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SOME SPECTRAL PROPERTIES OF
GENERALIZED DERIVATIONS

Mohamed Amouch and Farida Lombarkia

Abstract. Given Banach spaces X and } and Banach space operators A € L(X) and B €
L(Y), the generalized derivation 64,5 € L(L(Y, X)) is defined by d4 g(X) = (La — Rp)(X) =
AX — X B. This paper is concerned with the problem of transferring the left polaroid property,
from operators A and B* to the generalized derivation 4, p. As a consequence, we give necessary
and sufficient conditions for §4 p to satisfy generalized a-Browder’s theorem and generalized a-
Weyl’s theorem. As an application, we extend some recent results concerning Weyl-type theorems.

1. Introduction

Given Banach spaces X’ and ) and Banach space operators A € L(X) and B €
L(Y),let Ly € L(L(X)) and Rp € L(L(Y)) be the left and the right multiplication
operators, respectively, and denote by d4 g € L(L(Y, X)) the generalized derivation
da,8(X) = (Ls — Rp)(X) = AX — XB. The problem of transferring spectral
properties from A and B to La, Rg, LaRp and 04 g was studied by numerous
mathematicians, see [6-8,10,11,15,19,22,23] and the references therein. The main
objective of this paper is to study the problem of transferring the left polaroid
property and its strong version, finitely left polaroid property, from A and B* to
04,p. After Section 2 where several basic definitions and facts will be recalled, we
will prove that if A is a left polaroid and satisfies property (P;) and B is a right
polaroid and satisfy property (P,), then d4, 5 is a left polaroid. Also, we prove that
if A is a finitely left polaroid and B is a finitely right polaroid, then d4 p is a finitely
left polaroid. In Section 4, we give necessary and sufficient conditions for 4 p to
satisfy generalized a-Weyl’s theorem. In the last section we apply results obtained
previously. If X = H and Y = K are Hilbert spaces, we prove that if A € L(H) and
B € L(K) are completely totally hereditarily normaloid operators, then f(d4, 5)
satisfies generalized a-Weyl’s theorem, for every analytic function f defined on a
neighborhood of 0(d4, p) which is non constant on each of the components of its
domain. This generalizes results obtained in [8,10,11,14,22,23].
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2. Notation and terminology

Unless otherwise stated, from now on X (similarly, J)) shall denote a complex
Banach space and L(X) (similarly, L(})) the algebra of all bounded linear maps
defined on and with values in X (resp. )). Given T € L(X), N(T) and R(T) will
stand for the null space and the range of T, resp. Recall that T € L(X) is said
to be bounded below, if N(T') = {0} and R(T") is closed. Denote the approximate
point spectrum of T' by

0a(T) ={A € C:T — A is not bounded below}.

Let
os(T) ={A € C: T — Al is not surjective}

denote the surjective spectrum of 7. In addition, X'* will denote the dual space of
X, and if T € X, then T* € L(X*) will stand for the adjoint map of T'. Clearly,
0a(T*) = 04(T) and 0,(T) U os(T) = o(T), the spectrum of T. Recall that the
ascent asc(T) of an operator T is defined by asc(T) = inf{n € N : N(T") =
N(T"1)} and the descent dsc(T) = inf{n € N: R(T") = R(T"!)}, with inf() =
oo. It is well known that if asc(T') and dsc(T) are both finite, then they are equal.

