COMMON FIXED POINTS OF COMMUTING MAPPINGS IN ULTRAMETRIC SPACES

Zahra Alinejad and Alireza Kamel Mirmostafaee

Abstract. In this paper, we will use implicit functions to obtain a general result about the existence of a unique common fixed point for commuting mappings in ultrametric spaces. This result enables us to improve some known fixed point theorems and enables us to obtain a relation between completeness and the existence of a unique fixed point for self-mappings in non-Archimedean metric spaces. By presenting some counterexamples, we will show that our results cannot be extended to general metric spaces.

1. Introduction

The fixed point theory is concerned with the conditions under which a certain selfmap T of a set X admits fixed points; that is a point $x \in X$ such that Tx = x.

The cornerstone of this theory is the Banach's contraction principle [4]. This statement turned out to be a basic tool for solving existence problems in many branches of mathematics. As a consequence many generalizations of it appeared until now; see [6, 8, 11-13, 16] and the references therein.

In 2008, T. Suzuki [22] proved the following conditional type generalization of the Banach contraction principle.

THEOREM 1.1. [22, Theorem 2] Let (X, d) be a complete metric space and let T be a mapping on X. Define $\theta : [0, 1) \to (\frac{1}{2}, 1]$ by

$$\theta(r) = \begin{cases} 1, & 0 < r < \frac{\sqrt{5}-1}{2} \\ (1-r)r^{-2}, & \frac{\sqrt{5}-1}{2} \le r < 2^{-1/2} \\ (1+r)^{-1}, & 2^{-1/2} \le r < 1. \end{cases}$$

Assume that there exists $r \in [0, 1)$ such that

$$\theta(r)d(x,Tx) \le d(x,y) \text{ implies } d(Tx,Ty) \le rd(x,y)$$

2010 Mathematics Subject Classification: 47H10, 47H09, 54E35

Keywords and phrases: Contraction mapping; fixed point; non-Archimedean metric space. 204 for all $x, y \in X$. Then there exists a unique fixed point z of T. Moreover $\lim_{n\to\infty} T^n x = z$ for all $x \in X$.

Using Banach iteration method, Jungck [10] proved a common fixed point theorem for commuting mappings. The idea of Theorem 1.1 suggests the following extension of Jungck's theorem.

THEOREM 1.2. [15, Theorem 3] Let (X, d) be a complete metric space and let θ be as in Theorem 1.1. Suppose that S, T are mappings on X satisfying the following conditions:

- (a) S is continuous,
- (b) $T(X) \subset S(X)$,
- (c) S and T commute.
 - If there exists $r \in [0, 1)$ such that

 $\theta(r)d(Sx,Tx) \le d(Sx,Sy)$ implies $d(Tx,Ty) \le rd(Sx,Sy)$

for all $x, y \in X$, then S and T have a unique common fixed point.

In 2009, Popescu [18] improved the above result as follows.

THEOREM 1.3. [18, Theorem 2.1] Let (X, d) be a complete metric space and θ be as in Theorem 1.1. Let S and T be mappings on X satisfying the following.

- (a) S is continuous,
- (b) $T(X) \subset S(X)$,
- (c) S and T commute.

If there exists $r \in [0, 1)$ such that

$$\theta(r)d(Sx,Tx) \le d(Sx,Sy)$$
 implies $d(Tx,Ty) \le rM_{S,T}(x,y)$

for all $x, y \in X$, where

$$M_{S,T}(x,y) = \max\left\{ d(Sx,Sy), d(Sx,Tx), d(Sy,Ty), \frac{d(Sx,Ty) + d(Sy,Tx)}{2} \right\},\$$

then S and T have a unique common fixed point.

