}. There exists a covering Vυ ∈ V such that Vν ≺ {U, V,X\{u, v}}.
We infer that there is a covering Vυb of Xb such that p−1

b (Vυb) ≺ f−1(Vυ). It
follows that pb(x) 6= pb(y) since x and y lie in the disjoint members of the covering
f−1(Vυ). This is impossible since x, y ∈ p−1

b (xb). Thus, f(p−1
b (xb)) is degenerate.

Now we define gb : Xb → Y by gb(xb) = f(p−1
b (xb)). It is clear that gbpb = f . Let

us prove that gb is continuous. Let U be open in Y . Then g−1
b (U) is open since

p−1
b (g−1

b (U)) = f−1(U) is open and pb is quotient (as a closed mapping).

3. Inverse systems whose limit X admits a generalized
Whitney map for C(X)

In the sequel we shall use Definition 1.2 of generalized Whitney map and
Definition 1.1 of generalized arc.

If X is a continuum, a λ-Whitney map for C(X) is a map µ : C(X) → J ,
where J is some generalized arc of weight λ. If J = [0, 1], then we say ‘a Whitney
map µ : C(X) → [0, 1] instead of ‘a λ-generalized Whitney map’.

A mapping f : X → Y is said to be hereditarily irreducible [13, (1.212.3), p.
204] provided that for any given subcontinuum Z of X, no proper subcontinuum
of Z maps onto f(Z).
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A mapping f : X → Y is light (zero-dimensional) if all fibers f−1(y) are
hereditarily disconnected (zero-dimensional or empty) [13, p. 450], i.e., if f−1(y)
does not contain any connected subsets of cardinality larger that one (dim f−1(y) ≤
0). Every zero-dimensional mapping is light, and in the realm of mappings with
compact fibers the two classes of mappings coincide.

Lemma 3.1. Every hereditarily irreducible mapping is light.

We say that a mapping f : X → Y is monotone if f−1(y) is connected for
every y ∈ Y .

Corollary 3.2. If f : X → Y is monotone and hereditarily irreducible, then
f is one-to-one.

Lemma 3.3. [13, (1.212.3), p. 204] A mapping f : X → Y is hereditarily
irreducible if and only if the mapping C(f) : C(X) → C(Y ) is light.

Now we study inverse systems whose limit X admits a λ-generalized Whitney
map for C(X).

Theorem 3.4. Let X be a non-metric continuum of weight w(X) > λ. Then
X admits a λ-generalized Whitney map for C(X) if and only if for each λ-directed
inverse system X = {Xa, pab, A} of continua which admit Whitney maps for C(Xa)
and X = limX there exists an a ∈ A such that for each b ≥ a the projection
pb : lim X → Xb is hereditarily irreducible.

Proof. Necessity. Consider the inverse system C(X) = {C(Xa), C(pab), A}
whose limit is C(X) (Lemma 2.1). If µ : C(X) → J is a λ-generalized Whitney
map for C(X), then, by Theorem 2.5, there exists an a ∈ A such that for each
b ≥ a there exists a mapping µb : C(pb)(X) → J with µ = µbC(pb). Suppose that
pb is not hereditarily irreducible. there exists a pair F, G of subcontinua of X with
F ⊆ G, F 6= G, (i.e., F is a proper subcontinuum of G) such that pb(F ) = pb(G).
It is clear that C(pb)(F ) = C(pb)(G). This means that µbC(pb)(F ) = µbC(pb)(G).
From µ = µbC(pb) it follows that µ(F ) = µ(G). This is impossible since µ is a
Whitney map for C(X) and from F ⊆ G,F 6= G it follows µ(F ) < µ(G). Hence,
the projections pa, a ∈ A, are hereditarily irreducible.

Sufficiency. Suppose that there exists an a ∈ A such that for each b ≥ a the
projection pb : lim X → Xb is hereditarily irreducible. Consider the inverse system
C(X) = {C(Xa), C(pab), A} whose limit is C(X) (Lemma 2.1). Let µb : C(Xb) → J
be a λ-generalized Whitney map for C(Xb), where b ≥ a is fixed. We shall prove
that µ = µbC(pb) : C(X) → J is a λ-generalized Whitney map for C(X). Let F, G
be a pair of subcontinua of X with F ⊆ G, F 6= G. We must prove that µ(F ) <
µ(G). Now, pb(F ) ⊂ pb(G) and pb(F ) 6= pb(G) since pb is hereditarily irreducible.
We infer that µb(pb(F )) < µb(pb(G)) since µb is a λ-generalized Whitney map for
C(Xb). Moreover, pb(F ) = C(pb)(F ) and pb(G) = C(pb)(G). From µb(pb(F )) <
µb(pb(G)) we have µb(C(pb)(F )) < µb(C(pb)(G)), i.e., µbC(pb)(F ) < µbC(pb)(G).
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Finally, µ(F ) < µ(G) since µ = µbC(pb). We infer that µ = µbC(pb) : C(X) → J
is a λ-generalized Whitney map for C(X).

