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CUBIC SYMMETRIC GRAPHS OF ORDER 6p3

Mehdi Alaeiyan and M. K. Hosseinipoor

Abstract. A graph is called s-regular if its automorphism group acts regularly on the set
of its s-arcs. In this paper, we classify all connected cubic s-regular graphs of order 6p3 for each
s ≥ 1 and all primes p.

1. Introduction

Throughout this paper, graphs are assumed to be finite, simple, undirected
and connected. For a graph X, we use V (X), E(X), A(X) and Aut(X) to denote
its vertex set, the edge set, the arc set and the full automorphism group of X,
respectively. For u, v ∈ V (X), uv is the edge incident to u and v in X and the
neighborhood NX(u) is the set of vertices adjacent to u in X. Denote by Zn the
cyclic group of order n as well as the ring of integers modulo n, and by Z∗n the
multiplicative group of Zn consisting of numbers coprime to n. For two groups M
and N , N < M , means that N is a proper subgroup of M .

Given a finite group G and an inverse closed subset S ⊆ G \ {1}, the Cayley
graph Cay(G,S) on G with respect to S is defined to have vertex set G and edge
set {{g, sg} | g ∈ G, s ∈ S}. Given a g ∈ G, define the permutation R(g) on
G by x → xg, x ∈ G. Then R(G) = {R(g) | g ∈ G}, called the right regular
representation of G, is a permutation group isomorphic to G. It is well-known
that R(G) is a subgroup of Aut(Cay(G,S)), acting regularly on the vertex set of
Cay(G,S). A Cayley graph Cay(G,S) is said to be normal if R(G) is normal in
Aut(Cay(G,S)).

Let X be a graph and N a subgroup of Aut(X). Denote by XN the quotient
graph corresponding to the orbits of N , that is the graph having the orbits of N as
vertices with two orbits adjacent in XN whenever there is an edge between those
orbits in X.

A graph X̃ is called a covering of a graph X with projection p : X̃ → X if there
is a surjection p : V (X̃) → V (X) such that p|N

X̃
(ṽ) : N

X̃
(ṽ) → NX(v) is a bijection
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for any vertex v ∈ V (X) and ṽ ∈ p−1(v). A covering X̃ of X with a projection
p is said to be regular (or K-covering) if there is a semiregular subgroup K of the
automorphism group Aut(X̃) such that graph X is isomorphic to the quotient graph
X̃K , say by isomorphism h, and the quotient map X̃ → X̃K is the composition ph
of p and h (for the purpose of this paper, all functions are composed from left to
right). If X̃, is connected, K becomes the covering transformation group.

An s-arc in a graph X is an ordered (s + 1)-tuple (v0, v1, . . . , vs−1, vs) of
vertices of X such that vi−1 is adjacent to vi for 1 ≤ i ≤ s and vi−1 6= vi+1

for 1 ≤ i < s. A graph X is said to be s-arc-transitive if Aut(X) is transitive
on the set of s-arcs in X. In particular, 0-arc-transitive means vertex-transitive,
and 1-arc-transitive means arc-transitive or symmetric. A graph X is said to be
edge-transitive if Aut(X) is transitive on E(X) and half-transitive if X is vertex-
transitive, edge-transitive, but not arc-transitive. A subgroup of the automorphism
group of X is said to be s-regular if it is acts regularly on the set of s-arcs in X.
In particular, if the subgroup is the full automorphism group Aut(X), then X is
said to be s-regular. Tutte [21, 22] showed that every cubic symmetric graph is
s-regular for s at most 5.

Many people have investigated the automorphism group of cubic symmetric
graphs, for example, see [4, 5, 7, 18]. Djoković and Miller [7] constructed an infi-
nite family of cubic 2-regular graphs, and Conder and Praeger [5] constructed two
infinite families of cubic s-regular graphs for s = 2 or 4. Cheng and Oxley [2]
classified symmetric graphs of order 2p, where p is a prime. Marušić and Xu [17],
showed a way to construct a cubic 1-regular graph from a tetravalent half-transitive
graph with girth 3. Also, Marušić and Pisanski [16] classified s-regular cubic Cayley
graphs on the dihedral groups for each s ≥ 1 and Feng et al. [8, 9, 10] classified
the s-regular cubic graphs of orders 2p2, 2p3, 4p, 4p2, 6p and 6p2 for each prime p
and each s ≥ 1. In this paper we classify the s-regular cubic graphs of order 6p3

for each prime p and each s ≥ 1.

2. Preliminaries

Let X be a graph and K a finite group. By a−1 we mean the reverse arc
to an arc a. A voltage assignment (or, K-voltage assignment) of X is a function
φ : A(X) → K with the property that φ(a−1) = φ(a)−1 for each arc a ∈ A(X)
(a−1) is a group inverse). The values of φ are called voltages, and K is the voltage
group. The graph X ×φ K derived from a voltage assignment φ : A(X) → K has
vertex set V (X) × K and edge set E(X) × K, so that an edge (e, g) of X ×φ K
joins a vertex (u, g) to (v, φ(a)g) for a = (u, v) ∈ A(X) and g ∈ K, where e = uv.

Clearly, the derived graph X ×φ K is a covering of X with the first coordinate
projection p : X ×φ K → X, which is called the natural projection. By defining
(u, g

′
)g := (u, g

′
g) for any g ∈ K and (u, g

′
) ∈ V (X ×φ K), K becomes a subgroup

of Aut(X×φK) which acts semiregularly on V (X×φK). Therefore, X×φK can be
viewed as a K-covering. Conversely, each regular covering X̃ of X with a covering
transformation group K can be derived from a K-voltage assignment. Giving a
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spanning tree T of the graph X, a voltage assignment φ is said to be T-reduced if
the voltages on the tree arcs are the identity. Gross and Tucker [12] showed that
every regular covering X̃ of a graph X can be derived from a T -reduced voltage
assignment φ with respect to an arbitrary fixed spanning tree T of X. It is clear
that if φ is reduced, the derived graph X ×φ K is connected if and only if the
voltages on the cotree arcs generate the voltage group K.