Recall that a non-Archimedean metric space is a special kind of metric space in which the triangle inequality is replaced with $d(x, y) \leq \max \{d(x, z), d(z, y)\}$. Sometimes the associated metric is also called a non-Archimedean metric or an ultra-metric. In a non-Archimedean metric space X, for any sequence $\{x_n\}$, we have

 $d(x_n, x_m) \le \max\{d(x_{j+1}, x_j) : m \le j \le n-1\} \quad (n > m).$

The above inequality implies that a sequence $\{x_n\}$ is Cauchy in a non-Archimedean metric space if and only if $\{d(x_{n+1}, x_n)\}$ converges to zero.

Several mathematicians studied the existence of a fixed point for self-mapping on spherically complete non-Archimedean spaces; see for example [7, 14, 19]. The aim of this paper is to generalize the above results, when the underling space is non-Archimedean. More precisely, we generalize the method that was used in [3] to improve some results in [3, 18, 22] and others. We also show that our results enable us to characterize completeness in non-Archimedean metric spaces. By presenting some counterexamples, we will show that our results cannot be extended to general metric spaces.

2. Results

Implicit relations in metric spaces have been considered by several authors in connection with the existence of fixed points (see, for instance, [1–3, 17, 21] and the references therein). We give a new definition of this concept for non-Archimedean metric space as follows.

Let Φ denote the set of all continuous functions $g:[0,\infty)^6\to\mathbb{R}$ satisfying the following conditions.

(a) For each $(t_1, t_2, t_3, t_4) \in [0, \infty)^4$ and $0 \le t \le t'$,

$$\begin{split} g(t_1,t_2,t_3,t_4,t',0) &\leq g(t_1,t_2,t_3,t_4,t,0) \quad \text{and} \\ g(t_1,t_2,0,t',t_3,t_4) &\leq g(t_1,t_2,0,t,t_3,t_4), \end{split}$$

(b) there exists $r \in [0, 1)$ such that

$$\begin{split} g(u,v,v,u,\max\{u,v\},0) &\leq 0 \text{ or } g(u,v,0,\max\{u,v\},u,v) \leq 0 \\ & \text{ or } g(u,v,v,v,v,v) \leq 0 \end{split}$$

implies $u \leq rv$,

(c) g(u, u, 0, 0, u, u) > 0, for all u > 0.

EXAMPLE 2.1. Let $r \in [0, 1)$ and $0 \le \alpha + 2\beta + 2\gamma < 1$. Define

- (i) $g_1(t_1, t_2, t_3, t_4, t_5, t_6) = t_1 rt_2$,
- (ii) $g_2(t_1, t_2, t_3, t_4, t_5, t_6) = t_1 r \max\{t_2, t_3, t_4, t_5, t_6\},$
- (iii) $g_3(t_1, t_2, t_3, t_4, t_5, t_6) = t_1 \alpha t_2 \beta (t_3 + t_4) \gamma (t_5 + t_6),$

where $0 \leq t_i < \infty$, $1 \leq i \leq 6$. A straightforward computation shows that $g_1, g_2, g_3 \in \Phi$.

Now, we are ready to state one of the main results of this section.

THEOREM 2.2. Let (X, d) be a complete ultrametric space and let T and S be mappings on X satisfying the following:

- (i) S is continuous,
- (ii) $T(X) \subset S(X)$,
- (iii) S and T commute.

Assume that there exists $g \in \Phi$ such that $d(Sx, Tx) \leq d(Sx, Sy)$ implies that $g(d(Tx, Ty), d(Sx, Sy), d(Sx, Tx), d(Sy, Ty), d(Sx, Ty), d(Sy, Tx)) \leq 0$

for all $x, y \in X$. Then S and T have a unique common fixed point.