Let us observe that from the necessity in Theorem 3.4 the following corollary
follows.

Corollary 3.5. Let X be a continuum of weight w(X) > λ. If X admits
a λ-generalized Whitney map for C(X), then for each λ-directed inverse system
X = {Xa, pab, A} of continua such that X = limX there exists an a ∈ A such that
for each b ≥ a the projection pb : lim X → Xb is hereditarily irreducible.

Let us recall that a mapping f : X → Y is monotone if f−1(y) is connected
for every y ∈ Y .

Theorem 3.6. [2, p. 462, 6.3.16. (a)] If X = {Xa, pab, A} is an inverse system
of continua such that the bonding mappings pab are monotone, then the projections
pa : limX →Xa, a ∈ A, are monotone.

Corollary 3.7. Let X = {Xa, pab, A} be a λ-directed inverse system of
continua with monotone bonding mappings. Let X = limX be a continuum of
weight w(X) > λ. Then X admits no λ-generalized Whitney map for C(X).

Now we shall prove that hereditarily irreducible bonding mappings induce
hereditarily irreducible projections.

Theorem 3.8. If X = {Xa, pab, A} is an inverse system of continua such
that the bonding mappings pab are hereditarily irreducible, then the projections pa :
limX →Xa, a ∈ A, are hereditarily irreducible,

Proof. Let a ∈ A; we shall prove that the projection pa : lim X → Xa is
hereditarily irreducible. Let C∗ and D∗ be the continua in limX such that C∗ ⊂ D∗

and C∗ 6= D∗. There exists a point x ∈ D∗ \ C∗ and a basic open neighborhood
p−1

b (Ub) of x such that p−1
b (Ub) ∩ C∗ = ∅. It follows that pb(x) is in pb(D∗) \

pb(C∗). This means that pc(C∗) ⊂ pc(D∗) and pc(C∗) 6= pc(D∗) for every c ≥ b.
There exists d ≥ a, b since A is directed. It follows that pd(C∗) ⊂ pd(D∗) and
pd(C∗) 6= pd(D∗). Now from the fact that pda : Xd → Xa is hereditarily irreducible
it follows that pda(pd(C∗)) ⊂ pda(pd(D∗)) and pda(pd(C∗)) 6= pda(pd(D∗)), i.e.,
pa(C∗) ⊂ pa(D∗) and pa(C∗) 6= pa(D∗). Thus, the projection pa : limX →Xa is
hereditarily irreducible.

Question. Are the bonding mappings pab hereditarily irreducible if the pro-
jections pa : limX →Xa, a ∈ A, are hereditarily irreducible?
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4. D-continua

A continuum X is called a D-continuum if for every pair C,D of disjoint non-
degenerate subcontinua there exists a subcontinuum E ⊂ X such that C∩E 6= ∅ 6=
D ∩ E and (C ∪D) \ E 6= ∅.

A family N = {Ms : s ∈ S} of subsets of a topological space X is a network
for X if for every point x ∈ X and any neighborhood U of x there exists an s ∈ S
such that x ∈ Ms ⊂ U [2, p. 170]. The network weight of a space X is defined as
the smallest cardinal number of the form card(N ), where N is a network for X;
this cardinal number is denoted by nw(X).

Theorem 4.1. [2, p. 171, Theorem 3.1.19] For every compact space X we
have nw(X) = w(X).

Let us recall that X(n) = {F ∈ 2X : F has at most n points}, n ∈ N.

Theorem 4.2. Let X be a D-continuum of the weight w(X) > λ. If X admits
a λ-generalized Whitney map for C(X), then w(C(X) \X(1)) ≤ λ.