Let X̃ be a K-covering of X with a projection p. If α∈ Aut(X) and α̃∈ Aut(X̃)
satisfy α̃p = pα, we call α̃ a lift of α, and α the projection of α̃. Concepts such
as a lift of a subgroup of Aut(X) and the projection of a subgroup of Aut(X̃)
are self-explanatory. The lifts and the projections of such subgroups are of course
subgroups in Aut(X̃) and Aut(X) respectively. In particular, if the covering graph
X̃ is connected, then the covering transformation group K is the lift of the trivial
group, that is K={α̃ ∈ Aut(X̃): p = α̃p}. Clearly, if α̃ is a lift of α, then Kα̃ is
the set of all lifts of α.

Let X×φ K → X be a connected K-covering derived from a T -reduced voltage
assignment φ. The problem whether an automorphism α of X lifts or not can be
grasped in terms of voltages as follows. Observe that a voltage assignment on arcs
extends to a voltage assignment on walks in a natural way. Given α∈ Aut(X), we
define a function ᾱ from the set of voltages on fundamental closed walks based at
a fixed vertex v ∈ V (X) to the voltage group K by

(φ(C))ᾱ = φ(Cα),

where C ranges over all fundamental closed walks at v, and φ(C) and φ(Cα) are
the voltages on C and Cα, respectively. Note that if K is Abelian, ᾱ does not
depend on the choice of the base vertex, and the fundamental closed walks at v can
be substituted by the fundamental cycles generated by the cotree arcs of X.

The next proposition is a special case of [14, Theorem 4.2].

Proposition 2.1. Let X ×φ K → X be a connected K-covering derived from
a T -reduced voltage assignment φ. Then, an automorphism α of X lifts if and only
if ᾱ from the set of voltages on fundamental closed walks based at a fixed vertex of
V (X) to the voltage group K extends to an automorphism of K.

Proposition 2.2. [13, Theorem 9] Let X be a connected symmetric graph of
prime valency and G an s-arc-transitive subgroup of Aut(X) for some s ≥ 1. If a
normal subgroup N of G has more than two orbits, then it is semiregular and G/N
is an s-arc-transitive subgroup of Aut(XN ). Furthermore, X is a regular covering
of XN with the covering transformation group N .

Two coverings X̃1 and X̃2 of X with projections p1 and p2 respectively, are
said to be equivalent if there exists a graph isomorphism α̃ : X̃1 → X̃2 such that
α̃p2 = p1. We quote the following proposition.

Proposition 2.3. [20, Proposition 1.5] Two connected regular coverings X×φ

K and X ×ψ K, where φ and ψ are T -reduced, are equivalent if and only if there
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exists an automorphism σ∈ Aut(K) such that φ(u, v)σ = ψ(u, v) for any cotree arc
(u, v) of X.

Let p ≥ 5 be a prime. By [10, Theorem 3.2], every cubic symmetric graph of
order 2p3 is a normal Cayley graph on a group of order 2p3. Thus, we have the
following result.

Lemma 2.4. Let p ≥ 5 be a prime and X a cubic symmetric graph of order
2p3. Then Aut(X) has a normal Sylow p-subgroup.

3. Graph constructions and isomorphisms

In this section we construct some examples of cubic symmetric graphs to use
later for classification of cubic symmetric graphs of order 6p3. In the following ex-
amples, let V (K3,3) = {0, 1, 2, 3, 4, 5, 6} be the vertex set of K3,3 as illustrated
in Fig. 1.

Fig. 1. The complete bipartite graph K3,3 with voltage assignment φ.

Example 3.1. Let p be a prime such that p− 1 is divisible by 3 and let k be
an element of order 3 in Z∗p3 . Let P = 〈x〉 with o(x) = p3. The graphs AF6p3 and
A′F6p3 are defined to have the same vertex set V (K3,3)× P and edge sets
E(AF6p3) = {(0, t)(1, t), (0, t)(3, t), (0, t)(5, t), (2, t)(1, t), (2, t)(3, tx−1),

(2, t)(5, txk), (4, t)((1, t), (4, t)(3, tx−k−1), (4, t)(5, tx−1) | t ∈ P},
E(A′F6p3) = {(0, t)(1, t), (0, t)(3, t), (0, t)(5, t), (2, t)(1, t), (2, t)(3, tx−1),

(2, t)(5, txk2
), (4, t)((1, t), (4, t)(3, tx−k2−1), (4, t)(5, tx−1) | t ∈ P},

respectively.
Example 3.2. Let p be a prime such that p−1 is divisible by 3 and let k be an

element of order 3 in Z∗p. Also let P = 〈x〉 × 〈y〉 × 〈z〉 with o(x) = o(y) = o(z) = p.
The graphs BF6p3 and B′F6p3 are defined to have the same vertex set V (K3,3)×P
and edge sets
E(BF6p3) = {(0, t)(1, t), (0, t)(3, t), (0, t)(5, t), (2, t)(1, t), (2, t)(3, tx−1),

(2, t)(5, tz), (4, t)((1, t), (4, t)(3, ty−1), (4, t)(5, txykz−k2
) | t ∈ P},

E(B′F6p3) = {(0, t)(1, t), (0, t)(3, t), (0, t)(5, t), (2, t)(1, t), (2, t)(3, tx−1),

(2, t)(5, tz), (4, t)((1, t), (4, t)(3, ty−1), (4, t)(5, txyk2
z−k) | t ∈ P},

respectively.