Proof. Since $T(X) \subset S(X)$, we can define a mapping f on X such that Sfx = Tx for all $x \in X$. Therefore $d(Sx, Tx) = d(Sx, Sfx) \leq d(Sx, Sfx)$ and hence by assumption,

$$g(d(Tx,Tfx),d(Sx,Sfx),d(Sx,Tx),d(Sfx,Tfx),d(Sx,Tfx),d(Tx,Sfx)) \le 0$$

Thanks to the property (a),

$$\begin{split} g(d(Sfx,Sffx),d(Sx,Sfx),d(Sx,Sfx),d(Sfx,Sffx),\\ \max\{d(Sx,Sfx),d(Sfx,Sffx)\},0) \leq 0. \end{split}$$

By (b), there is some $r \in [0, 1)$ such that $d(Sfx, Sffx) \leq rd(Sx, Sfx)$. Fix some $u \in X$ and define $u_n = f^n u$ for all $n \in \mathbb{N}$ and $u_0 = u$. Then $u_{n+1} = fu_n$ and $Su_{n+1} = Tu_n$. Therefore

$$d(Su_n, Su_{n+1}) = d(Sfu_{n-1}, Sffu_{n-1}) \le rd(Su_{n-1}, Sfu_{n-1})$$

= $rd(Su_{n-1}, Su_n) \le \dots \le r^n d(Su_0, Su_1).$

Thus $\lim_{n\to\infty} d(Su_n, Su_{n+1}) = 0$, that is, $\{Su_n\}$ is a Cauchy sequence. Since X is complete, there is some $z \in X$ such that $Su_n \to z$. We will show that z is a fixed point of S. Two alternatives are possible.

- (1) $\#\{n: d(Sx_n, Tx_n) > d(Sx_n, SSx_n)\} = \infty$ or
- (2) $\#\{n: d(Sx_n, Tx_n) > d(Sx_n, SSx_n)\} < \infty.$

In the first case, there exists a subsequence $\{u_{n_i}\}$ of $\{u_n\}$ such that

$$d(Sx_{n_i}, Tx_{n_i}) > d(Sx_{n_i}, SSx_{n_i}) \quad (j \in \mathbb{N}).$$

Since S is continuous,

$$d(Sz, z) = \lim_{j \to \infty} d(SSu_{n_j}, z) \le \lim_{j \to \infty} \left(\max\{d(SSu_{n_j}, Su_{n_j}), d(Su_{n_j}, z)\} \right)$$

$$\le \lim_{j \to \infty} \left(\max\{d(Su_{n_j}, Tu_{n_j}), d(Su_{n_j}, z)\} \right)$$

$$= \lim_{j \to \infty} \left(\max\{d(Su_{n_j}, Su_{n_j+1}), d(Su_{n_j}, z)\} \right) = 0.$$

Therefore Sz = z. In the second case, there exists $l \in \mathbb{N}$ such that for each $n \geq l$ we have $d(Su_n, Tu_n) \leq d(Su_n, SSu_n)$. Thus

$$g(d(Tu_n, TSu_n), d(Su_n, SSu_n), d(Su_n, Tu_n), d(SSu_n, TSu_n), d(Su_n, TSu_n), d(SSu_n, Tu_n)) \le 0.$$

Since S and T commute and $Su_{n+1} = Tu_n$,

$$g(d(Su_{n+1}, SSu_{n+1}), d(Su_n, SSu_n), d(Su_n, Su_{n+1}), d(SSu_n, SSu_{n+1}), d(Su_n, SSu_{n+1}), d(SSu_n, Su_{n+1})) \le 0.$$

By letting $n \to \infty$, we have

$$g(d(z, Sz), d(z, Sz), 0, 0, d(z, Sz), d(Sz, z)) \le 0.$$

By (c), d(z, Sz) = 0. That is, z is a fixed point of S. Next, we will prove that

$$d(T^n z, T^{n+1} z) \le r^n d(Tz, z) \quad (n \in \mathbb{N}).$$

$$(2.1)$$

Since for each n > 1,

$$d(ST^{n-1}z, T^n z) \le d(ST^{n-1}z, T^n z) = d(ST^{n-1}z, T^n Sz) = d(ST^{n-1}z, ST^n z),$$
we have

$$g(d(T^{n}z,T^{n+1}z),d(ST^{n-1}z,ST^{n}z),d(ST^{n-1}z,T^{n}z),d(ST^{n}z,T^{n+1}z),d(ST^{n-1}z,T^{n+1}z),d(ST^{n}z,T^{n}z)) \le 0.$$

