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Abstract. Given Banach spaces X and Y and Banach space operators A ∈ L(X ) and B ∈
L(Y), the generalized derivation δA,B ∈ L(L(Y,X )) is defined by δA,B(X) = (LA − RB)(X) =
AX −XB. This paper is concerned with the problem of transferring the left polaroid property,
from operators A and B∗ to the generalized derivation δA,B . As a consequence, we give necessary
and sufficient conditions for δA,B to satisfy generalized a-Browder’s theorem and generalized a-
Weyl’s theorem. As an application, we extend some recent results concerning Weyl-type theorems.

1. Introduction

Given Banach spaces X and Y and Banach space operators A ∈ L(X ) and B ∈
L(Y), let LA ∈ L(L(X )) and RB ∈ L(L(Y)) be the left and the right multiplication
operators, respectively, and denote by δA,B ∈ L(L(Y,X )) the generalized derivation
δA,B(X) = (LA − RB)(X) = AX − XB. The problem of transferring spectral
properties from A and B to LA, RB , LARB and δA,B was studied by numerous
mathematicians, see [6–8,10,11,15,19,22,23] and the references therein. The main
objective of this paper is to study the problem of transferring the left polaroid
property and its strong version, finitely left polaroid property, from A and B∗ to
δA,B . After Section 2 where several basic definitions and facts will be recalled, we
will prove that if A is a left polaroid and satisfies property (Pl) and B is a right
polaroid and satisfy property (Pr), then δA,B is a left polaroid. Also, we prove that
if A is a finitely left polaroid and B is a finitely right polaroid, then δA,B is a finitely
left polaroid. In Section 4, we give necessary and sufficient conditions for δA,B to
satisfy generalized a-Weyl’s theorem. In the last section we apply results obtained
previously. If X = H and Y = K are Hilbert spaces, we prove that if A ∈ L(H) and
B ∈ L(K) are completely totally hereditarily normaloid operators, then f(δA,B)
satisfies generalized a-Weyl’s theorem, for every analytic function f defined on a
neighborhood of σ(δA,B) which is non constant on each of the components of its
domain. This generalizes results obtained in [8,10,11,14,22,23].
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2. Notation and terminology

Unless otherwise stated, from now on X (similarly, Y) shall denote a complex
Banach space and L(X ) (similarly, L(Y)) the algebra of all bounded linear maps
defined on and with values in X (resp. Y). Given T ∈ L(X ), N(T ) and R(T ) will
stand for the null space and the range of T , resp. Recall that T ∈ L(X ) is said
to be bounded below, if N(T ) = {0} and R(T ) is closed. Denote the approximate
point spectrum of T by

σa(T ) = {λ ∈ C : T − λI is not bounded below}.
Let

σs(T ) = {λ ∈ C : T − λI is not surjective}
denote the surjective spectrum of T . In addition, X ∗ will denote the dual space of
X , and if T ∈ X , then T ∗ ∈ L(X ∗) will stand for the adjoint map of T . Clearly,
σa(T ∗) = σs(T ) and σa(T ) ∪ σs(T ) = σ(T ), the spectrum of T . Recall that the
ascent asc(T ) of an operator T is defined by asc(T ) = inf{n ∈ N : N(Tn) =
N(Tn+1)} and the descent dsc(T ) = inf{n ∈ N : R(Tn) = R(Tn+1)}, with inf ∅ =
∞. It is well known that if asc(T ) and dsc(T ) are both finite, then they are equal.