Cubic symmetric graphs of order 6p3 105

Example 3.3. Let p be a prime such that p− 1 is divisible by 3 and let k be
an element of order 3 in Z∗p2 . Also let P = 〈x〉 × 〈y〉 with o(x) = p2 and o(y) = p.
The graphs CF6p3 and C ′F6p3 are defined to have the same vertex set V (K3,3)×P
and edge sets

E(CF6p3) = {(0, t)(1, t), (0, t)(3, t), (0, t)(5, t), (2, t)(1, t), (2, t)(3, tx−1),

(2, t)(5, tx−k−1y), (4, t)((1, t), (4, t)(3, txky−1), (4, t)(5, tx−1) | t ∈ P},
E(C ′F6p3) = {(0, t)(1, t), (0, t)(3, t), (0, t)(5, t), (2, t)(1, t), (2, t)(3, tx−1),

(2, t)(5, tx−k2−1), (4, t)((1, t), (4, t)(3, txk2
y−1), (4, t)(5, tx−1) | t ∈ P},

respectively.
Example 3.4. Let p be a prime and let P = 〈x, y, z | xp = yp = zp =

1, [x, y] = z, [z, x] = [z, y] = 1〉. For any k ∈ Z∗p, denote by k−1 the inverse of
k in Z∗p. The graphs DF6p3 and EF6p3 are defined to have the same vertex set
V (K3,3)× P and edge sets

E(DF6p3) = {(0, t)(1, t), (0, t)(3, t), (0, t)(5, t), (2, t)(1, t), (2, t)(3, tx−1),

(2, t)(5, ty), (4, t)((1, t), (4, t)(3, ty−1x−1z3−1
), (4, t)(5, tx−1z−(3−1)) | t ∈ P},

E(EF 6p3) = {(0, t)(1, t), (0, t)(3, t), (0, t)(5, t), (2, t)(1, t), (2, t)(3, tx−1),

(2, t)(5, ty), (4, t)((1, t), (4, t)(3, tyz3−1
), (4, t)(5, txyz−(3−1)) | t ∈ P},

respectively.
It is easy to see that all graphs in the above examples are bipartite and regular

coverings of the complete bipartite graph K3,3. Note that if k is an element of
order 3 in Z∗pn for some positive integer n, then k and k2 are the only elements of
order 3 in Z∗pn . The graphs A′F6p3 , B′F6p3 and C ′F6p3 are obtained by replacing k

with k2 in each edge of AF 6p3 , BF 6p3 and CF 6p3 , respectively. In Lemma 3.6, it
will be shown that AF6p3 ∼= A′F6p3 , BF6p3 ∼= B′F6p3 and CF6p3 ∼= C ′F6p3 . Thus
the graphs AF 6p3 , BF 6p3 and CF 6p3 are independent of the choice of k. Later
in Theorem 6.5, it will be shown that the graphs AF6p3 , BF6p3 and CF6p3 are
1-regular and the graphs DF6p3 and EF6p3 are 2-regular.

Lemma 3.5. Let p > 3 be a prime and n a positive integer. Then k is an
element of order 3 in Z∗pn if and only if k2 + k + 1 = 0 in the ring Zpn .

Proof. Suppose first that k2 + k + 1 = 0. If k = 1 then 3 = 0, which implies
that n = 1 and p = 3, a contradiction. Hence k 6= 1. On the other hand, since
k3 − 1 = (k − 1)(k2 + k + 1), we have k3 = 1. Thus k is an element of order 3 in
Z∗pn .

Now suppose that k is an element of order 3 in Z∗pn . Then (k−1)(k2 +k+1) =
k3− 1 = 0. To prove k2 +k +1 = 0, it suffices to show that (k− 1, p) = 1. Suppose
to the contrary that k ≡ 1 (mod p). Then k2 + k + 1 = 3 (mod p) and since
p > 3, k2 + k + 1 is coprime with p. This forces k − 1 = 0, a contradiction. Thus
k2 + k + 1 = 0. This complete the proof of the lemma.
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Lemma 3.6. AF6p3 ∼= A′F6p3 , BF6p3 ∼= B′F6p3 , CF6p3 ∼= C ′F6p3 and DF6p3 ∼=
EF 6p3 .

Proof. First we show that BF6p3 ∼= B′F6p3 . To do this we define a map α
from V (BF6p3) to V (B′F6p3) by

(0, t) 7−→ (0, g), (2, t) 7−→ (4, g), (4, t) 7−→ (2, g),

(1, t) 7−→ (1, g), (3, t) 7−→ (5, g), (5, t) 7−→ (3, g),

where t = xiyjzl and g = x−iy−l−k2iz−j+ki for some i, j, l ∈ Zp. Clearly, the
neighborhood

NBF 6p3 ((4, t)) = {(1, t), (3, ty−1), (5, txykz−k2
)},

NB′F6p3 ((4, t)α) = NB′F6p3 ((2, g)) = {(1, g), (3, gx−1), (5, gz)}.
Since k is an element of order 3 in Z∗p, by Lemma 3.5, k2 + k + 1 = 0 in the ring
Zp. With the aid of this equation, one can easily show that

[NBF 6p3 ((4, t))]α = NB′F6p3 ((4, t)α).

Similarly,
[NBF 6p3 ((u, t))]α = NB′F6p3 ((u, t)α),

for u = 0, 2. It follows that α is an isomorphism from BF6p3 to B′F6p3 , because
the graphs are bipartite. Thus BF6p3 ∼= B′F6p3 .

Also, by a similar method as above, one can show that the following three
maps are isomorphisms from AF6p3 to A′F6p3 , CF6p3 to C ′F6p3 and DF6p3 to
EF6p3 , respectively:

(0, t) 7−→ (0, t), (2, t) 7−→ (4, t), (4, t) 7−→ (2, t),

(1, t) 7−→ (1, t), (3, t) 7−→ (5, t), (5, t) 7−→ (3, t),

where t = xi for some i ∈ Zp3 ,

(0, t) 7−→ (0, g1), (2, t) 7−→ (4, g1), (4, t) 7−→ (2, g1),

(1, t) 7−→ (1, g1), (3, t) 7−→ (5, g1), (5, t) 7−→ (3, g1),

where t = xiyj and g1 = xiy−j for some i ∈ Zp2 and j ∈ Zp,

(0, t) 7−→ (0, g2), (2, t) 7−→ (2, g2), (4, t) 7−→ (4, g2),

(1, t) 7−→ (1, g2), (3, t) 7−→ (3, g2), (5, t) 7−→ (5, g2),

where t = xiyjzl and g2 = y−ix−jz−l.

4. Cubic symmetric graphs of order 6p3

In this section, we shall determine all connected cubic symmetric graphs of
order 6p3 for each prime p.

By [3], we have the following lemma.
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Lemma 4.1. Let p ≥ 5 be a prime, and let X be a connected cubic symmetric
graph of order 6p3. Then X is one of the following:
(i) The 1-regular graph F162B,
(ii) The 2-regular graphs F48, F162A or F750,
(iii) The 3-regular graph F162C .
(the graphs are labeled in accordance with the Foster census.)