Hence from (iii),

$$g(d(T^{n}z, T^{n+1}z), d(T^{n-1}z, T^{n}z), d(T^{n-1}z, T^{n}z), d(T^{n}z, T^{n+1}z), d(T^{n-1}z, T^{n+1}z), 0) \le 0.$$

According to (a),

$$g(d(T^{n}z, T^{n+1}z), d(T^{n-1}z, T^{n}z), d(T^{n-1}z, T^{n}z), d(T^{n}z, T^{n+1}z), \\ \max\{d(T^{n-1}z, T^{n}z), d(T^{n}z, T^{n+1}z)\}, 0) \le 0.$$

By (b), we have $d(T^n z, T^{n+1} z) \leq rd(T^{n-1} z, T^n z)$. So that (2.1) is proved.

Next, we will show that

$$d(Tx,z) \le rd(Sx,z) \quad (Sx \ne z). \tag{2.2}$$

For $x \in X$ with $Sx \neq z$, there exists $n_0 \in \mathbb{N}$ such that $d(Su_n, z) < \frac{1}{3}d(z, Sx)$ for all $n \geq n_0$. If $n \geq n_0$, we have

$$d(Su_n, Tu_n) = d(Su_n, Su_{n+1}) \le \max\{d(Su_n, z), d(Su_{n+1}, z)\} < \frac{2}{3}d(Sx, z) = d(Sx, z) - \frac{1}{3}d(Sx, z) \le d(Sx, z) - d(Su_n, z) \le d(Su_n, Sx).$$

By assumption,

$$g(d(Tu_n, Tx), d(Su_n, Sx), d(Su_n, Tu_n), d(Sx, Tx), d(Su_n, Tx), d(Sx, Tu_n)) \le 0.$$

for all $n \ge n_0$. That is,

$$g(d(Su_{n+1},Tx), d(Su_n, Sx), d(Su_n, Su_{n+1}), d(Sx, Tx), d(Su_n, Tx), d(Sx, Su_{n+1})) \le 0.$$

By continuity of g, it follows that

$$g(d(z,Tx),d(z,Sx),0,d(Sx,Tx),d(z,Tx),d(Sx,z)) \le 0.$$

The property (a) implies that

$$g(d(z,Tx), d(z,Sx), 0, \max\{d(Sx,z), d(z,Tx)\}, d(z,Tx), d(Sx,z)) \le 0.$$

It follows from the property (b) and the above inequality that (2.2) holds.

By induction we will show that

$$d(T^n z, Tz) \le rd(Tz, z) \tag{2.3}$$

for $n \ge 2$. For n = 2, by (2.1), we obtain $d(T^2z, Tz) \le rd(Tz, z)$. Assume that (2.3) holds for some $n \ge 2$. Then

$$d(T^{n+1}z, Tz) \le \max\{d(T^n z, Tz), d(T^n z, T^{n+1}z)\} \le \max\{rd(z, Tz), r^n d(z, Tz)\} = rd(z, Tz).$$

Hence (2.3) is true.

According to (2.1), $\{T^n z\}$ is a Cauchy sequence in (X, d). If $T^n z = z$ for some n, then by (2.3), Tz = z in this case. Otherwise, we can assume that $T^m z \neq z$ for all $m \in \mathbb{N}$. In the latter case, by (2.2) we have

$$d(T^{m+1}z,z) \le r^m d(Tz,z) \quad (m \in \mathbb{N}).$$

$$(2.4)$$

Therefore $\{T^n z\}$ converges to z. Since $d(T^n z, Tz) \leq rd(Tz, z)$, by letting $n \to \infty$, we obtain $d(z, Tz) \leq rd(Tz, z)$. This is a contradiction. Therefore Tz = z.