A complex number λ ∈ σa(T ) (resp. λ ∈ σs(T )) is a left pole (resp. a right pole)
of order d of T ∈ L(X ) if asc(T −λI) = d < ∞ and R((T −λI)d+1) is closed (resp.
dsc(T −λI) = d < ∞ and R((T −λI)d) is closed). We say that T is left polar (resp.
right polar) of order d at a point λ ∈ σa(T ) (resp. λ ∈ σs(T )) if λ is a left pole of T
(resp. right pole of T ) of order d. Now, T is a left polaroid (resp. right polaroid) if
T is left polar (resp. right polar ) at every λ ∈ isoσa(T ) (resp. λ ∈ isoσs(T )), where
isoK is the set of all isolated points of K for K ⊆ C. According to [7], a left polar
operator T ∈ L(X ) of order d(λ) at λ ∈ σa(T ), satisfies property (Pl) if the closed
subspace N((T − λ)d(λ)) + R(T − λ) is complemented in X for every λ ∈ isoσa(T ).
Dually, a right polar operator T ∈ L(X ) of order d(λ) at λ ∈ σs(T ), satisfies
property (Pr) if the closed subspace N(T −λ)∩R((T −λ)d(λ)) is complemented in
X for every λ ∈ isoσs(T ). If X = H is a Hilbert space, then every left polar (resp.
right polar) operator T ∈ L(H) of order d(λ) at λ ∈ isoσa(T ) (resp. λ ∈ isoσs(T ))
satisfies property (Pl) (resp. (Pr)). On the other hand, it is known that T ∈ L(X )
is a right polaroid if and only if T ∗ is a left polaroid and T is a polaroid if it is both
left and right polaroid, whenever isoσ(T ) = isoσa(T ) ∪ isoσs(T ).

Recall that T ∈ L(X ) is said to be a Fredholm operator, if both α(T ) =
dimN(T ) and β(T ) = dimX/R(T ) are finite dimensional, in which case its index
is given by ind(T ) = α(T ) − β(T ). If R(T ) is closed and α(T ) is finite (resp.
β(T ) is finite), then T ∈ L(X ) is said to be an upper semi-Fredholm (resp. a lower
semi-Fredholm) while if α(T ) and β(T ) are both finite and equal, so the index is
zero and T is said to be a Weyl operator. These classes of opertaors generate the
Fredholm spectrum, the upper semi-Fredholm spectrum, the lower semi-Fredholm
spectrum and the Weyl spectrum of T ∈ L(X ) which will be denoted by σe(T ),
σSF+(T ), σSF−(T ) and σW (T ), respectively. The Weyl essential approximate point
spectrum and the Browder essential approximate point spectrum of T ∈ L(X ) are
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the sets
σaw(T ) = {λ ∈ σa(T ) : λ ∈ σSF+(T ) or 0 < ind(T − λI)}

and
σab(T ) = {λ ∈ σa(T ) : λ ∈ σaw(T ) or asc(T − λI) = ∞}.

It is clear that
σSF+(T ) ⊆ σaw(T ) ⊆ σab(T ) ⊆ σa(T ).

For T ∈ L(X ) and a nonnegative integer n define Tn to be the restriction of T
to R(Tn) viewed as a map from R(Tn) into R(Tn). If for some integer n the range
space R(Tn) is closed and the induced operator Tn ∈ L(R(Tn)) is Fredholm, then
T will be said to be B-Fredholm. In a similar way, if Tn is an upper semi-Fredholm
(resp. lower semi-Fredholm) operator, then T is called upper semi B-Fredholm
(resp. lower semi B-Fredholm). In this case the index of T is defined as the index
of semi-Fredholm operator Tn, see [9]. T ∈ L(X ) is called semi B-Fredholm if T is
upper semi B-Fredholm or lower semi B-Fredholm. Let

ΦSBF (X ) = {T ∈ L(X ) : T is semi B-Fredholm },
ΦSBF−+

(X ) = {T ∈ ΦSBF (X ) : T is upper semi B-Fredholm with ind(T ) ≤ 0 },
ΦSBF+

−
(X ) = {T ∈ ΦSBF (X ) : T is lower semi B-Fredholm with ind(T ) ≥ 0 }.