Lemma 4.2. Let p ≥ 7 be a prime and let X be a connected cubic symmetric
graph of order 6p3. Then Aut(X) has a normal Sylow p-subgroup.

Proof. Let X be a cubic graph satisfying the assumptions and let A :=Aut(X).
Since X is symmetric, by Tutte [21], X is s-regular for some 1 ≤ s ≤ 5. Thus
|A| = 2s. 32. p3. Let N be a minimal normal subgroup of A.

Suppose that N is unsolvable. Then N ∼= T × T × ... × T = T k, where T is
a non-abelian simple group. Since p ≥ 7 and A is a {2, 3, p}-group, by [11, pp.
12-14] and [6], T is one of the following groups

PSL2(7), PSL2(8), PSL2(17), PSL3(3), PSU3(3) (1)

with orders 24. 3. 7, 24. 32. 7, 24. 32. 17, 24. 33. 13, and 25. 33. 7, respectively.
Since 26 does not divide |A|, one has k = 1 and hence p2 - |N |. It follows that N
has more than two orbits on V (X). By Proposition 2.2, N is semiregular on V(X),
which implies that |N | | 6p3, a contradiction.

Table 1. Voltages on fundamental cycles and their images under α, β, γ, τ and δ.

C φ(C) Cα φ(Cα) Cβ φ(Cβ)

03210 a 23412 a−1b 05230 c−1a−1

03410 b 23012 a−1 05430 d−1b−1

01250 c 21452 dc−1 03210 a

01450 d 21052 c−1 03410 b

Cγ φ(Cγ) Cτ φ(Cτ ) Cδ φ(Cδ)

14501 d 12301 a−1 14301 b−1

14301 b−1 12501 c 14501 d

10521 c−1 12301 b 10321 a

10321 a 12301 d−1 10541 c−1

Thus, N is solvable. Let Oq(A) denote the maximal normal q-subgroup of A,
q ∈ {2, 3, p}. Since X is of order 6p3, by Proposition 2.2, Oq(A) is semiregular on
V (X). Moreover, the quotient graph XOq(A) of X corresponding to the orbits of
Oq(A) is a cubic symmetric graph with A/Oq(A) as an arc-transitive subgroup of
Aut(XOq(A)). The semiregularity of Oq(A) implies that |Oq(A)| | 6p3. If O2(A) 6= 1,
then O2(A) ∼= Z2 and hence XO2(A) has odd order and valency 3, a contradiction.
By the solvability of N , either O3(A) 6= 1 or Op(A) 6= 1.

Let O3(A) 6= 1. Then by the semiregularity of O3(A) on V (X), |O3(A)| = 3,
so XO3(A) is a cubic symmetric graph of order 2p3. Let P be a Sylow p-subgroup
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of A. By Proposition 2.4, Aut(XO3(A)) has a normal Sylow p-subgroup and
hence PO3(A)/O3(A) / A/O3(A) because A/O3(A) ≤Aut(XO3(A)). Consequently,
PO3(A) /A. Since |PO3(A)| = 3p3, P is characteristic in PO3(A), implying P /A,
as required. Thus, to complete the proof, one may assume that O3(A) = 1. Hence
Op(A) 6= 1. Set Q := Op(A). To prove the lemma, we need to show that |Q| = p3.
Suppose to the contrary that |Q| = pt for t = 1 or 2. Then Q ∼= Zp, Zp2 or Z2

p.

Suppose first that Q ∼= Zp. Let C := CA(Q) be the centralizer of Q in A.
Clearly Q < C. Let L/Q be a minimal normal subgroup of A/Q contained in C/Q.
By the same argument as above we may prove that L/Q is solvable and hence
elementary abelian. By Proposition 2.2, L/Q is semiregular on V (XQ), which
implies that L/Q ∼= Z2 or Z3. Since L ≤ C, Q has a normal complement, say M
such that M ∼= Z2 or Z3. therefore L = M ×Q. Now M is characteristic in L and
L / A, so M / A, contradicting O2(A) = O3(A) = 1.

Suppose now that Q ∼= Zp2 . Set C := CA(Q). Clearly Q ≤ C. Suppose
that Q = C. Then by [19 Theorem 10.6.13], A/Q is isomorphic to a subgroup
of Aut(Q) ∼= Zp(p−1), which implies that A/Q is abelian. Since A/Q is transitive
on V (XQ), by [23, Proposition 4.4], A/Q is regular on V (XQ). Consequently
|A| = 6p3, which contradicts the fact that X is symmetric. Hence Q < C. Let
L/Q be a minimal normal subgroup of A/Q contained in C/Q. Assume that L/Q
is unsolvable. Then L/Q = T k where T is a nonabelian simple group listed in
(1). Clearly, k = 1. Let P be a Sylow p-subgroup of L. Then Q ≤ Z(P ) and
hence P is abelian. By [19, Theorems 10.1.5, 10.1.6], L′

⋂
Q = 1, where L′ is the

derived subgroup of L. The simplicity of L/Q implies that L = L′Q. It follows
that L/Q ∼= L′ and since p2 - |L/Q|, L′ has more than two orbits on V (X). By
Proposition 2.2, L′ is semiregular on V (X), implying |L′| | 6p3. This forces L′ is
solvable, a contradiction. Thus L/Q is solvable. In this case by the same argument
as in the preceding paragraph a similar contradiction is obtained.

Suppose finally that Q ∼= Z2
p. Then XQ is a cubic symmetric graph of order 6p.

If p 6= 17, by [9, Theorem 5.2], XQ is 1-regular, because p ≥ 7. Thus |Aut(XQ)| =
18p. By Sylow’s theorem Aut(XQ) has a normal Sylow p-subgroup. Let P be
a Sylow p-subgroup of A. Then P/Q is a Sylow p-subgroups of A/Q and since
A/Q ≤Aut(XQ), one has P/Q / A/Q, implying P / A, a contradiction. Thus
p = 17. By [9, Theorem 2.5], XQ is isomorphic to the 4-regular Smith-Biggs
graph SB102 and by [1], Aut(XQ) ∼= PSL2(17). Since |A| = 2s. 32. p3, we have
|Aut(XQ) : A/Q| is a 2-power. By [6], PSL2(17) has no subgroup of index 2t for
t ≥ 1 and so A/Q =Aut(XQ) ∼= PSL2(17). Set C := CA(Q). Then Q = C or
Q ≤ Z(A). If Q = C, then A/Q is isomorphic to a subgroup of Aut(Q) ∼= GL2(17).
Therefore PSL2(17) is a subgroup of GL2(17). Since GL2(17) ∼= SL2(17)oZ16, it
follows that PSL2(17) ≤ SL2(17). This is impossible because SL2(17) contains a
unique involution, while PSL2(17) contains more. Thus Q ≤ Z(A), which implies
that the Sylow p-subgroups of A are abelian. This leads to a contradiction similar
to the one in preceding paragraph (replacing L by A).