We will prove that z is a unique common fixed point. Suppose that y is another common fixed point of S and T. Then $d(Sz,Tz) = 0 \le d(Sz,Sy)$. By our hypothesis,

$$g(d(Tz,Ty), d(Sz,Sy), d(Sz,Tz), d(Sy,Ty), d(Sz,Ty), d(Sy,Tz)) \le 0.$$

That is,

$$g(d(z,y), d(z,y), d(z,z), d(y,y), d(z,y), d(y,z)) \le 0$$

Hence

$$g(d(z, y), d(z, y), 0, 0, d(z, y), d(y, z)) \le 0.$$

By (c), we have d(y, z) = 0. Therefore y = z.

The following result generalizes [3, Theorem 3.1], when the metric is non-Archimedean.

COROLLARY 2.3. Let (X, d) be a complete ultrametric space and let T be a mapping on X. Assume that there exists $g \in \Phi$ such that $d(x, Tx) \leq d(x, y)$ implies

$$g(d(Tx, Ty), d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)) \le 0$$

for all $x, y \in X$. Then T has a unique fixed point.

Proof. Let S be the identity function on X. Then the result follows from Theorem 2.2. \blacksquare

We are also able to extend Theorem 1.2 in ultrametric spaces.

COROLLARY 2.4. Let (X, d) be a complete ultrametric space and let T and S be mappings on X satisfying the following:

(i) S is continuous,

(ii) $T(X) \subset S(X)$,

(iii) S and T commute.

Assume that $d(Sx,Tx) \leq d(Sx,Sy)$ implies $d(Tx,Ty) \leq rd(Sx,Sy)$ for all $x, y \in X$. Then S and T have a unique common fixed point.

Proof. Let $g = g_1$ in Example 2.1. Then g satisfies the above condition. So that the result follows from Theorem 2.2.

The following example shows that the conditions of Theorem 2.2 cannot be weakened, that is \leq cannot be replaced by <.

EXAMPLE 2.5. Let $X = \{\pm 1\}$ with discrete metric and 0 < r < 1. Define $T: X \to X$ by Tx = -x and Sx = x on X. Clearly, (X, d) is a complete ultrametric space. We have $d(x, Tx) = 1 \ge d(x, y) = d(Sx, Sy)$ for all $x, y \in X$. Hence

$$d(x, Tx) < d(Sx, Sy)$$
 implies $d(Tx, Ty) \leq rd(Sx, Sy)$

for all $x, y \in X$. But T does not have a fixed point. That is, S and T do not have a common fixed point.

The following example is due to Suzuki [22, Theorem 3] which shows that in general metric spaces, Corollary 2.4 and hence Theorem 2.2 is not true.

EXAMPLE 2.6. Define a complete subset X of the Euclidean space \mathbb{R} as follows: $X = \{0, 1\} \cup \{x_n : n \in \mathbb{N} \cup \{0\}\}$, where $x_n = (\frac{1}{4})(-\frac{3}{4})^n$ for $n \in \mathbb{N} \cup \{0\}$. Define a mapping T on X by T0 = 1, $T1 = x_0$ and $Tx_n = x_{n+1}$ for all $n \in \mathbb{N} \cup \{0\}$. Clearly, T does not have a fixed point. We claim that

$$d(x,Tx) \le d(x,y)$$
 implies $d(Tx,Ty) \le \frac{3}{4}d(x,y)$.

for all $x, y \in X$. Indeed,

- $d(T0, T1) = \frac{3}{4}d(0, 1),$
- $d(Tx_m, Tx_n) = \frac{3}{4}d(x_m, x_n)$ for $m, n \in \mathbb{N} \cup \{0\},\$
- $d(0,T0) > d(0,x_n)$ for $n \in \mathbb{N} \cup \{0\}$.

Also, we have

$$d(T1, Tx_n) - \frac{3}{4}d(1, x_n) = \frac{1}{4} - \frac{1}{4}\left(-\frac{3}{4}\right)^{n+1} - \frac{3}{4}\left(1 - \frac{1}{4}\left(-\frac{3}{4}\right)^n\right)$$
$$= -\frac{1}{2} - \frac{1}{2}\left(-\frac{3}{4}\right)^{n+1} < 0,$$

for each $n \in \mathbb{N}$.