Then the upper semi B-Weyl and lower semi B-Weyl spectrum of T are the sets

σUBW (T ) = {λ ∈ σa(T ) : T − λI 6∈ ΦSBF−+
(X )}

and
σLBW (T ) = {λ ∈ σa(T ) : T − λI 6∈ ΦSBF+

−
(X )},

respectively. T ∈ L(X ) will be said to be B-Weyl, if T is both upper and lower
semi B-Weyl (equivalently, T is B-Fredholm operator of index zero). The B-Weyl
spectrum σBW (T ) of T is defined by

σBW (T ) = {λ ∈ C : T − λI is not B-Weyl operator}.
Let Πl(T ) denote the set of left pole of T ∈ L(X ).

Πl(T ) = {λ ∈ σa(T ) : asc(T − λI) = d < ∞ and R((T − λI)d+1) is closed}.
A strong version of the left polaroid property says that T ∈ L(X ) is a finitely left
polaroid (resp. a finitely right polaroid) if and only if every λ ∈ isoσa(T ) ( resp.
λ ∈ isoσs(T )) is a left pole of T and α(T − λI) < ∞ (resp. a right pole of T and
β(T − λI) < ∞). Let Πl

0(T ) (resp. Πr
0(T )) denote the set of finite left poles (resp.

the set of finite right poles) of T . Then T ∈ L(X ) is a finitely left polaroid (resp. a
finitely right polaroid) if and only if isoσa(T ) = Πl

0(T ) (resp. isoσa(T ) = Πr
0(T )).

For T ∈ L(X ) define

∆(T ) = {n ∈ N : m ≥ n, m ∈ N⇒ R(Tn) ∩N(T ) ⊆ R(Tm) ∩N(T )}.
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The degree of stable iteration is defined as dis(T ) = inf ∆(T ) if ∆(T ) 6= ∅, while
dis(T ) = ∞ if ∆(T ) = ∅. T ∈ L(X ) is said to be quasi-Fredholm of degree d, if
there exists d ∈ N such that dis(T ) = d, R(Tn) is a closed subspace of X for each
n ≥ d and R(T ) + N(Tn) is a closed subspace of X . An operator T ∈ L(X ) is said
to be semi-regular, if R(T ) is closed and N(Tn) ⊆ R(Tm) for all m,n ∈ N.

An important property in local spectral theory is the single valued extension
property. An operator T ∈ L(X ) is said to have the single valued extension property
at λ0 ∈ C (abbreviated SVEP at λ0), if for every open disc D centered at λ0, the
only analytic function f : D→ X which satisfies the equation (T −λI)f(λ) = 0 for
all λ ∈ D is the function f ≡ 0. An operator T ∈ L(X ) is said to have SVEP if T
has SVEP at every λ ∈ C.

Furthermore, for T ∈ L(X ) the quasi-nilpotent part of T is defined by

H0(T ) = {x ∈ X : lim
n→∞

‖Tn(X )‖ 1
n = 0}.

It can be easily seen that N(Tn) ⊂ H0(T ) for every n ∈ N. The analytic core of an
operator T ∈ L(X ) is the subspace K(T ) defined as the set of all x ∈ X such that
there exists a constant c > 0 and a sequence of elements xn ∈ X such that x0 = x,
Txn = xn−1, and ‖xn‖ ≤ cn‖x‖ for all n ∈ N, the spaces K(T ) are hyperinvariant
under T and satisfy K(T ) ⊂ R(Tn), for every n ∈ N and T (K(T )) = K(T ), see [1]
for information on H0(T ) and K(T ).

3. Left polaroid generalized derivation

We begin this section by recalling some results concerning spectra of general-
ized derivations.

Let X and Y be two Banach spaces and consider A ∈ L(X ) and B ∈ L(Y).
Let δA,B ∈ L(L(Y,X )) be the generalized derivation induced by A and B, i.e.,

δA,B(X) = (LA −RB)(X) = AX −XB where X ∈ L(Y,X ).