Proof. Let X admit a λ-generalized Whitney map for C(X). From Theorem
2.3 it follows that there exists a λ-directed inverse system X = {Xa, pab, A} of
continua and surjective bonding mappings such that X is homeomorphic to limX
and w(Xa) ≤ λ. Consider the inverse system C(X) = {C(Xa), C(pab), A} whose
limit is C(X). From Theorem 3.4 it follows that the projections pb are hereditarily
irreducible and C(pb) are light for some cofinal subset B of A. If for each b ∈ B,
C(pb) is one-to-one, then we have a homeomorphism C(pb) of C(X) onto C(pb)(X).
Since w(C(pb)(X)) ≤ λ, we have that w(C(X) \ X(1)) ≤ λ. Suppose that the
restriction C(pb)|(C(X) \X(1)) is not one-to-one. Then there exists a nondegen-
erate continuum Cb in Xb and two nondegenerate continua C∗, D∗ in X such that
pb(C∗) = pb(D∗) = Cb. It is impossible that C∗  D∗ or D∗  C∗ since pb is hered-
itarily irreducible. If C∗∩D∗ 6= ∅, then for a continuum Y = C∗∪D∗ we have that
C∗ and D∗ are subcontinua of Y and pb(Y ) = pb(C∗) = pb(D∗) = Cb which is im-
possible since pb is hereditarily irreducible. We infer that C∗∩D∗ = ∅. There exists
a subcontinuum E such that C∗ ⊂ E, D∗ 6= D∗ ∩E 6= ∅ since X is a D-continuum.
Now pb(E ∪ D∗) = pb(E) which is impossible since pb is hereditarily irreducible.
Furthermore, C(pa)−1(Xa(1)) = X(1) since from the hereditarily irreducibility of
pa it follows that no non-degenerate subcontinuum of X maps under pa onto a
point. Let Ya = C(pa)(C(X)). We infer that C(pa)−1[Ya \Xa(1)] = C(X) \X(1).
It follows that the restriction Pa = C(pa)|(C(X) \X(1)) is one-to-one and closed
[2, Proposition 2.1.4]. Hence, Pa is a homeomorphism and w(C(X) \X(1)) ≤ λ.

Now we shall prove the main theorem of this section.

Theorem 4.3. If a D-continuum X admits a λ-Whitney map µ : C(X) → J ,
then w(X) = λ.

Proof. By Theorem 4.2 we have that w(C(X) \X(1)) ≤ λ. This means that
there exists a base B = {Bυ : υ < λ} of C(X) \ X(1). For each Bυ let Cυ

= {x ∈ X : ∃ B ∈ Bυ (x ∈ B)}.
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Claim 1. The family {Cυ : υ < λ} is a network of X.
Let x be a point of X and let U be an open subset of X such that x ∈ U .

There exists an open set V such that x ∈ V ⊂ Cl V ⊂ U . Let K be a component of
Cl V containing x. By the Boundary Bumping Theorem [14, p. 73, Theorem 5.4] K
is non-degenerate and, consequently, K ∈ C(X) \X(1). Now, 〈U〉 ∩ (C(X) \X(1))
is a neighborhood of K in C(X) \X(1). It follows that there exists a Bυ ∈ B such
that K ∈ Bυ ⊂ 〈U〉 ∩ (C(X) \ X(1)). It is clear that Cυ ⊂ U and x ∈ Cυ since
x ∈ K. Hence, the family {Cυ : υ < λ} is a network of X.

Claim 2. nw(X) = λ.
Apply Claim 1 and the fact that the cardinality cardB ≤ λ.
Claim 3. w(X) = λ.
By Claim 2 we have nw(X) = λ. Moreover, by Theorem 4.1 w(X) = λ.
Now we have the following corollary.

Corollary 4.4. [8] A D-continuum X admits a Whitney map µ : C(X) →
[0, 1] if and only if it is metrizable.

5. Applications

5.1. Generalized Whitney maps for rim-metrizable or locally con-
nected continuum

A space X is said to be rim-metrizable if it has a basis B such that Bd(U) is
metrizable for each U ∈ B. Equivalently, a compact space X is rim-metrizable if
and only if for each pair F, G of disjoint closed subsets of X there exists a metrizable
closed subset of X which separates F and G.

Rim-metrizable spaces are a generalization of metrizable spaces.
Let us observe that every continuous image of an ordered compact space is

rim-metrizable [11, p. 566, Theorem 5].
The properties of rim-metrizable spaces which are essential for the our purpose

are established in Lemmas 5.1 and 5.3.

Lemma 5.1 [17, Theorem 1.2] Let X be a nondegenerate rim-metrizable con-
tinuum and let Y be a continuous image of X under a light mapping. Then
w(X) = w(Y ).