Let p ≥ 7 be a prime and X be a connected cubic symmetric graph of order 6p3.
Also let P be a Sylow p-subgroup of Aut(X). By Lemma 4.2, P/Aut(X). Then
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X is a P -covering of the bipartite graph K3,3 of order 6 such that Aut(X) projects
to an arc-transitive subgroup of Aut(K3,3). Thus to classify the cubic symmetric
graph of order 6p3 for p ≥ 7, it suffices to determine all pairwise non-isomorphic
P -coverings of the graph K3,3 that admit a lift of an arc-transitive subgroup of
Aut(K3,3), that is symmetric. Note that each P -covering of the graph K3,3 with a
lift of an arc-transitive subgroup of Aut(K3,3) is symmetric.

We now introduce some notations and terminology to be use the reminder the
paper. From elementary group theory we know that up to isomorphism there are
five groups of order p3 for each odd prime p, of which three are abelian, that is,

Zp3 , Zp2 × Zp and Zp × Zp × Zp,

and two are nonabelian defined by

N(p2, p)∗ = 〈x, y | xp2
= yp = 1, [x, y] = xp〉,

N(p, p, p) = 〈x, y, z | xp = yp = zp = 1, [x, y] = z, [z, x] = [z, y] = 1〉.
Let {0, 2, 4} and {1, 3, 5} be the two partite sets of K3,3 (see Fig. 1). Take

a spanning tree of K3,3, say T , with edge set {{0,1}, {0,3}, {0,5}, {2,1}, {4,1}}
denoted by semi dark lines in Fig. 1.

Let P be a group of order p3 for a prime p ≥ 7 and let X = K3,3 ×φ P
be a connected P -covering of K3,3 admitting a lift of an arc-transitive group of
automorphisms of K3,3, say L, where φ is a voltage assignment valued in the voltage
group P . Assign voltage 1 to the tree arcs of T and voltages a, b, c and d in P to
cotree arcs (1 2), (1 4), (2 5) and (4 5), respectively. By the connectivity of X,
we have P = 〈a, b, c, d〉. Note that Aut(K3,3) ∼= (S3 × S3) o Z2. Thus Aut(K3,3)
has a normal Sylow 3-subgroup, say H, that is, H = 〈α, β〉, where α = (0 2 4) and
β = (1 3 5). Clearly, each arc-transitive subgroup of Aut(K3,3) contains H as a
subgroup. Furthermore, an arc-transitive subgroup of Aut(K3,3) must contain an
automorphism which reverses the arc (0 1). It is easy to see that in this case at
least one of the three automorphisms γ = (0 1)(2 5)(3 4), τ = (0 1)(2 3)(4 5)
and δ = (0 1)(2 3 4 5) belong to this subgroup. From these, it can be easily
verified that Aut(K3,3) = 〈α, β, γ, δ〉 and each proper arc-transitive subgroup of
Aut(K3,3) is conjugate in Aut(K3,3) to one of the three subgroups L1 = 〈α, β, γ〉,
L2 = 〈α, β, γ, τ〉 and L3 = 〈α, β, δ〉. Furthermore, L1 is 1-regular, L2 and L3 are
2-regular, L1 ≤ L2 and L3 does not contain a 1-regular subgroup. Thus we may
assume that α, β and either γ or δ lift to automorphisms of X.

Denote by i1i2 · · · is a directed cycle which has vertices i1, i2, · · · , is in a
consecutive order. There are four fundamental cycles 03210, 03410, 01250 and
01450 in K3,3, which are generated by the four cotree arcs (3 2), (3 4), (2 5) and
(4 5), respectively. Each cycle is mapped to a cycle of the same length under the
actions of α, β, γ, τ and δ. We list all these cycles and their voltages in Table 1,
in which C denotes a fundamental cycle of Q3 and φ(C) denotes the voltage of C.

Consider the mapping ᾱ from the set {a, b, c, d} of voltages of the four funda-
mental cycles of K3,3 to the group P , which is defined by (φ(C))ᾱ = φ(Cα), where
C ranges over the four fundamental cycles. Similarly, we can define β̄, γ̄, τ̄ and δ̄.
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Since α, β and either γ or δ lift, by Proposition 2.1, either ᾱ, β̄ and γ̄ or ᾱ, β̄ and
δ̄ can be extended to automorphisms of P . We denote by α∗, β∗, γ∗ and δ∗ these
automorphisms, respectively. From Table 1, bα∗ = a−1, dα∗ = c−1 and cβ∗ = a. It
follows that a, b, c and d have the same order in P . For any x ∈ P , denote by o(x)
the order of x in P . Then o(a) = o(b) = o(c) = o(d). We summarise the previous
paragraph’s observations as follows.

Observation. (1) P = 〈a, b, c, d〉 and o(a) = o(b) = o(c) = o(d).
(2) ᾱ, β̄ and either γ̄ or δ̄ can be extended to automorphisms of P .

Lemma 4.3. Let P be an abelian group of order p3 for a prime p ≥ 7 and
X be a connected P -covering of the graph K3,3 admiting a lift of an arc-transitive
subgroup of Aut(K3,3). Then p − 1 is divisible by 3 and X is isomorphic to the
1-regular graphs AF6p3 , BF6p3 or CF6p3 .