We are also able to give the following generalization of Ćirić fixed point theorem [5] in ultrametric spaces.

COROLLARY 2.7. Let (X, d) be a complete ultrametric space and let T and S be mappings on X satisfying the following:

- (i) S is continuous,
- (ii) $T(X) \subset S(X)$,
- (iii) S and T commute.

Assume that there exists $r \in [0, 1)$ such that $d(Sx, Tx) \leq d(Sx, Sy)$ implies

 $d(Tx,Ty) \le r \max\{d(Sx,Sy), d(Sx,Tx), d(Sy,Ty), d(Sx,Ty), d(Sy,Tx)\}$

for all $x, y \in X$. Then S and T have a unique common fixed point.

Proof. Let $g = g_2$ in Example 2.1. By Theorem 2.2, S and T have a common fixed point.

Theorem 2.2 also enables us to extend Hardy-Rogers fixed point theorem [9] for ultrametric spaces.

COROLLARY 2.8. Let (X, d) be a complete ultrametric space and let T and S be mappings on X satisfying the following:

(i) S is continuous,

(ii) $T(X) \subset S(X)$,

(iii) S and T commute.

Let $\sum_{i=1}^{5} \alpha_i < 1$ and $\alpha_i \ge 0$ for $1 \le i \le 5$. Suppose that for all $x, y \in X$,

$$d(Tx,Ty) \le \alpha_1 d(Sx,Sy) + \alpha_2 d(Sx,Tx) + \alpha_3 d(Sy,Ty) + \alpha_4 d(Sx,Ty) + \alpha_5 d(Sy,Tx).$$
(2.5)

Then S and T have a unique common fixed point.

Proof. By symmetry, we have

$$d(Tx, Ty) \le \alpha_1 d(Sx, Sy) + \alpha_2 d(Sy, Ty) + \alpha_3 d(Sx, Tx) + \alpha_4 d(Sy, Tx) + \alpha_5 d(Sx, Ty).$$
(2.6)

It follows from (2.5) and (2.6) that

$$d(Tx,Ty) \le \alpha_1 d(Sx,Sy) + \frac{\alpha_2 + \alpha_3}{2} (d(Sx,Tx) + d(Sy,Ty)) + \frac{\alpha_4 + \alpha_5}{2} (d(Sx,Ty) + d(Sy,Tx)).$$

Let $\alpha = \alpha_1$, $\beta = \frac{\alpha_2 + \alpha_3}{2}$, $\gamma = \frac{\alpha_4 + \alpha_5}{2}$ and $g = g_3$ in Example 2.1. Then the result follows from Theorem 2.2.

The following result shows that when the underling space is non-Archimedean, we may assume $\theta \equiv 1$ in Theorem 1.1.

COROLLARY 2.9. Let (X, d) be a complete non-Archimedean metric space and $T: X \to X$. Let for some 0 < r < 1,

$$d(x,Tx) \le d(x,y)$$
 implies $d(Tx,Ty) \le rd(x,y)$ for all $x,y \in X$. (*)

Then T has a unique fixed point z and for every $x \in X$, $\lim_{n\to\infty} T^n(x) = z$.

Proof. Let S be the identity function on X. Then the result follows from Corollary 2.4. \blacksquare

The following example shows that our results are genuine generalization of Suzuki's fixed point theorem provided that the underling space is non-Archimedean. In fact, we give an example of a mapping on a complete ultrametric space which satisfies the conditions of Corollary 2.9 but Theorem 1.1 cannot be applied.