Lemma 5.2 [17, Theorem 1.4] Let f : X → Y be a light mapping of a non-
degenerate continuum X onto a space Y . If X admits a basis of open sets whose
boundaries have weight ≤ w(Y ), then w(Y ) = w(X).

Lemma 5.3 [17, Theorem 3.2] The monotone image of any rim-metrizable
continuum is also rim-metrizable.

Theorem 5.4. Let X = {Xa, pab, A} be an inverse system of compact spaces
and surjective bonding mappings pab. Then:
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1) There exists an inverse system M(X) = {Ma,mab, A} of compact spaces such
that mab are monotone surjections and limX = limM(X),

2) If X is λ-directed, then M(X) is λ-directed.

3) If w(Xa) ≤ τ and limX is either locally connected or rim-metrizable continu-
um, then w(Ma) ≤ τ for every a ∈ A.

Proof. 1) The proof of 1) is broken into several steps. We give the partial
proof. The complete prof is in [9, pp. 110–111].

a) Let X = {Xa, pab, A} be an inverse system with limit X and the projections
pa : X → Xa, a ∈ A. For every mapping pa : X → Xa there exists a monotone-light
factorization pa = `ama, where ma : X → Ma is monotone and `a : Ma → Xa is
light [2, p. 451, Theorem 6.2.22]. We have a collection of spaces Ma, a ∈ A.

b) For every bonding mapping pab : Xb → Xa, b ≥ a, we define mab : Mb → Ma

as follows. Let x be a point of Mb, xb = `b(x) and xa = pab(xb). Then m−1
b (x) is a

component in p−1
b (xb). This means that there exists a unique point y ∈ Ma such

that the component m−1
a (x) of p−1

a (xa) contains m−1
b (x) since p−1

b (xb) ⊂ p−1
a (xa).

Set mab(x) = y ∈ Ma. The mapping mab : Mb → Mais defined. From the definition
of mab it follows

pa = `ama,

pab`b = `amab,

mabmb = ma.

As in [9, p. 110, Theorem 3.7.] we infer that M(X) = {Ma,mab, A} is an inverse
system. Moreover, limX and lim M(X) are homeomorphic.

2) Obvious since M(X) = {Ma,mab, A} and X = {Xa, pab, A} are defined over
same set A.

3) If limX is rim-metrizable, then by Lemma 5.3 every space Ma is rim-
metrizable and by Lemma 5.1 w(Xa) = w(Ma). If X is locally connected, then
apply [10, Theorem 1].

The main theorems of this subsection are the following ones.

Theorem 5.5. Let X = {Xa, pab, A} be a λ-directed inverse system of com-
pact spaces and surjective bonding mappings pab. If limX is a locally connected
continuum which admits a generalized Whitney map for C(limX), then there ex-
ists an a ∈ A such that for each b ≥ a the projection mb : lim M(X) → Ma is a
homeomorphism.

Proof. Consider the inverse system M(X) = {Ma,mab, A} (Theorem 5.4)
whose limit lim M(X) is homeomorphic to limX. By Theorem 3.5 there exists an
a ∈ A such that for each b ≥ a the projection mb : lim M(X) → Ma is hereditary
irreducible. This means that mb is light. Light and monotone mappings are 1-1
and, consequently, a homeomorphism. See also 3.2. The proof is completed.
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Theorem 5.6. If X is a locally connected continuum such that w(X) > λ,
then X admits no λ-generalized Whitney map µλ : C(X) → J .

Proof. By Theorem 2.3 we infer that there exists an inverse λ-system X =
{Xa, pab, A}, λ < w(X), such that X is homeomorphic to limX. Now, inverse
system of Theorem 5.4 M(X) = {Ma,mab, A} is an inverse system of spaces Ma

with w(Ma) ≤ λ. If we assume X does admit a λ-generalized Whitney map, then by
Theorem 5.5 there exists an a ∈ A such that the projection mb : lim M(X) → Mb

is a homeomorphism, for every b ≥ a. It follows that w(lim M(X)) = w(Mb) ≤ λ.
This is impossible since lim M(X) is homeomorphic to X and w(X) > λ.

Theorem 5.7. Let X = {Xa, pab, A} be a λ-directed inverse system of compact
spaces and surjective bonding mappings pab. If limX is a rim-metrizable continuum
which admits a generalized Whitney map for C(limX), then there exists an a ∈
A such that for each b ≥ a the projection mb : lim M(X) → Ma is hereditary
irreducible.