According to [20, Theorem 3.5.1], we have that

σa(δA,B) = σa(A)− σs(B).

and it is not difficult to conclude that

isoσa(δA,B) = (isoσa(A)− isoσa(B∗)) \ accσa(δA,B).

The following results concerning upper semi Fredholm spectrum and Brow-
der essential approximate point spectrum of generalized derivation were proved in
[8,24]. They will be used in the sequel.

Lemma 3.1. Let X and Y be two Banach spaces and consider A ∈ L(X ) and
B ∈ L(Y). Then the following statements hold.

i) σSF+(δA,B) = (σSF+(A)− σs(B)) ∪ (σa(A)− σSF−(B)).
ii) σab(δA,B) = (σab(A)− σs(B)) ∪ (σa(A)− σab(B∗)).
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The following lemma concerning the Weyl essential approximate point spec-
trum of a generalized derivation will also be used in the sequel.

Lemma 3.2. Let X and Y be two Banach spaces and consider A ∈ L(X ) and
B ∈ L(Y). Then

σaw(δA,B) ⊆ (σaw(A)− σs(B)) ∪ (σa(A)− σaw(B∗)).

Proof. Let λ /∈ (σaw(A) − σs(B)) ∪ (σa(A) − σaw(B∗)). If µi ∈ σa(A) and
νi ∈ σs(B) are such that λ = µi−νi. Then µi /∈ σSF+(A) and νi /∈ σSF−(B), hence
from statement i) of Lemma 3.1 λ /∈ σSF+(δA,B). Now, we will prove that

ind(δA,B − λI) ≤ 0.

Suppose to the contrary that ind(δA,B − λI) > 0. Then λ /∈ σe(δA,B). It follows
from [17, Corollary 3.4] that

λ = µi − νi (1 ≤ i ≤ n),

where µi ∈ isoσ(A) for 1 ≤ i ≤ m and νi ∈ isoσ(B), for m + 1 ≤ i ≤ n. We have
that ind(δA,B − λI) is equal to

n∑
j=m+1

dimH0(B − νj)ind(A− µj)−
m∑

k=1

dimH0(A− µk)ind(B − νk).

Since µi ∈ isoσ(A), for 1 ≤ i ≤ m and νi ∈ isoσ(B), for m + 1 ≤ i ≤ n, it follows
that dimH0(A − µj) is finite, for 1 ≤ j ≤ m and dimH0(B − νk) is finite, for
m + 1 ≤ k ≤ n and we have also ind(A − µi) ≤ 0 and ind(B − νj) ≥ 0. Thus
ind(δA,B − λI) ≤ 0. This a contradiction. Hence λ /∈ σaw(δA,B).

According to [7], a left polaroid operator (resp. a right polaroid operator)
satisfies property (Pl), (resp. (Pr)), if it is left polar at every λ ∈ isoσa(T ) (resp.
right polar at every λ ∈ isoσs(T ) which satisfies property (Pl), (resp. property
(Pr). The following lemma is the dual version of [7, Lemma 3.1].

Lemma 3.3. Let X be a Banach space. If T ∈ L(X ) is a right polaroid and
satisfies property (Pr), then for every λ ∈ isoσs(T ) there exist T -invariant closed
subspaces N1 and N2 such that X = N1 ⊕ N2, (T − λ)|N1 is nilpotent of order
d(λ) and (T − λI)|N2 is surjective, where d(λ) is the order of the right pole at λ.
Moreover, K(T − λI) = R((T − λI)d(λ)).

