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A COMMON FIXED POINT THEOREM FOR NEW TYPE
COMPATIBLE MAPS ON PARTIAL METRIC SPACES

Özlem Acar and Ishak Altun

Abstract. In this paper, we introduce the concept of compatible maps of type (I) and of
type (II) in partial metric space and prove a common fixed point theorem for four such maps on
complete partial metric space.

1. Introduction

In [12], Matthews introduced a new class of generalized metric spaces, which
was named as partial metric spaces, in order to develop and to introduce a new
fixed point theory. In partial metric spaces, the self-distance of a point may not be
zero. Also, each partial metric on a nonempty set generates a T0 topology. After
the definition of partial metric spaces, Matthews proved the partial metric version
of Banach fixed point theorem. Then, as can seen in [1–3,11,13,19–22], the fixed
point theory studies in such spaces have been rapidly developed. In the recent
paper, Ćirić et al. [4] proved a common fixed point theorem for weakly compatible
mappings satisfying generalized nonlinear contractive condition in complete partial
metric spaces. In this paper, we introduce the concept of compatible maps of type
(I) and of type (II) on partial metric spaces and we give some examples to illustrate
that weakly compatible and these two types of compatible maps are independent.
Then using these new concepts, we prove a common fixed point theorem on partial
metric spaces.

First we recall some definitions and some properties of partial metric spaces.

A partial metric on a nonempty set X is a function p : X ×X → R+ (nonneg-
ative real numbers) such that for all x, y, z ∈ X:

(i) x = y ⇐⇒ p(x, x) = p(x, y) = p(y, y) (T0-separation axiom), (ii)
p(x, x) ≤ p(x, y) (small self-distance axiom), (iii) p(x, y) = p(y, x) (symmetry)
and (iv) p(x, y) ≤ p(x, z) + p(z, y)− p(z, z) (modified triangular inequality).
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A partial metric spaces (for short PMS) is a pair (X, p) such that X is a
nonempty set and p is a partial metric on X. It is clear that, if p(x, y) = 0, then,
from (i) and (ii), x = y. But if x = y, p(x, y) may not be 0. A basic example of a
PMS is the pair (R+ = [0,∞), p), where p(x, y) = max{x, y} for all x, y ∈ R+. For
another example, let I denote the set of all intervals [a, b] for any real numbers a ≤ b.
Let p : I×I → R+ be the function such that p([a, b], [c, d]) = max{b, d}−min{a, c}.
Then (I, p) is a PMS. Other examples may be found in [5–7,12].

Each partial metric p on X generates a T0 topology τp on X which has as a
base the family of open p-balls {Bp(x, ε) : x ∈ X, ε > 0}, where

Bp(x, ε) = {y ∈ X : p(x, y) < p(x, x) + ε}

for all x ∈ X and ε > 0.

Definition 1. (i) A sequence {xn} in a PMS (X, p) is called a Cauchy se-
quence if there exists limn,m→∞ p(xn, xm) (and is finite).

(ii) A PMS (X, p) is said to be complete if every Cauchy sequence {xn}
in X converges, with respect to τp, to a point x ∈ X such that p(x, x) =
limn,m→∞ p(xn, xm).

Remark 1. (i) A sequence {xn} in a PMS (X, p) converges to a point x ∈ X
if and only if p(x, x) = limn→∞ p(x, xn).

(ii) A mapping F : X → X is said to be continuous at x0 ∈ X, if for every
ε > 0, there exists δ > 0 such that F (Bp(x0, δ)) ⊆ Bp(Fx0, ε).

If p is a partial metric on X, then the function ps : X ×X → R+ given by

ps(x, y) = 2p(x, y)− p(x, x)− p(y, y)

is a metric on X. For example, if we consider p(x, y) = max{x, y} on R+, then it
is clear that ps(x, y) = |x− y|. Furthermore, limn→∞ ps(xn, x) = 0 if and only if

p(x, x) = lim
n→∞

p(xn, x) = lim
n,m→∞

p(xn, xm).

The following lemmas play an important role in obtaining fixed point results on a
PMS.

Lemma 1. [12,13] Let (X, p) be a PMS.

(a) {xn} is a Cauchy sequence in (X, p) if and only if it is a Cauchy sequence
in the metric space (X, ps).

(b) (X, p) is complete if and only if (X, ps) is complete.