Proof. Consider the inverse system M(X) = {Ma,mab, A} from Theorem 5.4
whose limit lim M(X) is homeomorphic to limX. By Corollary 3.5 there exists an
a ∈ A such that for each b ≥ a the projection mb : lim M(X) → Ma is hereditary
irreducible. This means that mb is light. Light and monotone mappings are 1-1
and, consequently, homeomorphism. The proof is completed.

Theorem 5.8. If X is a locally connected or rim-metrizable continuum of
weight w(X) > λ, then X admits no λ-generalized Whitney map µ : C(X) → J .

Theorem 5.9. If X admits a basis of open sets whose boundaries have weight
≤ λ and w(X) > λ, then X admits no λ-generalized Whitney map µ : C(X) → J .

Proof. By Theorem 2.3 we infer that there exists an inverse λ-system X =
{Xa, pab, A}, λ < w(X), such that X is homeomorphic to limX. If X admits a λ-
generalized Whitney map µ : C(X) → J , then there exists a cofinal subset B ⊂ A
such that for every b ∈ B the projection pb : lim X → Xb is hereditarily irreducible
(Corollary 3.5). This means that the projection pb : lim X → Xb is light. From
Lemma 5.2 it follows that w(limX) = w(Xa) ≤ λ. This is impossible since lim(X)
is homeomorphic to X and w(X) > λ.

5.2. Generalized Whitney maps for C(X) if X is a semi-aposyndetic
continuum

The concept of aposyndesis was introduced by Jones in [6]. A continuum is
said to be semi-aposyndetic [5, p. 238, Definition 29.1], if for every p 6= q in X,
there exists a subcontinuum M of X such that Int(M) contains one of the points
p, q and X \M contains the other one. Each locally connected continuum is semi-
aposyndetic.

In the sequel we shall use the following result [14, p. 226, Exercise 11.52].
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Lemma 5.10. If X is a continuum and if A and B are mutually disjoint
subcontinua of X, then there is a component K of X\(A∪B) such that Cl K∩A 6= ∅
and Cl K ∩B 6= ∅.

Lemma 5.11. If X is semi-aposyndetic continuum, then X is a D-continuum.

Proof. Let us prove that for every pair C∗, D∗ of disjoint non-degenerate
subcontinua of X there exists a non-degenerate subcontinuum E ⊂ X such that
C∗ ∩ E 6= ∅ 6= D∗ ∩ E and (C∗ ∪D∗) \ E 6= ∅. We shall consider two cases.

a) If either IntX(C) 6= ∅ or IntX(D) 6= ∅, then it suffices to apply Lemma
5.10 to the union C∗ ∪D∗ and obtain a component K of X \ (C∗ ∪D∗) such that
Cl K ∩C∗ 6= ∅ and Cl K ∩D∗ 6= ∅. Then E = Cl K is a continuum with properties
C∗∩E 6= ∅ 6= D∗∩E and (C∗∪D∗)\E 6= ∅ since Int(C∗)∩E = ∅ or Int(D∗)∩E = ∅.

b) Assume that Int(C∗) = ∅ and Int(D∗) = ∅. There exist x, y ∈ C∗ such that
x 6= y. Moreover, there exists a subcontinuum M of X such that Int(M) contains
one of the points x, y and X \M contains the other one since X is semi-aposyndetic.
Suppose that x ∈ Int(M) and y ∈ X \ M . If M ∩ D 6= ∅, then we set E = M
and we have that C∗ ∩ E 6= ∅ 6= D∗ ∩ E and (C∗ ∪D∗) \ E 6= ∅ since y ∈ X \M .
Suppose that M ∩D∗ = ∅. Applying Lemma 5.10 to the union C∗ ∪D∗ ∪M we
obtain a component K of X \ (C∗ ∪D∗ ∪M) such that Cl K ∩ (C∗ ∪M) 6= ∅ and
Cl K ∩D∗ 6= ∅. It is clear that x /∈ Cl K. If Cl K ∩ C∗ 6= ∅, then we set E = Cl K
and obtain a continuum E such that C∗ ∩E 6= ∅ 6= D∗ ∩E and (C∗ ∪D∗) \E 6= ∅
since x /∈ Cl K. If Cl K ∩ C∗ = ∅, then ClK ∩M 6= ∅ and we set E = Cl K ∪M .
Now y /∈ E, C∗ ∩ E 6= ∅ 6= D∗ ∩ E and (C∗ ∪D∗) \ E 6= ∅.

Theorem 5.12. If a semi-aposyndetic continuum X admits a Whitney map
µ : C(X) → J , then w(X) = λ.