Proof. From the hypothesis, T −λ is quasi-Fredholm of degree d(λ) and closed
subspace N((T−λI)d(λ))+R(T−λ) is complemented in X . Since T ∈ L(X ) is right
polaroid and satisfies property (Pr), then N(T−λ)∩R((T−λ)d(λ)) is complemented
in X . From [25, Theorem 5], there exist T -invariant closed subspaces N1 and N2

such that X = N1 ⊕ N2, (T − λ)|N1 is nilpotent of order d(λ) and (T − λI)|N2 is
semi-regular. Since dsc(T − λI) = d(λ), the semi-regular operator (T − λI)|N2 is
surjective. Since K(T − λI) = K((T − λI)|N1)⊕K((T − λI)|N2) = 0⊕N2 = N2,
we can conclude from [2, Theorem 2.7] that K(T − λI) = R((T − λI)d(λ).
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Next follows the main result of this section.

Theorem 3.4. Let X and Y be two Banach spaces and let A ∈ L(X ) be a
left polaroid and B ∈ L(Y) be a right polaroid. If A satisfies property (Pl) and B
satisfies property (Pr), then δA,B is a left polaroid.

Proof. Let λ ∈ isoσa(δA,B). Then there exist µ ∈ σa(A) and ν ∈ σs(B) such
that λ = µ − ν, and it follows that µ ∈ isoσa(A) and ν ∈ isoσs(B) = isoσa(B∗).
Since A is a left polaroid, then there exist A-invariant closed subspaces M1 and M2

such that X = M1 ⊕M2, (A− µI)|M1 = A1 − µI|M1 is nilpotent of order d1 where
d1 = d(µ) is the order of left pole of A at µ and that (A − µI)|M2 = A2 − µI|M2

is bounded below. Also, since B is a right polaroid, then there exists B-invariant
closed subspaces N1 and N2 such that Y = N1 ⊕ N2, (B − ν)|N1 = B1 − νI|N1

is nilpotent of order d2 where d2 = d(ν) is the order of right pole of B at ν and
(B−νI)|N2 = B2−νI|N2 is surjective. Let d = d1+d2 and X ∈ L(N1⊕N2,M1⊕M2)
have the representation X = [Xkl]2k,l=1. We will prove that asc(δA,B−λI) is finite.

Let (δA,B − λI)d+1(X) = 0 imply that X12 = X21 = X22 = 0. Since (δA1,B1 −
λI) is d-nilpotent it follows that (δA,B−λI)d(X) = 0. Hence asc(δA,B−λI) ≤ d <
∞.

Now, we prove that (δA,B − λI)d+1(L(Y,X )) is closed. First, we will prove
that 0 /∈ σa(δA2−µI|M2 ,B2−νI|N2

). For this, it suffices to prove that σa(A2−µI|M2)∩
σs(B2 − νI|N2) = ∅. Suppose that there exists a complex number α such that α ∈
σa(A2−µI|M2)∩σs(B2−νI|N2). Then α ∈ σa(A2−µI|M2) and α ∈ σs(B2−νI|N2),
from [1, Theorem 2.48], 0 ∈ σa(A2 − (µ + α)I|M2) and 0 ∈ σs(B2 − (ν + α)I|N2).
Since (µ + α) is isolated in the approximate point spectrum of A and (ν + α) is
isolated in the surjective spectrum of B, then by the hypothesis A is a left polaroid
which satisfies property (Pl) and B is a right polaroid which satisfies property (Pr).
We conclude that

(A− (µ + α)I)|M2 = A2 − (µ + α)I|M2

is bounded below and

(B − (ν + α)I)|N2 = B2 − (ν + α)I|N2

is surjective. That is

0 /∈ σa(A2 − (µ + α)I|M2) and 0 /∈ σs(B2 − (ν + α)I|N2).

This is a contradiction, hence 0 /∈ σa(δA2−µI|M2 ,B2−νI|N2
). Since 0 /∈ σa(δA2,B2 −

λI), then from [3, Lemma 1.1] (δA2,B2−λI)d+1(L(N2,M2)) is closed. We have that
δA1,B1 − λI is nilpotent of order d, and then by [26, Theorem 2.7] it follows that

(δA1,B1 − λI)d+1(L(N1,M1)) is closed.