A complex number A € o, (T) (resp. A € 04(T)) is a left pole (resp. a right pole)
of order d of T € L(X) if asc(T — M) = d < oo and R((T — AI)?*1) is closed (resp.
dsc(T— M) = d < oo and R((T —\I)?) is closed). We say that T is left polar (resp.
right polar) of order d at a point A € o,(T) (resp. A € o5(T)) if X is a left pole of T’
(resp. right pole of T') of order d. Now, T is a left polaroid (resp. right polaroid) if
T is left polar (resp. right polar ) at every A € isoo,(T) (resp. A € isoos(T")), where
isoK is the set of all isolated points of K for K C C. According to [7], a left polar
operator T € L(X) of order d()\) at A € 0,(T), satisfies property (P;) if the closed
subspace N ((T — \)¥N) + R(T — \) is complemented in X for every \ € isoo,(T).
Dually, a right polar operator T' € L(X) of order d()\) at A € o4(T), satisfies
property (P,) if the closed subspace N (T —\) N R((T — \)4™) is complemented in
X for every A € isoos(T). If X = H is a Hilbert space, then every left polar (resp.
right polar) operator T' € L(H) of order d()\) at A € is00,(T") (resp. A € isoos(T))
satisfies property (P;) (resp. (P,)). On the other hand, it is known that T € L(X)
is a right polaroid if and only if T* is a left polaroid and T is a polaroid if it is both
left and right polaroid, whenever isoo(T') = isoo,(T) U isoos(T).

Recall that T € L(X) is said to be a Fredholm operator, if both o(7T) =
dimN(T) and B(T) = dimX /R(T) are finite dimensional, in which case its index
is given by ind(T) = o(T) — B(T). If R(T) is closed and «(T) is finite (resp.
B(T) is finite), then T' € L(X) is said to be an upper semi-Fredholm (resp. a lower
semi-Fredholm) while if «(T") and S(T) are both finite and equal, so the index is
zero and T is said to be a Weyl operator. These classes of opertaors generate the
Fredholm spectrum, the upper semi-Fredholm spectrum, the lower semi-Fredholm
spectrum and the Weyl spectrum of T' € L(X) which will be denoted by o.(T),
osp, (T), osp_(T) and ow (T'), respectively. The Weyl essential approximate point
spectrum and the Browder essential approximate point spectrum of T' € L(X) are
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the sets
Taw(T) ={A € 0o(T): A€ 0osp, (T) or 0 <ind(T — \I)}
and
oab(T) ={A € 0a(T): A € 04u(T) or asc(T — AI) = co}.
It is clear that
USF+ (T) g an(T) g Uab(T) g O—a(T)'

For T € L(X) and a nonnegative integer n define T;, to be the restriction of T’
to R(T™) viewed as a map from R(T™) into R(T™). If for some integer n the range
space R(T™) is closed and the induced operator T,, € L(R(T")) is Fredholm, then
T will be said to be B-Fredholm. In a similar way, if 7}, is an upper semi-Fredholm
(resp. lower semi-Fredholm) operator, then T is called upper semi B-Fredholm
(resp. lower semi B-Fredholm). In this case the index of T is defined as the index
of semi-Fredholm operator T,,, see [9]. T € L(X) is called semi B-Fredholm if T is
upper semi B-Fredholm or lower semi B-Fredholm. Let

Gspp(X)={T € L(X) : T is semi B-Fredholm },
@SBF; (X)={T € ®spr(X): T is upper semi B-Fredholm with ind(T) < 0},
Cyppt (X) ={T € ®spp(X) : T is lower semi B-Fredholm with ind(T) > 0}.
Then the upper semi B-Weyl and lower semi B-Weyl spectrum of T are the sets
oupw(T)={ € c (T): T—-M & (I)SBF; (X)}
and
orpw(T) ={A€0a(T) : T = A & Pgpp+(X)},

respectively. T € L(X) will be said to be B-Weyl, if T is both upper and lower
semi B-Weyl (equivalently, T is B-Fredholm operator of index zero). The B-Weyl
spectrum opw (T') of T is defined by

opw(T) ={A € C:T — A\ is not B-Weyl operator}.
Let II'(T') denote the set of left pole of T € L(X).
N(T) = {\ € 0u(T) : asc(T — \I) = d < oo and R((T — A)!) is closed}.

A strong version of the left polaroid property says that T € L(X) is a finitely left

polaroid (resp. a finitely right polaroid) if and only if every A € isoo,(T) ( resp.