Proof. Apply Theorem 4.3.

Corollary 5.13. A semi-aposyndetic continuum X with w(X) > λ admits
no Whitney map µ : C(X) → J .

5.3. A C-continuum
A continuum X is said to be a C-continuum provided for each triple x, y, z of

points of X, there exists a subcontinuum C of X which contains x and exactly one
of the points y and z [20, p. 326].

We say that a space X is arcwise connected if for every pair x, y of points of
X there exists a generalized arc L with end points x, y.

Lemma 5.14. Each arcwise connected continuum is a C-continuum.

Proof. Let x, y, z be a triple of points of an arcwise connected continuum X.
There exists an arc [x, y] with endpoints x and y. If z /∈ [x, y], then the proof is
completed. If z ∈ [x, y], then subarc [x, z] contains x and z, but not y. The proof
is completed.
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Lemma 5.15. The cartesian product X × Y of two non-degenerate continua
X and Y is a C-continuum.

Proof. Let (x1, y1), (x2, y2), (x3, y3) be a triple of points of the product X×Y .
Now we have x2 6= x3 or y2 6= y3. We will give the proof in the case x2 6= x3 since
the proof in the case y2 6= y3 is similar. Now we have two disjoint continua Y2 =
{(x2, y) : y ∈ Y } and Y3 = {(x3, y) : y ∈ Y }. If (x1, y1) ∈ Y2 or (x1, y1) ∈ Y3,
the proof is completed. Assume that (x1, y1) /∈ Y2 and (x1, y1) /∈ Y3. Consider the
continua X2 = {(x, y2) : x ∈ X} and X3 = {(x, y3) : x ∈ X}. The continuum
Y1 = {(x1, y) : y ∈ Y } contains a point (x1, p) such that (x1, p) /∈ X2 ∪ X3. Let
Xp = {(x, p) : x ∈ X}. It is clear that a continuum Y1∪Xp∪Y2 contains the points
(x1, y1) and (x2, y2) but not (x3, y3). Similarly, a continuum Y1 ∪Xp ∪ Y3 contains
the points (x1, y1) and (x3, y3) but not (x2, y2). The proof is completed.

Lemma 5.16. [20, Theorem 1, p. 326] If the continuum X is aposyndetic, then
X is a C-continuum.

Remark 1. There exists a C-continuum which is not aposyndetic [20, p. 327].
Remark 2. There exists a C-continuum which is not arcwise connected [20,

p. 328].
A continuum X is said to be colocally connected provided that for each point

x ∈ X and each open U 3 x there exists an open set V containing x such that
V ⊂ U and X \ V is connected.

Lemma 5.17. Each colocally connected continuum X is a C-continuum.

Proof. Let x, y, z be a triple of points of X. Now, U = X \ {x, y} is an open
set U such that z ∈ U . From the colocal connectedness of X it follows that there
exists an open set V such that z ∈ V ⊂ U and X \ V is connected. Hence, X is a
C-continuum since the continuum X\ V contains the points x and y.

Now we shall prove the main theorem of this subsection.

Theorem 5.18. If X is a C-continuum, then it is a D-continuum.

Proof. Let us prove that for every pair C∗, D∗ of disjoint non-degenerate
subcontinua of X there exists a non-degenerate subcontinuum E ⊂ X such that
C∗∩E 6= ∅ 6= D∗∩E and (C∗∪D∗)\E 6= ∅. Let x ∈ C∗ and y, z ∈ D∗. There exists
a continuum E such that either x, y ∈ E, z ∈ X \ E or x, z ∈ E, y ∈ X \ E,since
X is a C-continuum. We assume that x, y ∈ E, and z ∈ X \ E. It is clear that
C∗ ∩ E 6= ∅ 6= D∗ ∩ E and (C∗ ∪D∗) \ E 6= ∅ since x ∈ C∗ ∩ E, y ∈ D∗ ∩ E and
z ∈ (C∗ ∪D∗) \ E.

Theorem 5.19. A C-continuum X with w(X) > λ admits no Whitney map
µ : C(X) → J .

Theorem 5.20. A C-continuum X admits a Whitney map µ : C(X) → [0, 1]
if and only if it is metrizable.
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Corollary 5.21. Let X be an (arcwise connected, aposyndetic, colocally
connected or cartesian product Y ×Z of continua) continuum such that w(X) > λ.
Then X admits no λ-generalized Whitney map µλ : C(X) → J .
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