EXAMPLE 2.10. Let $X = \{a, b, c, e\}$ and d(a, c) = d(a, e) = d(b, c) = d(b, e) = 1 and $d(a, b) = d(c, e) = \frac{3}{4}$. It is easy to verify that X is a complete ultrametric space. Define $T: X \to X$ by T(a) = T(b) = T(c) = a and T(e) = b. For $r = \frac{3}{4}$, we have $\theta(r) = \frac{4}{7}$. Since $\theta(r)d(c, Tc) = \frac{4}{7} \leq \frac{3}{4} = d(c, e)$ and $d(Tc, Te) = \frac{3}{4} > \frac{9}{16} = rd(c, e)$, T does not satisfy in assumption of Theorem 1.1. We will show that

$$d(x,Tx) \le d(x,y)$$
 implies $d(Tx,Ty) \le \frac{3}{4}d(x,y)$

for all $x, y \in X$. Since d(Ta, Tb) = d(Ta, Tc) = d(Tb, Tc) = 0, we have $d(Tx, Ty) \leq \frac{3}{4}d(x, y)$ for $x, y \in \{a, b, c\}$. Also,

$$d(Ta, Te) = \frac{3}{4} \le \frac{3}{4} = \frac{3}{4}d(a, e), \quad d(Tb, Te) = \frac{3}{4} \le \frac{3}{4} = \frac{3}{4}d(b, e).$$

Since $d(e, Te) = 1 > \frac{3}{4} = d(c, e)$, the proof is completed.

The next result gives a characterization for completeness in non-Archimedean metric spaces.

THEOREM 2.11. Suppose that (X, d) is a non-Archimedean metric space such that for some 0 < r < 1, every self mapping $T : X \to X$ with the property (*) has a fixed point. Then (X, d) is complete.

Proof. Let (X, d) be incomplete non-Archimedean metric space and 0 < r < 1. Then there is a Cauchy sequence $\{x_n\}$ in X which is not convergent. Define $f: X \to [0, \infty)$ by $f(x) = \lim_{n \to \infty} d(x, x_n)$ for all $x \in X$. Since $\{d(x_n, x)\}$ is a Cauchy sequence in \mathbb{R} , it is convergent. Hence f is well-defined. It follows from the definition that

- (i) $f(x) f(y) \le d(x, y) \le \max\{f(x), f(y)\}$ for all $x, y \in X$.
- (ii) f(x) > 0 for all $x \in X$ and
- (iii) $\lim_{n \to \infty} f(x_n) = 0.$

It follows from (ii) and (iii) that for each $x \in X$, there is some $n_x \in X$ such that $f(x_{n_x}) < \frac{r}{4}f(x)$. Define $T: X \to X$ by $Tx = x_{n_x}$ for all $x \in X$. Then $f(Tx) \leq \frac{r}{4}f(x)$ for all $x \in X$. Hence $Tx \neq x$ for all $x \in X$. We will show that (*) holds. Let for some $x, y \in X$, $d(x, Tx) \leq d(x, y)$. Two cases may happen.

(a) f(y) > 2f(x). In this case by (i) we have,

$$d(Tx,Ty) \le \max\left\{f(Tx), f(Ty)\right\}$$

$$\le \max\left\{\frac{r}{4}f(x), \frac{r}{4}f(y)\right\} \le \frac{r}{2}f(y) \le r\left(f(y) - f(x)\right) \le rd(x,y).$$

(b) $f(y) \leq 2f(x)$. We have

$$d(x,y) \ge d(x,Tx) \ge f(x) - f(Tx) \ge (1 - \frac{r}{4})f(x) \ge \frac{1}{2}f(x).$$

Since

$$d(Tx, Ty) \le \max\left\{f(Tx), f(Ty)\right\}$$
$$\le \max\left\{\frac{r}{4}f(x), \frac{r}{4}f(y)\right\} \le \frac{r}{2}f(x),$$

(*) also holds in this case. This completes our proof. \blacksquare

The following result follows immediately from Corollary 2.9 and Theorem 2.11.

COROLLARY 2.12. Let (X, d) be a non-Archimedean metric space. Then the following are equivalent:

- (a) (X, d) is complete.
- (b) There is some 0 < r < 1 such that every self mapping $T : X \to X$ which satisfies (*) has a unique fixed point.

ACKNOWLEDGEMENT. The authors thank the referees for carefully reviewing the manuscript. They also thank Tusi Mathematical Research Group.