From the fact that 0 /∈ σa(δAi,Bj − λI) and [3, Lemma 1.1]AA, it follows that

(δAi,Bj − λI)d+1(L(Nj ,Mi)) is closed for 1 ≤ i, j ≤ 2 and i 6= j.

Consequently, (δA,B − λI)d+1(L(X ,Y)) is closed. Hence λ is a left pole of δA,B

which means that δA,B is a left polaroid.
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In the case of Hilbert spaces, we have the following corollary.

Corollary 3.5. Let H and K be Hilbert spaces and let A ∈ L(H) and
B ∈ L(K). If A and B∗ are left polaroids, then δA,B is left polaroid.

Remark. From [18, Theorem 3.8] we have that if T ∈ L(X ), such that
α(T ) < ∞ and asc(T ) < ∞, then R(Tn) is closed for some integer n > 1, if and
only if R(T ) is closed. Hence T is a finitely left polaroid if and only if α(T−λI) < ∞,
asc(T − λI) < ∞ and R(T − λI) is closed for every λ ∈ isoσa(T ).

In the following theorem, we characterize finitely left polaroid generalized
derivation.

Theorem 3.6. Let X and Y be two Banach spaces and let A ∈ L(X ) and
B ∈ L(Y). If A and B∗ are finitely left polaroid operators, then δA,B is a finitely
left polaroid.

Proof. Let λ ∈ isoσa(δA,B). Then there exist µ ∈ σa(A) and ν ∈ σs(B) such
that λ = µ − ν, hence we have µ ∈ isoσa(A) and ν ∈ isoσs(B) = isoσa(B∗).
Suppose that A and B∗ are finitely left polaroids. Then from [27, Corollary 2.2]
we have that µ /∈ σab(A) and ν /∈ σab(B∗). Applying statement ii) of Lemma 3.1,
we get λ /∈ σab(δA,B), hence by [27, Corollary 2.2] δA,B is a finitely left polaroid.

4. Consequences to Weyl’s type theorem

For T ∈ L(X ), let Ea(T ) = {λ ∈ isoσa(T ) : 0 < α(T − λI)} and Ea
0 (T ) =

{λ ∈ Ea(T ) : α(T − λI) < ∞}. Recall that T is said to satisfy a-Browder’s
theorem (resp. generalized a-Browder’s theorem) if σa(T ) \ σaw(T ) = Πl

0(T ) (resp.
σa(T ) \ σUBW (T ) = Πl(T )). From [4, Theorem 2.2] we have that T satisfies a-
Browder’s theorem if and only if T satisfies generalized a-Browder’s theorem. T
is said to satisfy a-Weyl’s theorem (resp. generalized a-Weyl’s theorem) if σa(T ) \
σaw(T ) = Ea

0 (T ) (resp. σa(T ) \ σUBW (T ) = Ea(T )).

For T ∈ L(X ), let E(T ) = {λ ∈ isoσ(T ) : 0 < α(T − λI)} and E0(T ) = {λ ∈
E(T ) : α(T − λI) < ∞}. Recall that T is said to satisfy Weyl’s theorem (resp.
generalized Weyl’s theorem) if σ(T ) \ σW (T ) = E0(T ) (resp. σ(T ) \ σBW (T ) =
E(T )). We know that if T satisfies generalized a-Weyl’s theorem then T satisfies a-
Weyl’s theorem and this implies that T satisfies Weyl’s theorem. Next, generalized
a-Weyl’s theorem for δA,B will be studied.