Lemma 2. [11] If {xn} converges to x in (X, p), then limn→∞ p(xn, y) ≤ p(x, y)
for all y ∈ X.
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2. Various definitions of compatibility

In this section, first, we recall some definitions and properties of various com-
patibilities in metric space.

Definition 2. Let (X, d) be a metric space and A,S : X → X be two map-
pings. Then the pair (A,S) is said to be:

(a) commuting if ASx = SAx for all x ∈ X and weakly commuting [8] if
d(ASx, SAx) ≤ d(Ax, Sx) for all x ∈ X,

(b) compatible [8] if limn→∞ d(ASxn, SAxn) = 0,
(c) compatible of type (A) [10] if

lim
n→∞

d(ASxn, SSxn) = 0 and lim
n→∞

d(SAxn, AAxn) = 0,

(d) compatible of type (B) [16] if

lim
n→∞

d(STxn, TTxn) ≤ 1
2
[ lim
n→∞

d(STxn, St) + lim
n→∞

d(St, SSxn)]

and
lim

n→∞
d(TSxn, SSxn) ≤ 1

2
[ lim
n→∞

d(TSxn, T t) + lim
n→∞

d(Tt, TTxn)],

(e) compatible of type (P ) [17] if limn→∞ d(AAxn, SSxn) = 0,

(f) compatible of type (I) [15] if d(t, St) ≤ limn→∞ d(t, ASxn) whenever {xn}
is a sequence in X such that limn→∞Axn = limn→∞ Sxn = t for some t ∈ X,

(g) compatible of type (II) [15] if (S, A) is compatible of type (I),
(h) weakly compatible [9] if ASx = SAx, whenever Ax = Sx for some x ∈ X.

Remark 2. It is well known that commuting mappings are weakly commut-
ing and weakly commuting mappings are compatible, but neither implication is
reversible. Also, if the pair (A,S) is compatible, compatible of type (A), compat-
ible of type (B) or compatible of type (P ), then it is weakly compatible. There
are some examples in [18] showing that these implications are not reversible. But
weakly compatible maps, compatible of type (I) and of type (II) are independent
from each other. There are some examples in [14] showing this fact.

Using the concept of weakly compatible maps, Ćirić et al. [4] proved some fixed
point result in partial metric spaces. In this paper we introduce the concepts of
compatible maps of type (I) and of type (II) in partial metric spaces and show that
weakly compatible maps, compatible of type (I) and of type (II) are independent
from each other as in metric spaces. Later, we prove a common fixed point theorem
using these new concepts.

Definition 3. Let (X, p) be a partial metric space and A,S : X → X be two
mappings. Then the pair (A,S) is said to be compatible of type (I) if

p(t, St) ≤ lim
n→∞

p(t, ASxn)



304 Ö. Acar, I. Altun

whenever {xn} is a sequence in X such that

lim
n→∞

p(Axn, t) = lim
n→∞

p(Sxn, t) = p(t, t)

for some t ∈ X. The pair (A,S) is said to be compatible of type (II) if and only
if (S, A) is compatible of type (I).

Considering examples given in [14], which show that the concepts of weakly
compatible maps, compatible of type (I) and of type (II) are independent in a
metric space, we provide the following examples.

Example 1. Let X = [0,∞) be equipped with p(x, y) = max{x, y}. Define
A,S : X → X by

Ax = 2x + 1 and Sx = x2 + 1.

Then at x = 0, Ax = Sx. Also ASx = 3 and SAx = 2, which shows that A and S
are not weakly compatible. Now suppose that {xn} is a sequence in X such that
limn→∞ p(Axn, t) = limn→∞ p(Sxn, t) = p(t, t) for some t ∈ X. By definition of A
and S, t ∈ [1, 5]. For t = 1 we have p(t, St) = 2 ≤ 3 = limn→∞ p(t, ASxn), which
shows that the pair (S, T ) is a pair of compatible mappings of type (I).

Example 2. Let X = [0,∞) be equipped with p(x, y) = max{x, y}. Define
A,S : X → X by

Ax =
{

cos x if x 6= 1
0 if x = 1

and Sx =
{

ex if x 6= 1
0 if x = 1.

Then it is clear that Ax = Sx if and only if x = 0 and x = 1. Also at these points
ASx = SAx. It means that A and S are weakly compatible. Now suppose that
{xn} is a sequence in X such that limn→∞ p(Axn, t) = limn→∞ p(Sxn, t) = p(t, t)
for some t ∈ X. By definition of A and S, t ≥ 1. For this value we have p(t, St) = et

and limn→∞ p(t, ASxn) = t < et. Therefore the pair (A,S) is not a compatible
pair of mappings of type (I).