REFERENCES

- S. M. A. Aleomraninejad, Sh. Rezapour and N. Shahzad, On fixed point generalizations of Suzukis method, Appl. Math. Lett. 24 (2011), 1037–1040.
- [2] A. Aliouche and V. Popa, General common fixed point theorems for occasionally weakly compatible hybrid mappings and applications, Novi Sad J. Math. 39 (1), (2009), 89–109.
- [3] I. Altun and A. Erduran, A Suzuki type fixed-point theorem, Int. J. Math. Math. Sci., Article ID 736063, (2011), 9 pages.
- [4] S. Banach, Sur les opérations dans les ensemble abstraits et leur application aux équations intégrales, Fund. Mat. 3 (1922), 133–181.
- [5] Lj. B. Ćirić, A generalization of Banach's contraction principle, Proc. Amer. Math. Soc. 43 (2), (1974), 267–273.
- [6] M. Edelstein, An extension of Banach contraction principle, Proc. Amer. Math. Soc. 12 (1961), 7–10.
- [7] Lj. Gajić, On ultra metric spaces, Novi Sad J. Math., 31 (2), (2001), 69-71.
- [8] A. Granas and J. Dugundji, Fixed Point Theory, Springer-Verlag, New York, 2003.
- [9] G. E. Hardy and T. D. Rogers, A generalization of the theorem of Reich, Canad. Math. Bull. Vol. 16 (2), (1973), 201–206.
- [10] G. Jungck, Commuting mappings and fixed points, Amer. Math. Montly (1976), 261–263.
- [11] R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc. 60 (1968), 71–76.
- [12] R. Kannan, Some results on fixed points-II, Amer. Math. Monthly 76 (1969), 405–408.
- [13] R. Kannan, Some results on fixed points-III, Fund. Math. 70 (1971), 169-177.
- [14] J. Kubiaczyk and N. Mostafa Ali, A multivalued fixed point theorem in non-Archimedean vector spaces, Novi Sad J. Math. 26 (2), (1996), 111–116.
- [15] M. Kikkawa and T. Suzuki, Three fixed point theorems for generalized contractions with constants in complete metric spaces, Nonlinear Anal. 69 (2008) 2942-2949.
- [16] W. A. Kirk and B. Sims, Handbook of Metric Fixed Point Theory, Kluwer Academic, London, 2001.
- [17] V. Popa and M. Imdad and J. Ali, Using implicit relations to prove unified fixed point theorems in metric and 2-metric spaces, Bull. Malays. Math. Sci. Soc. (2), 33 (1), (2010), 105–120.
- [18] O. Popescu, Two fixed point theorems for generalized contractions with constants in complete metric space, Cent. Eur. J. Math. 7 (3), (2009), 529–538.
- [19] C. Petalas and F. Vidalis, A fixed point theorem in non-Archimedaen vector spaces, Proc. Amer. Math. Soc., 118 (1993), 819–821.
- [20] B. E. Rhoades, A comparison of various definitions of contractive mappings, Trans. Amer. Math. Soc. 236 (1997), 257–290.
- [21] B. Samet, Fixed point results for implicit contractions on spaces with two metrics, J. Ineq. Appl., 2014:84 (2014).

Common fixed points of commuting mappings

[22] T. Suzuki, A generalized Banach contraction principle that characterizes metric completeness, Proc. Amer. Math. Soc. 136 (5), (2008), 1861–1869.

(received 29.09.2915; in revised form 29.02.2016; available online 21.03.2016)

Z.A.: Department of Pure Mathematics, Ferdowsi University of Mashhad, P. O. Box 1159, Mashhad 91775, Mashhad, Iran

E-mail: alinejad_z@yahoo.com

A.K.M.: Center of Excellence in Analysis on Algebraic Structures, Department of Pure Mathematics, Ferdowsi University of Mashhad, P. O. Box 1159, Mashhad 91775, Mashhad, Iran *E-mail*: mirmostafaei@um.ac.ir