A € isoos(T)) is a left pole of T and «(T — M) < oo (resp. a right pole of T and

B(T — AI) < 00). Let TIL(T) (resp. II;(T)) denote the set of finite left poles (resp.

the set of finite right poles) of T. Then T € L(X) is a finitely left polaroid (resp. a

finitely right polaroid) if and only if isoo, (T) = II}(T) (resp. isoo,(T) = I5(T)).
For T € L(X) define

ATY)={neN:m>n,meN=RT")NN(T) CRIT™)NN()}.
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The degree of stable iteration is defined as dis(T') = inf A(T) if A(T) # (), while
dis(T) = oo if A(T) = 0. T € L(X) is said to be quasi-Fredholm of degree d, if
there exists d € N such that dis(T) = d, R(T™) is a closed subspace of X for each
n>dand R(T)+ N(T™) is a closed subspace of X. An operator T € L(X) is said
to be semi-regular, if R(T) is closed and N(T™) C R(T™) for all m,n € N.

An important property in local spectral theory is the single valued extension
property. An operator T' € L(X) is said to have the single valued extension property
at Ao € C (abbreviated SVEP at \g), if for every open disc D centered at Ao, the
only analytic function f : D — X which satisfies the equation (T'— AI) f(A) = 0 for
all A € D is the function f = 0. An operator T' € L(X) is said to have SVEP if T
has SVEP at every A € C.

Furthermore, for T' € L(X') the quasi-nilpotent part of T is defined by
Ho(T) = {x € X: lim |T"(X)|* = 0}.

It can be easily seen that N(T™) C Ho(T) for every n € N. The analytic core of an
operator T' € L(X) is the subspace K(T') defined as the set of all z € X such that
there exists a constant ¢ > 0 and a sequence of elements z,, € X such that z¢ = z,
Txy = Tp_1, and ||x,|| < ¢"||z|| for all n € N, the spaces K (T') are hyperinvariant
under T and satisty K(T') C R(T"), for every n € N and T(K(T)) = K(T), see [1]
for information on Hy(T) and K(T).

3. Left polaroid generalized derivation

We begin this section by recalling some results concerning spectra of general-
ized derivations.

Let X and Y be two Banach spaces and consider A € L(X) and B € L(Y).
Let 04,5 € L(L(Y, X)) be the generalized derivation induced by A and B, i.e.,

545(X) = (La— Rp)(X)=AX — XB where X € L(Y, X).
According to [20, Theorem 3.5.1], we have that
04(04,8) = 04(A) — 05(B).
and it is not difficult to conclude that
15004 (04,8) = (15004 (A) —iso04(B*)) \ acco,(04,8).

The following results concerning upper semi Fredholm spectrum and Brow-
der essential approximate point spectrum of generalized derivation were proved in
[8,24]. They will be used in the sequel.

LEMMA 3.1. Let X and Y be two Banach spaces and consider A € L(X) and
B € L(Y). Then the following statements hold.
i) osp, (64,8) = (05p, (A) = 05(B)) U (04(A) — 05r_(B)).
ii) oan(0a,8) = (0ab(A) — 05(B)) U (0a(A) — 0ab(B")).
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The following lemma concerning the Weyl essential approximate point spec-
trum of a generalized derivation will also be used in the sequel.

LEMMA 3.2. Let X and Y be two Banach spaces and consider A € L(X) and
B e L(Y). Then

Taw(04,8) € (Faw(A) = 05(B)) U (04(A) = 0aw(B)).

Proof. Let A ¢ (04(A) — 05(B)) U (0(A) — 0auw(B*)). If p; € 04(A) and
v; € 04(B) are such that A = p; —v;. Then y; ¢ osp, (A) and v; & osp_(B), hence
from statement i) of Lemma 3.1 A ¢ osp, (04,8). Now, we will prove that

ind((SAB — )\I) <0.