Proposition 1. Let A,S : X → X be such that the pair (A,S) is compatible
of type (I) (resp. of type (II)) and Az = Sz for some z ∈ X. Then p(Az, SSz) ≤
p(Az, ASz) (resp. p(Sz, AAz) ≤ p(Sz, SAz)).

Proof. Let {xn} be a sequence in X defined by xn = z for n = 0, 1, 2, . . . and
Az = Sz for some z ∈ X. Then we have

lim
n→∞

p(Axn, Az) = lim
n→∞

p(Sxn, Az) = p(Az, Az)

Suppose that (A,S) is compatible of type (I). Then

p(Az, SSz) ≤ p(Az, SAz) ≤ lim
n→∞

p(Az, ASxn) = p(Az, ASz).

Similarly, if the pair (A,S) is compatible of type (II), it can be easily shown that
p(Sz,AAz) ≤ p(Sz, SAz).



A common fixed point theorem on partial metric spaces 305

3. The main result

In the sequel, for a partial metric space (X, p) and for maps A,B, S and
T : X → X, we define

M(x, y) = max{p(Sx, Ty), p(Ax, Sx), p(By, Ty), 1
2 [p(Sx,By) + p(Ax, Ty)]}

and

M∗(x, y) = max{p(Sx, Ty), 1
2p(Ax, Sx), 1

2p(By, Ty), 1
2 [p(Sx,By) + p(Ax, Ty)]}

for all x, y ∈ X. It is clear that M∗(x, y) ≤ M(x, y) for all x, y ∈ X.

Theorem 1. Let A,B, S and T be self maps of a complete partial metric space
(X, p) such that AX ⊆ TX, BX ⊆ SX and

p(Ax,By) ≤ ϕ(M∗(x, y)) (3.1)

for all x, y ∈ X, where ϕ : R+ → R+ is upper semicontinuous, non-decreasing and
ϕ(t) < t for t > 0. Suppose one of the following is satisfied:

(a1) A is continuous and the pairs (A,S) and (B, T ) are compatible of type (II),

(a2) B is continuous and the pairs (A, S) and (B, T ) are compatible of type (II),

(a3) S is continuous and the pairs (A,S) and (B, T ) are compatible of type (I),

(a4) T is continuous and the pairs (A,S) and (B, T ) are compatible of type (I).

Then A,B, S and T have a unique fixed point in X.

Proof. Let x0 ∈ X be an arbitrary point. Using AX ⊆ TX, BX ⊆ SX we can
define two sequences {xn} and {yn} in X such that

y2n = Tx2n+1 = Ax2n and y2n+1 = Sx2n+2 = Bx2n+1, n = 0, 1, 2, . . .

Now since ϕ is non-decreasing and M∗(x, y) ≤ M(x, y) for all x, y ∈ X, we have
ϕ(M∗(x, y)) ≤ ϕ(M(x, y)) for all x, y ∈ X. Therefore as in the proof of Theorem
2.1 of [4], we obtain that {yn} is a Cauchy sequence in (X, p). Therefore there
exists z ∈ X such that

p(z, z) = lim
n→∞

p(yn, z) = lim
n,m→∞

p(yn, ym).

Again as in the proof of Theorem 2.1 of [4] we obtain

p(z, z) = lim
n→∞

p(yn, z) = lim
n,m→∞

p(yn, ym) = 0

and

lim
n→∞

p(Ax2n, z) = lim
n→∞

p(Bx2n+1, z) = lim
n→∞

p(Sx2n, z)

= lim
n→∞

p(Tx2n+1, z) = 0.
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Now suppose that the condition (a4) holds. Then, since the pair (B, T ) is
compatible of type (I) and T is continuous, we have

p(z, Tz) ≤ lim
n→∞

p(z, BTx2n+1) and lim
n→∞

p(TTx2n+1, T z) = p(Tz, Tz).