Proof. Let X = K3,3 ×φ P be a P -covering of the graph K3,3 satisfying the
assumptions. Then all statements in the above observation are valid. Since P is
abelian, P = Zp3 , Z3

p or Zp2 × Zp.
Case I. P = Zp3 .
By observation (1), P = 〈a〉. Note that an automorphism of P is of the form

x 7−→ xt, x ∈ P , where t is coprime to p3. Hence we may assume that α∗ : x 7−→ xk

and β∗ : x 7−→ xl, for each x ∈ P , where k and l are coprime to p3. By Table 1,
aα∗ = a−1b and aβ∗ = c−1a−1 imply that b = ak+1 and c = a−(l+1). Considering
the image of b = ak+1 under β∗, one has d−1b−1 = al(k+1), which implies that
d = a−(k+1)(l+1). Thus we obtain that

b = ak+1, c = a−(l+1), d = a−(k+1)(l+1).

Furthermore, because bα∗ = a−1 and cβ∗ = a, we have k2+k+1 = 0 and l2+l+1 = 0
in Zp3 and since p ≥ 7, k and l are of order 3 in Z∗p3 . Then p− 1 is divisible by 3.
Since there are exactly two elements of order 3 in Z∗p3 , l = k or k2. Assume that
l = k. By using k2 +k +1 = 0, we have b = ak+1, c = a−k−1 and d = a−k. Suppose
γ̄ can be extended to an automorphism of P , say γ∗. By Table 1, bγ∗ = b−1, one
has −(k+1) = −k(k+1), implying k = −2 and hence p = 3 because k2 +k+1 = 0,
a contradiction. With the same argument one can prove that δ̄ cannot be extended
to an automorphism of P , contrary to Observation (2).

Thus l = k2. Similarly, in this case one can get b = ak+1, c = ak and d = a−1.
By Table 1, it is easy to check that ᾱ, β̄ and γ̄ can be extended to automorphisms of
P induced by a 7−→ ak, a 7−→ ak2

and a 7−→ a−1, respectively, but τ̄ and δ̄ cannot.
By Proposition 2.1, α, β and γ lift but τ and δ cannot. Since 〈α, β, γ〉 is 1-regular,
Proposition 2.1, Lemma 4.1 and Proposition 2.2 imply that X is 1-regular. Set
λ = k. By Example 3.1 and Lemma 3.5, X ∼= AF6p3 .

Case II. P = Z3
p.

By Observation (1), P = 〈a, b, c, d〉 and o(a) = o(b) = o(c) = o(d) = p.
Suppose 〈a〉 = 〈c〉. Then c = ak for some k ∈ Z∗p and hence cα∗ = (aα∗)k. By
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Table 1, dc−1 = a−kbk. It follows d = bk. Thus P = 〈a, b〉, which contradicts the
hypothesis P = Z3

p. Suppose c ∈ 〈a, b〉. Considering the image of a, b and c under
α∗, one has dc−1 ∈ 〈a−1b, a−1〉 and so P = 〈a, c〉, a contradiction. This implies
that P = 〈a〉 × 〈b〉 × 〈c〉.

One may assume that d = aibjck for some i, j, k ∈ Zp. By consider-
ing the image of d under α∗ and β∗, we have c−1 = (a−1b)ia−j(dc−1)k and
b = (c−1a−1)i(d−1b−1)jak. Since P = 〈a〉 × 〈b〉 × 〈c〉 ∼= Z3

p, by considering the
powers of b and c in the first equation and the power of b in the second equation
we have the following equations in Zp:

i + jk = 0, k2 − k + 1 = 0, j2 + j + 1 = 0.

By the last two equations, j and −k are of order 3 in Z∗p. It follows that k = −j

or −j2 and p− 1 is divisible by 3. Assume that k = −j. Since i + jk = 0, one has
i = j2. Then d = aj2

bjc−j . By Table 1, it is easy to show that γ̄ and δ̄ cannot be
extended to automorphisms of P , contradicting Observation (2).

Thus k = −j2. By i+jk = 0, i = 1 because j3 = 1. It follows that d = abjc−j2
.

Set λ = j. By Proposition 2.1, Example 3.2 and Lemma 3.5, X ∼= BF6p3 . From
Table 1, one can check that ᾱ, δ̄ and γ̄ can be extended to automorphisms of P
induced by

a 7−→ a−1b, b 7−→ a−1, c 7−→ abjcj ,

a 7−→ c−1a−1, b 7−→ a−1bj2
cj2

, c 7−→ a,

a 7−→ abjc−j2
, b 7−→ b−1, c 7−→ c−1,

respectively, but τ̄ and δ̄ cannot. Then, the some reason as in Case I implies that
X is 1-regular.

Case III: P = Zp2 × Zp

Let P = 〈x〉 × 〈y〉 with o(x) = p2 and o(y) = p. By Observation (1), o(a) =
o(b) = o(c) = o(t) = p2.

First assume that P = 〈a, b〉. Then 〈a〉 = 〈b〉 = 〈ap〉 = 〈bp〉, implying b = ar

for some r ∈ Z∗p. Thus o(a−rb) = p and so P = 〈a, a−rb〉. One may assume that
a = x and a−rb = y. Hence

a = x, b = xry, c = xiyj , d = xkyl, (2)

where i, k ∈ Zp2 and j, l ∈ Zp. Clearly c = ai−rjbj and d = ak−rlbl. By considering
the image of c = ai−rjbj under α∗ and β∗, we conclude that dc−1 = arj−ibi−rja−j

and a = crj−iarj−id−jb−j from Table 1, which, together with (2), implies the
following equations:

rj + ri− r2j − j − k = 0 (mod p2), (3)

i− rj − l + j = 0, (4)

rij − i2 − i− kj − 1 = 0 (mod p2), (5)

rj2 − ij − lj − j = 0. (6)
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In the above equations we have adopted the convention to suppress the modulus
when the equation is to be taken modulus p. We will continue in this way with all
the forthcoming equations that are to be taken mod p; unless specified otherwise.
Similarly, by considering the image of d = ak−rlbl under α∗ and β∗ one gets the
following:

rl − k + rk − r2l − l + i = 0 (mod p2), (7)

k − rl + j = 0, (8)

ril − ik − kl − r − k = 0 (mod p2), (9)

rjl − jk − l2 − l − 1 = 0. (10)

By (6), j = 0 or rj − i − l − 1 = 0. First assume that j = 0. From Eqs. (4) and
(5), i = l and i2 + i + 1 = 0 (mod p2). It follows that a = x, b = xry, c = xi

and d = xkyi. Suppose γ̄ can be extended to an automorphism of P , say γ∗.
By considering the image of c = ai under γ∗, we have c−1 = di, which implies
that x−i = xkiyi2 from Table 1. Consequently i2 = 0, implying i = 0 and by
i2 + i+1 = 0, one has 1 = 0, a contradiction. Similarly, one can show that δ̄ cannot
be extended to an automorphism of P , contrary to Observation (2).