Suppose to the contrary that ind(da,g — AI) > 0. Then A ¢ 0.(d4,5). It follows
from [17, Corollary 3.4] that

A=p;—v; (1<i<n),

where p; € isoo(A) for 1 <i < m and v; € isoo(B), for m+ 1 < i < n. We have
that ind(04,p — AI) is equal to

Y. dimHo(B —v;)ind(A — pj) — > dimHo(A — pg)ind(B — vg).
j=m+1 k=1
Since p; € isoo(A), for 1 < i < m and v; € isoo(B), for m+ 1 < i < n, it follows
that dimHy(A — p;) is finite, for 1 < j < m and dimHy(B — vy) is finite, for
m+1 < k < n and we have also ind(A — p;) < 0 and ind(B — v;) > 0. Thus
ind(0a,5 — M) < 0. This a contradiction. Hence A ¢ 04,,(04,5). ®

According to [7], a left polaroid operator (resp. a right polaroid operator)
satisfies property (P;), (resp. (Pr)), if it is left polar at every A € isoo,(T) (resp.
right polar at every A € isoos(T) which satisfies property (P;), (resp. property
(Pr). The following lemma is the dual version of [7, Lemma 3.1].

LEMMA 3.3. Let X be a Banach space. If T € L(X) is a right polaroid and
satisfies property (P,), then for every \ € isoos(T) there exist T-invariant closed
subspaces N1 and Ny such that X = Ny @ Na, (T — X)|n, is nilpotent of order
d(N\) and (T — X)|n, is surjective, where d(X\) is the order of the right pole at .
Moreover, K(T — X)) = R((T — XI)4W).

Proof. From the hypothesis, T'— X is quasi-Fredholm of degree d(\) and closed
subspace N ((T—AI)¥™)+ R(T —\) is complemented in X. Since T' € L(X) is right
polaroid and satisfies property (P,), then N(T—\)NR((T—X)¥™) is complemented
in X. From [25, Theorem 5], there exist T-invariant closed subspaces N1 and No
such that X = Ny & Na, (T — A\)|n, is nilpotent of order d(\) and (T — AI)|n, is
semi-regular. Since dsc(T — AI) = d(\), the semi-regular operator (T' — AI)|n, is
surjective. Since K (T — ) = K((T — )| Ny) ® K((T — AI)|N3) = 0@ Ny = N,
we can conclude from [2, Theorem 2.7] that K (T — A) = R((T — X)) . m
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Next follows the main result of this section.

THEOREM 3.4. Let X and Y be two Banach spaces and let A € L(X) be a
left polaroid and B € L(Y) be a right polaroid. If A satisfies property (P;) and B
satisfies property (Py), then 04 p is a left polaroid.

Proof. Let A € is004(d4,5). Then there exist p € 04(A) and v € o4(B) such
that A = p — v, and it follows that p € isoo,(A) and v € isoos(B) = isocq(B*).
Since A is a left polaroid, then there exist A-invariant closed subspaces M7 and M,
such that X = My @& My, (A — pl)|p, = A1 — pl|ar, is nilpotent of order dy where
dy = d(p) is the order of left pole of A at p and that (A — ul)|y, = As — pl |,
is bounded below. Also, since B is a right polaroid, then there exists B-invariant
closed subspaces Ni and Na such that Y = Ny & Na, (B — v)|n, = B1 — vi|n,
is nilpotent of order ds where do = d(v) is the order of right pole of B at v and
(B—vI)|n, = Ba—vl|y, is surjective. Let d = dy+ds and X € L(N1®No, M1 ®M>)
have the representation X = [Xy]7 ,_,. We will prove that asc(da,p — AI) is finite.

Let ((5,4,]3 — )\I)d—H(X) =0 imply that X12 = X21 = X22 = 0. Since ((5,41’31 —
M) is d-nilpotent it follows that (64,5 — A)4(X) = 0. Hence asc(0a.p— M) < d <
0.