Setting x = x2n and y = y2n in (3.1), we obtain

p(Ax2n, By2n) = p(Ax2n, BTx2n+1) ≤ ϕ(M(x2n, Tx2n+1))

≤ ϕ(max{p(Sx2n, TTx2n+1), 1
2p(Ax2n,

Sx2n), 1
2p(BTx2n+1, TTx2n+1),

1
2 [p(Sx2n, BTx2n+1) + p(Ax2n, TTx2n+1)]})

≤ ϕ(max{p(Sx2n, TTx2n+1), 1
2p(Ax2n, Sx2n),

1
2 [p(BTx2n+1, Ax2n) + p(Ax2n, TTx2n+1)],
1
2 [p(Sx2n, BTx2n+1) + p(Ax2n, TTx2n+1)]})

Suppose limn→∞ p(z,BTx2n+1) 6= 0. Then by taking the limit superior on both
sides of above inequality we have

lim
n→∞

p(z,BTx2n+1) ≤ ϕmax({p(z, Tz), 1
2p(z, z),

1
2 [ lim

n→∞
p(BTx2n+1, z) + p(z, Tz)],

1
2 [ lim

n→∞
p(z,BTx2n+1) + p(z, Tz)]})

≤ ϕ(max{p(z, Tz), 1
2 [ lim

n→∞
p(BTx2n+1, z) + p(z, Tz)]})

≤ ϕ(max{p(z, Tz), lim
n→∞

p(BTx2n+1, z)})
= ϕ( lim

n→∞
p(BTx2n+1, z))

< lim
n→∞

p(z, BTx2n+1),

a contradiction. Thus we have limn→∞ p(z, BTx2n+1) = 0. Since the pair (B, T )
is compatible of type (I) it follows that p(z, Tz) = 0, that is, z = Tz.

Again replacing x by x2n and y by z in (3.1) and allowing n →∞, we have

p(Ax2n, Bz) ≤ ϕ(M(x2n, z))

≤ ϕ(max{p(Sx2n, T z), 1
2p(Ax2n, Sx2n), 1

2p(Bz, Tz),
1
2 [p(Sx2n, Bz) + p(Ax2n, T z)]}).

So we obtain

p(z,Bz) ≤ ϕ(max{p(z, Tz), 1
2p(z, z), 1

2p(Bz, Tz),
1
2 [p(z, Bz) + p(z, Tz)]})

≤ ϕ max({p(z, Tz), 1
2p(z, z), 1

2 [p(Bz, z) + p(z, Tz)] ,
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1
2 [p(z, Bz) + p(z, Tz)]})

≤ ϕ( 1
2p(z, Bz)) < 1

2p(z, Bz)

and hence z = Bz. Since BX ⊆ SX there exists a point u ∈ X such that Bz =
Su = z. By (3.1), we have, if p(Au, z) > 0,

p(Au, z) = p(Au,Bz) ≤ ϕ(M(u, z))

≤ ϕ(max{p(Su, Tz), 1
2p(Au, Su), 1

2p(Bz, Tz),
1
2 [p(Su,Bz) + p(Au, Tz)]})

≤ ϕ(max{p(Su, Tz), 1
2p(Au, Su),

1
2 [p(Bz, z) + p(z, Tz)], 1

2 [p(Su,Bz) + p(Au, Tz)]})
≤ 1

2p(Au, z),

a contradiction. Thus Au = z. Since the pair (A,S) is compatible of type (I)
and Au = Su = z , by Proposition 1 p(Au, SSu) ≤ p(Au,ASu) and so we have
p(z, Sz) ≤ p(z, Az). Again by (3.1) we have, if Az 6= z,

p(z,Az) = p(Az, Bz ≤ ϕ(M(z, z))

≤ ϕ(max{p(Sz, Tz), 1
2p(Az, Sz), 1

2p(Bz, Tz),
1
2 [p(Sz, Bz) + p(Az, Tz)]})

≤ ϕ(p(Sz, z)) ≤ ϕ (p(z,Az)) < p(z, Az),

which implies that Az = z. Therefore Az = Bz = Sz = Tz = z and z is a common
fixed point of A, S,B, T . Now we prove the uniqueness of a common fixed point.
Let us suppose that z and w are two common fixed points of A,S, B and T , with
p(z, w) > 0. Using (3.1), we get

p(z, w) = p(Az, Bw) ≤ ϕ(M(z, w))

≤ ϕ(max{p(Sz, Tw), 1
2p(Az, Sz), 1

2p(Bw, Tw),
1
2 [p(Sz, Bw) + p(Az, Tw)]})

≤ ϕ(max{p(z, w), 1
2p(z, z), 1

2p(w,w), 1
2 [p(z, w) + p(z, w)]})

≤ ϕ(max{p(z, w), 1
2p(z, z), 1

2p(w,w)})
≤ ϕ(p(z, w)) < p(z, w),

which is a contradiction. Then we deduce that z = w.
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