Thus rj − i − l − 1 = 0. Eq. (4) implies that j = 2l + 1 and multiplying
Eq. (8) by j and adding to (10), we conclude that j2 = l2 + l + 1. Consequently
3l(l + 1) = 0, one has l = 0 or −1 because p ≥ 7.

Assume that l = −1. Then j = 2l + 1 = −1, and by (4) and (8), i = −r
and k = 1 − r. One may assume l = −1 + l1p (mod p2), j = −1 + j1p (mod p2),
i = −r + i1p (mod p2) and k = 1− r + k1p (mod p2). By (3), (5), (7) and (9), we
have the following equations:

rj1 + ri1 − r2j1 − j1 − k1 = 0,

−r2j1 + rj1 + ri1 − i1 + k1 − j1 = 0,

rl1 − k1 + rk1 − r2l1 − l1 + i1 = 0,

−r2l1 + rk1 + rl1 − i1 − l1 = 0.

By the first two equations, i1 = 2k1 and by last two equations, k1 = 2i1. Con-
sequently i1 = k1 = 0. It follows that a = x, b = xry, c = x−ry−1 and
d = x1−ry−1. By Table 1, yα∗ = (a−rb)α∗ = ar−1b−r = x−r2−1y−r. This implies
that r2 − r + 1 = 0, because o(y) = p. Suppose γ̄ can be extended to an automor-
phism of P , say γ∗. By Table 1, yγ∗ = (a−rb)γ∗ = d−rb−1 = x−r−1yr−1, which is
impossible because o(x−r−1yr−1) = p2. One may obtain a similar contradiction if
δ̄ can be extended to an automorphism of P , contradicting Observation (2).

Suppose that l = 0. Then j = 2l + 1 = 1. From Eqs. (4) and (8), one has
i = r − 1 and k = −1. One may assume that l = l1p (mod p2), j = 1 + j1p (mod
p2), i = r− 1 + i1p (mod p2) and k = −1 + k1p (mod p2). By (3), (5), (7) and (9),
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we have the following:

rj1 + ri1 − r2j1 − j1 − k1 = 0,

−r2j1 + rj1 + ri1 − i1 + k1 − j1 = 0,

rl1 − k1 + rk1 − r2l1 − l1 + i1 = 0,

−r2l1 + rk1 + rl1 − i1 − l1 = 0.

By the first two equations, i1 = 2k1 and by the last two equations, k1 = 2i1. Hence
i1 = k1 = 0, implying

a = x, b = xry, c = xr−1y, d = x−1.

By Table 1, yα∗ = (a−rb)α∗ = arb−ra−1 = x−r2+r−1y−r. Since b has order p, one
has r2 − r + 1 = 0, which implies that −r has order 3 in Z∗p and hence p − 1 is
divisible by 3. Thus, there is an integer m such that −(r + mp) is of order 3 in
Z∗p2 , implying (r + mp)2 − (r + mp) + 1 = 0 (mod p2). Set λ = −(r + mp). Since
x 7−→ x and y 7−→ xmpy extended to an automorphism of P , by Proposition 2.1,
one may assume that

a = x, b = x−λy, c = x−λ−1y, d = x−1.

By Example 3.3 and Lemma 3.5, X ∼= CF6p3 . By Table 1, it is easy to check that
ᾱ, β̄ and γ̄ can be extends to automorphisms of P induced by

x 7−→ x−λ−1y, y 7−→ yλ,

x 7−→ xλy−1, y 7−→ y−λ−1,

x 7−→ x−1, y 7−→ y−1,

respectively. By the same argument as above one can show that τ̄ and δ̄ cannot be
extended to automorphisms of P . Then, using same kind reasoning as in Case I,
X is 1-regular.

Now assume that P 6= 〈a, b〉. Then b = as where s ∈ Z∗p2 . Since bβ∗ = (aβ∗)s,
one has d−1b−1 = c−sa−s from Table 1, which implies that d = cs because b. Thus
P = 〈a, c〉 and one may assume that

a = x, b = xs, c = xry, d = xrsys,

where r ∈ Z∗p2 . Considering the image of b under α∗ and using Table 1, a−1 = a−sbs,

implying x−1 = xs2−s. It follows that s2 − s + 1 = 0 (mod p2). Suppose γ̄ can
be extended to an automorphism of P , say γ∗. By considering the image of b = as

under γ∗, one has b−1 = ds and hence x−s = xrs2
ys2

. It follows that s2 = 0,
implying s = 0 and by s2 − s + 1 = 0, one has 1 = 0, a contradiction. Similarly,
one can show that δ̄ cannot be extended to an automorphism of P , contradicting
Observation (2).

Lemma 4.4. Let P be a nonabelian group of order p3 for a prime p ≥ 7, and
X is a connected P -covering of the graph K3,3 admitting a lift of an arc-transitive
subgroup of Aut(K3,3). Then X is isomorphic to the 2-regular graph DF6p3 .
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Proof. Let X = K3,3 ×φ P be a P -covering of the graph K3,3 satisfying the
assumptions and let A :=Aut(X). Then all statements in the observation preceding
Lemma 4.3 are valid. Since P is nonabelian, P = N(p2, p) or N(p, p, p).

Case I. P = N(p2, p) = 〈x, y | xp2
= yp = 1, [x, y] = xp〉.