Now, we prove that (04 5 — AI)4TH(L(Y, X)) is closed. First, we will prove
that 0 ¢ O.a(aAZ*NIliwzyBZ*VI‘NQ ). For this, it suffices to prove that o4 (A —pl|p,)N
os(B2 — vI|n,) = 0. Suppose that there exists a complex number « such that « €
0a(A2—pl|p,)Nog(Ba—vI|N,). Then a € 04(Aa—pl|ar,) and a € o4(Be—vI|N,),
from [1, Theorem 2.48], 0 € 04(As — (1 + a)I|p,) and 0 € 04(B2 — (v + @)I|n,)-
Since (g + «) is isolated in the approximate point spectrum of A and (v + «) is
isolated in the surjective spectrum of B, then by the hypothesis A is a left polaroid
which satisfies property (P;) and B is a right polaroid which satisfies property (P;).
We conclude that

(A= (u+ )|, = Az = (p+ a)l|u,
is bounded below and
(B=(v+a)l)|n, = Ba = (v + a)l|n,
is surjective. That is
0¢ 0a(A2— (p+a)]|p,) and 0 ¢ 05(B2 — (v + a)I|n,).
This is a contradiction, hence 0 ¢ 04(54, 1|y, Bo—vI|y,)- Since 0 & 04(d4,,8, —

AI), then from [3, Lemma 1.1] (04,.5, — AI)4TY(L(Na, M>)) is closed. We have that
d4, B, — Al is nilpotent of order d, and then by [26, Theorem 2.7] it follows that

(64,8, — M) (L(Ny, My)) is closed.
From the fact that 0 ¢ 0,(d4,,8, — AI) and [3, Lemma 1.1]AA, it follows that
(64,8, — M) (L(N;, M;)) is closed for 1 <4,j <2 and i # j.

Consequently, (54,5 — M) 1(L(X,D))) is closed. Hence ) is a left pole of 645
which means that §4 g is a left polaroid. m
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In the case of Hilbert spaces, we have the following corollary.

COROLLARY 3.5. Let H and K be Hilbert spaces and let A € L(H) and
B e L(K). If A and B* are left polaroids, then d4,p is left polaroid.

REMARK. From [18, Theorem 3.8] we have that if T € L(X), such that
a(T) < oo and asc(T) < oo, then R(T™) is closed for some integer n > 1, if and
only if R(T") is closed. Hence T is a finitely left polaroid if and only if a(T—AI) < oo,
asc(T — M) < oo and R(T — M) is closed for every \ € isoo,(T).

In the following theorem, we characterize finitely left polaroid generalized
derivation.

THEOREM 3.6. Let X and Y be two Banach spaces and let A € L(X) and
B e L(Y). If A and B* are finitely left polaroid operators, then 04 p is a finitely
left polaroid.

Proof. Let A € is004(04,5). Then there exist pu € 04(A) and v € o4(B) such
that A = u — v, hence we have p € isoo,(A) and v € isoos(B) = isoo,(B*).
Suppose that A and B* are finitely left polaroids. Then from [27, Corollary 2.2]
we have that u ¢ 04(A) and v ¢ o4(B*). Applying statement ii) of Lemma 3.1,
we get A & 044(04,5), hence by [27, Corollary 2.2] §4 p is a finitely left polaroid. m

4. Consequences to Weyl’s type theorem

For T € L(X), let E*(T) = {\ € is00,(T) : 0 < a(T — AI)} and E§(T) =
{AN € E*(T) : a(T — AI) < oo}. Recall that T is said to satisfy a-Browder’s
theorem (resp. generalized a-Browder’s theorem) if 04 (T) \ 04y (T) = T4 (T) (resp.
0o(T) \ oupw(T) = TIY(T)). From [4, Theorem 2.2] we have that T satisfies a-
Browder’s theorem if and only if T satisfies generalized a-Browder’s theorem. T
is said to satisfy a-Weyl’s theorem (resp. generalized a-Weyl’s theorem) if o, (T) \
GaulT) = BY(T) (xesp. 0a(T) \ ousw (T) = E*(T)).