Theorem 4.1. Let X and Y be two Banach spaces and let A ∈ L(X ) and
B ∈ L(Y). Suppose that A and B∗ satisfy a-Browder’s theorem. If A is a left
polaroid and satisfies property (Pl) and B is a right polaroid and satisfies (Pr),
then the following assertions are equivalent.

i) δA,B satisfies generalized a-Weyl’s theorem.

ii) σaw(δA,B) = (σaw(A)− σs(B)) ∪ (σa(A)− σaw(B∗)).
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Proof. If A and B∗ satisfy a-Browder theorem, then they satisfy generalized
a-Browder theorem. By [8, Theorem 4.2] it follows that δA,B satisfies generalized a-
Browder’s theorem if and only if σaw(δA,B) = (σaw(A)−σs(B))∪(σa(A)−σaw(B∗)).
That is σa(δA,B) \ σUBW (δA,B) = Πl(δA,B). Since A is a left polaroid and B
is a right polaroid, then from Theorem 3.4 δA,B is a left polaroid, consequently
Πl(δA,B) = Ea(δA,B). Thus δA,B satisfies generalized a-Weyl’s theorem. The
reverse implication is obvious from the fact that δA,B satisfies generalized a-Weyl’s
theorem implies δA,B satisfies generalized a-Browder’s theorem

In the case of Hilbert spaces operators, we have the following corollaries.

Corollary 4.2. Let H and K be two Hilbert spaces and let A ∈ L(H) and
B ∈ L(K). Suppose that A and B∗ satisfy a-Browder’s theorem. If A is a left
polaroid and B is a right polaroid, then the following assertions are equivalent.

i) δA,B satisfies generalized a-Weyl’s theorem.

ii) σaw(δA,B) = (σaw(A)− σs(B)) ∪ (σa(A)− σaw(B∗)).

Corollary 4.3. Let X and Y be two Banach spaces and let A ∈ L(X ) and
B ∈ L(Y). Suppose that A and B∗ satisfy a-Browder’s theorem. If A is a left
polaroid and satisfies property (Pl) and B is a right polaroid and satisfies property
(Pr), then the following assertions are equivalent.

i) δA,B has SVEP at λ /∈ σUBW (δA,B).
ii) δA,B satisfies a-Browder’s theorem.
iii) δA,B satisfies a-Weyl’s theorem.
iv) δA,B satisfies generalized a-Weyl’s theorem.
v) σaw(δA,B) = (σaw(A)− σs(B)) ∪ (σa(A)− σaw(B∗)).

Proof. (i) ⇔ (ii) follows from [5, Theorem 2.1], (iii) ⇔ (iv) follows from [3,
Theorem 3.7] and (iv) ⇔ (v) follows from Theorem 4.1.

In the following result, we give sufficient conditions for δA,B to satisfy a-
Browder’s theorem.

Theorem 4.4. Let X and Y be two Banach spaces and let A ∈ L(X ) and
B ∈ L(Y). If A has SVEP at µ ∈ σa(A) \ σSF+(A) and B has SVEP at ν ∈
σa(B∗) \ σSF−(B), then δA,B satisfies a-Browder’s theorem.

Proof. Let λ ∈ σa(δA,B)\σaw(δA,B). Then λ ∈ σa(δA,B)\σSF+(δA,B), and from
statement i) of Lemma 3.1 there exist µ ∈ σa(A)\σSF+(A) and ν ∈ σs(B)\σSF−(B)
such that λ = µ − ν. Since A has SVEP at µ /∈ σSF+(A) and B has SVEP at
ν /∈ σSF−(B), it follows from [27, Corollary 2.2] that µ /∈ σab(A) and ν /∈ σab(B∗);
applying statement ii) of Lemma 3.1 we get λ /∈ σab(δA,B). Hence λ ∈ Πl

0(δA,B).
Let λ ∈ Πl

0(δA,B); according to [27, Corollary 2.2], we have λ ∈ σa(δA,B)\σab(δA,B).
Since σaw(T ) ⊆ σab(T ), then λ ∈ σa(δA,B) \ σaw(δA,B). Hence δA,B satisfy a-
Browder’s theorem.
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5. Application