For T € L(X), let E(T) ={A €isoo(T): 0 < a(T — M)} and Eo(T) ={\ €
E(T) : a(T — M) < co}. Recall that T is said to satisfy Weyl’s theorem (resp.
generalized Weyl’s theorem) if o(T) \ ow (T) = Eo(T) (resp. o(T) \ opw(T) =
E(T)). We know that if T" satisfies generalized a-Weyl’s theorem then T satisfies a-
Weyl’s theorem and this implies that 7" satisfies Weyl’s theorem. Next, generalized
a-Weyl’s theorem for 4 g will be studied.

THEOREM 4.1. Let X and Y be two Banach spaces and let A € L(X) and
B € L(Y). Suppose that A and B* satisfy a-Browder’s theorem. If A is a left
polaroid and satisfies property (P;) and B is a right polaroid and satisfies (P,.),
then the following assertions are equivalent.

i) da.p satisfies generalized a-Weyl’s theorem.
i) gaw(da,B) = (Oaw(A) — 05(B)) U (0a(A) — 00w (B¥)).
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Proof. If A and B* satisfy a-Browder theorem, then they satisfy generalized
a-Browder theorem. By [8, Theorem 4.2] it follows that d 4 p satisfies generalized a-
Browder’s theorem if and only if 04, (64,8) = (0aw(A)—05(B))U(04(A) =04 (B*)).
That is 0,(0a.8) \ ocupw(0a.5) = H'(dap). Since A is a left polaroid and B
is a right polaroid, then from Theorem 3.4 d4 p is a left polaroid, consequently
N'(0a.5) = E*(6a,5). Thus 64 p satisfies generalized a-Weyl’s theorem. The
reverse implication is obvious from the fact that § 4 p satisfies generalized a-Weyl’s
theorem implies § 4 p satisfies generalized a-Browder’s theorem m

In the case of Hilbert spaces operators, we have the following corollaries.

COROLLARY 4.2. Let H and K be two Hilbert spaces and let A € L(H) and
B € L(K). Suppose that A and B* satisfy a-Browder’s theorem. If A is a left
polaroid and B is a right polaroid, then the following assertions are equivalent.

i) da,p satisfies generalized a-Weyl’s theorem.
i) 04w(0a,8) = (Faw(A) — 05(B)) U (04(A) — 04w (B*)).

COROLLARY 4.3. Let X and Y be two Banach spaces and let A € L(X) and
B € L(Y). Suppose that A and B* satisfy a-Browder’s theorem. If A is a left
polaroid and satisfies property (P;) and B is a right polaroid and satisfies property
(Pr), then the following assertions are equivalent.

i) (5,413 has SVEP at A ¢ O’Ugw((sAB).

04, satisfies a-Browder’s theorem.
04, satisfies a- Weyl’s theorem.
04, satisfies generalized a- Weyl’s theorem.

Oaw(04,8) = (0aw(A) — 0s(B)) U (04(4) — 04w (B*)).

Proof. (i) < (4i) follows from [5, Theorem 2.1], (iii) < (iv) follows from [3,
Theorem 3.7] and (iv) < (v) follows from Theorem 4.1. m

In the following result, we give sufficient conditions for 04 g to satisfy a-
Browder’s theorem.

THEOREM 4.4. Let X and Y be two Banach spaces and let A € L(X) and
B € L(Y). If A has SVEP at i € 04(A) \ 0sr,(A) and B has SVEP at v €
04(B*)\ osr_(B), then 04,5 satisfies a-Browder’s theorem.

Proof. Let A € 04(04,8)\0aw(d4,8). Then X\ € 04(64,8)\0sF, (04,5), and from
statement i) of Lemma 3.1 there exist u € 0,(A)\osr, (A) and v € o4(B)\osr_(B)
such that A = p — v. Since A has SVEP at u ¢ ogr, (A) and B has SVEP at
v ¢ ogr_(B), it follows from [27, Corollary 2.2] that u ¢ 04,(A4) and v ¢ o4(B*);
applying statement ii) of Lemma 3.1 we get A & 04,(0a.5). Hence A € TI4(64.5).
Let A € I (04, 5); according to [27, Corollary 2.2], we have A € 04(54.58)\0ab(64,5)-
Since gy (T) C 0ap(T), then A € 04(04.8) \ 0aw(da,p). Hence d4 p satisfy a-
Browder’s theorem. m
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5. Application