A Banach space operator T ∈ L(X ) is said to be hereditary normaloid, T ∈
HN , if every part of T (i.e., the restriction of T to each of its invariant subspaces) is
normaloid (i.e., ‖T‖ equals the spectral radius r(T )). T ∈ HN is totally hereditarily
normaloid, T ∈ T HN , if also the inverse of every invertible part of T is normaloid
and T is completely totally hereditarily normaloid (abbr. T ∈ CHN ), if either
T ∈ T HN or T − λI ∈ HN for every complex number λ. The class CHN is large.
In particular, let H be a Hilbert space and T ∈ L(H) be a Hilbert space operator.
If T is hyponormal (T ∗T ≥ TT ∗) or p-hyponormal ((T ∗T )p) ≥ (TT ∗)p) for some
(0 < p ≤ 1) or w-hyponormal ((|T ∗| 12 |T ||T ∗| 12 )

1
2 ≥ |T ∗|), then T is in T HN .

Again, totaly *-paranormal operators (‖(T − λI)∗x‖2 ≤ ‖(T − λI)x‖2 for every
unit vector x) are HN -operators and paranormal operators (‖Tx‖2 ≤ ‖T 2x‖‖x‖,
for all unit vector x) are T HN -operators. It is proved in[11] that if A, B∗ ∈ L(H)
are hyponormal, then the generalized Weyl’s theorem holds for f(δA,B) for every
f ∈ H(σ(δA,B)), where H(σ(δA,B)) is the set of all analytic functions defined on
a neighborhood of σ(δA,B). This result was extended to log-hyponormal or p-
hyponormal operators in [14] and [22]. Also, in [10] and [23], it is shown that if
A,B∗ ∈ L(H) are w-hyponormal operators, then Weyl’s theorem holds for f(δA,B)
for every f ∈ H(σ(δA,B)). Let Hc(σ(T )) denote the space of all analytic functions
defined on a neighborhood of σ(T ) which is non constant on each of the components
of its domain. In the next results we can give more.

Theorem 5.1. Suppose that A, B ∈ L(H) are CHN operators; then δA,B

satisfies a-Browder’s theorem.

Proof. Since A and B are CHN -operators, it follows from [13, Corollary 2.10]
that A has SVEP at µ ∈ σa(A)\σSF+(A) and B has SVEP at µ ∈ σa(B∗)\σSF−(B).
Then by Theorem 4.4, a-Browder’s theorem holds for δA,B .

Corollary 5.2. If A, B ∈ L(H) are CHN operators, then

i) δA,B has SVEP at λ /∈ σUBW (δA,B),

ii) δA,B satisfies a-Browder’s theorem.

iii) δA,B satisfies a-Weyl’s theorem.

iv) δA,B satisfies generalized a-Weyl’s theorem.

v) σaw(δA,B) = (σaw(A)− σs(B)) ∪ (σa(A)− σaw(B∗)).

Proof. Since A and B are CHN -operators, it follows from [13, Corollary 2.15]
that A, B, A∗ and B∗ satisfy a-Browder’s theorem. By [13, Proposition 2.1], we
conclude that A and B∗ are left polaroids. The assertions follows from Corollary
4.3.

Corollary 5.3. Suppose that A,B ∈ L(H) are CHN -operators. Then
f(δA,B) satisfies generalized a-Browder’s theorem, for every f ∈ Hc(σ(δA,B)).
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Proof. By Corollary 5.2 and [16, Corollary 3.5], we get that generalized a-
Browder’s theorem holds for f(δA,B).

Corollary 5.4. Suppose that A,B ∈ L(H) are CHN -operators. Then
f(δA,B) satisfies generalized a-Weyl’s theorem, for every f ∈ Hc(σ(δA,B)).

Proof. By [13, Proposition 2.1] and Theorem 3.4, we get that δA,B is a left
polaroid and from Corollary 5.2 we have that δA,B satisfies generalized a-Weyl’s
theorem. Applying [16, Theorem 3.14] we get that generalized a-Weyl’s’s theorem
holds for f(δA,B).
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