A Banach space operator T' € L(X) is said to be hereditary normaloid, T €
HN, if every part of T' (i.e., the restriction of T' to each of its invariant subspaces) is
normaloid (i.e., || T'|| equals the spectral radius r(T)). T' € HN is totally hereditarily
normaloid, T' € THN, if also the inverse of every invertible part of T is normaloid
and T is completely totally hereditarily normaloid (abbr. T' € CHN), if either
T € THN or T — M € HN for every complex number \. The class CHN is large.
In particular, let H be a Hilbert space and T' € L(H) be a Hilbert space operator.
If T is hyponormal (T*T > TT*) or p-hyponormal ((T*T)?P) > (TT*)?) for some
(0 < p < 1) or w-hyponormal ((|T*|2|T||T*|2)z > |T*|), then T is in THN
Again, totaly *-paranormal operators (|[(T — A)*z|?* < |[(T — M)z||? for every
unit vector x) are HN-operators and paranormal operators (||Tz||? < ||T?z]|||z|,
for all unit vector z) are 7HN-operators. It is proved in[11] that if A, B* € L(H)
are hyponormal, then the generalized Weyl’s theorem holds for f(d4 g) for every
f € H(o(da,B)), where H(o(d4,5)) is the set of all analytic functions defined on
a neighborhood of o(d4,p). This result was extended to log-hyponormal or p-
hyponormal operators in [14] and [22]. Also, in [10] and [23], it is shown that if
A, B* € L(H) are w-hyponormal operators, then Weyl’s theorem holds for f(d4, 5)
for every f € H(o(d4,8)). Let He(o(T)) denote the space of all analytic functions
defined on a neighborhood of ¢ (T") which is non constant on each of the components
of its domain. In the next results we can give more.

THEOREM 5.1. Suppose that A,B € L(H) are CHN operators; then 04 p
satisfies a-Browder’s theorem.

Proof. Since A and B are CHN -operators, it follows from [13, Corollary 2.10)
that A has SVEP at i € 04(A)\osr, (A) and B has SVEP at p € 0,(B*)\osr_(B).
Then by Theorem 4.4, a-Browder’s theorem holds for §4, 5.

COROLLARY 5.2. If A,B € L(H) are CHN operators, then
5,4,3 has SVEP at A ¢ O'UBW((SA,B);
da,B satisfies a-Browder’s theorem.

)
)
ili) da,p satisfies a-Weyl’s theorem.
) 6a,B satisfies generalized a-Weyl’s theorem.
)

an((sA,B) = (an(A) - US(B)) U (Ua(A) - an(B*))'

Proof. Since A and B are CHN -operators, it follows from [13, Corollary 2.15]
that A, B, A* and B* satisfy a-Browder’s theorem. By [13, Proposition 2.1], we
conclude that A and B* are left polaroids. The assertions follows from Corollary
43. =

COROLLARY 5.3. Suppose that A,B € L(H) are CHN -operators. Then
f(6a,B) satisfies generalized a-Browder’s theorem, for every f € H.(0(d4,B)).
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Proof. By Corollary 5.2 and [16, Corollary 3.5], we get that generalized a-
Browder’s theorem holds for f(04.5). m

COROLLARY 5.4. Suppose that A,B € L(H) are CHN -operators. Then
f(éa,B) satisfies generalized a-Weyl’s theorem, for every f € Hc(o(da,B))-

Proof. By [13, Proposition 2.1] and Theorem 3.4, we get that d4 p is a left
polaroid and from Corollary 5.2 we have that 64 p satisfies generalized a-Weyl’s
theorem. Applying [16, Theorem 3.14] we get that generalized a-Weyl’s’s theorem
holds for f(da,5). m
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