Set C := CA(P ). By Lemma 4.1, P is normal in A. Then by [19, Theorem
1.6.13], A/C is isomorphic to a subgroup of Aut(P ). Note that each arc-transitive
subgroup of Aut(K3,3) contains the Sylow 3-subgroup H of Aut(K3,3). By the
hypothesis H lifts to a subgroup of Aut(X), say B. Then B = P o H, because
P /B. Since H ∼= Z3 × Z3, the Sylow 3-subgroups of B as well as A are isomorphic
to Z3 × Z3. By [24, Lemma 2.3], Aut(P ) has a cyclic Sylow 3-subgroup. Thus
3 | |C|. Note that Z(P ) is a normal Sylow p-subgroup of C so by [19, Theorem
9.1.2], there is a subgroup L of C such that C = Z(P ) × L, implying that L is
characteristic in C and hence is normal in A. Since (|L|, |Z(P )|) = 1, L has more
than two orbits on V (X). By Proposition 2.2, L is semiregular on V (X) and the
quotient graph XL of X corresponding to the orbits of L is a cubic symmetric
graph. Since L is semiregular and p2 - |L|, one has |L| | 6. If L was even order,
then XL would be a cubic graph of odd order, a contradiction. Thus |L| = 3 and
so XL is a cubic symmetric graph of order 2p3. But by [10, Theorem 3.2], there is
no cubic symmetric graph of order 2p3 for p ≥ 7 whose automorphism group has a
Sylow p-subgroup isomorphic to N(p2, p).

Case II. N(p, p, p) = 〈x, y, z | xp = yp = zp = 1, [x, y] = z, [z, x] = [z, y] = 1〉.
It is easy to see that P ′ = Z(P ) = 〈z〉. Then for any s, w ∈ P and any

integers i, j, one has [si, wj ] = [s, w]ij and siwj = wjsi[si, wj ]. Furthermore, by
[19, Theorem 5.3.5], (sw)i = siwi[w, s](

i
2). First assume that P = 〈a, c〉. One may

show that Aut(P ) acts transitively on the set of ordered pairs of generators of P
and so by proposition 2.3, one may let a = x, c = y and b = xiyjzk for some
i, j, k ∈ Zp. Thus b = aicj [a, c]k. Considering the image of b = aicj [a, c]k under
β∗, one has d−1b−1 = (c−1a−1)iaj [c−1a−1, a]k = c−iaj−i[a, c]k+(i

2) = y−ixj−izk+(i
2)

and hence d−1 = y−ixj−izk+(i
2)b = yj−ixjzj2+2k+(i

2). Set t = j2 + 2k +
(

i
2

)
. Then

d−1 = yj−ixjzt = cj−iaj [a, c]t and by considering its image under α∗, we have that

y = c = (dc−1)j−i(a−1b)j [dc−1, a−1b]t

= (x−jyi−j−1)j−i(xi−1yj)jzt(j−i)+kj [x−jyi−j−1, xi−1yj ]t.

Since P/P ′ = 〈xP ′〉× 〈yP ′〉, one has yP ′ = xj(i−j)+j(i−1)y(j−i)(i−j−1)+j2
P ′, which

implies the following equations:

j(2i− j − 1) = 0, 2ij − j − i2 + i = 1.

By the first equation, either j = 0 or j = 2i − 1. Suppose that j = 0. By the
second equation, i2 − i + 1 = 0. Considering the image of d−1 = c−i[a, c]t under
β∗, we have x−iz−k = b−1 = a−i[c−1a−1, a]t = x−izt, implying z−k = zt and so
t+k = 0. It follows that 6k+(i2− i) = 0, because t = 2k+

(
i
2

)
. Since i2− i+1 = 0,

we have k = −6−1, where 6−1 denotes the inverse of 6 in ∈ Z∗p. Also t = −6−1.
Thus, a = x, b = xiz6−1

, c = y and d = yiz6−1
. Suppose γ̄ can be extended to
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an automorphism of P , say γ∗. By Table 1, zγ∗ = [x, y]γ
∗

= [a, c]γ
∗

= [d, c−1] =
[yi, y−1] = 1, which impossible. One may obtain a similar contradiction if δ̄ can be
extended to an automorphism of P , contradicting Observation (2).

Thus j = 2i − 1. By 2ij − i2 + i − j = 1, one has 3i2 − 3i = 0, and since
p ≥ 7, i = 0 or 1. Suppose that i = 1. Then j = 2i − 1 = 1. Considering the
image of d−1 = a[a, c]t under β∗, we have y−1x−1z−k = b−1 = c−1a−1[c−1a−1, a]t =
y−1x−1zt. It follows that k+t = 0, which implies that 3k+1 = 0. Hence k = −3−1

and t = 3−1. Thus a = x, b = xyz−3−1
, c = y, d = x−1z−3−1

. By Example 3.4,
X ∼= DF6p3 . Based on Table 1, ᾱ, β̄, γ̄ and τ̄ can be extended to automorphisms
of P induced by

x 7−→ yz−3−1
, y 7−→ x−1y−1z−3−1

, z 7−→ z,

x 7−→ y−1x−1, y 7−→ x, z 7−→ z,

x 7−→ x−1z−3−1
, y 7−→ y−1, z 7−→ z,

x 7−→ x−1, y 7−→ xyz−3−1
, z 7−→ z−1,

respectively. Suppose δ̄ can be extended to an automorphism of P , say δ∗.
Since dδ∗ = (aδ∗)−1[aδ∗ , cδ∗ ]−3−1

, one has c−1 = b[b−1, a]−3−1
, implying y−1 =

xyz(−2)3−1
, which is impossible. By Proposition 2.1, α, β, γ and τ lift but δ can-

not. Since 〈α, β, γ, τ〉 is 2-regular, by Proposition 2.1, Lemma 4.1 and Proposition
2.2, X is 2-regular.

Assume that i = 0. Then j = 2i− 1 = −1. In this case by a similar argument
as in the preceding paragraph one can show that k = −3−1 and t = 3−1. It follows
that

a = x, b = y−1z−3−1
, c = y, d = xyz−3−1

.

By Example 3.4 and Lemma 3.5 X ∼= DF6p3 . From Table 1, one can check that
ᾱ, β̄, γ̄ and τ̄ can be extended to automorphisms of P induced by

x 7−→ x−1y−1z−3−1
, y 7−→ xz−3−1

, z 7−→ z,

x 7−→ y−1x−1, y 7−→ x, z 7−→ z,

x 7−→ xyz−3−1
, y 7−→ y−1, z 7−→ z−1,

x 7−→ x−1, y 7−→ y−1z−3−1
, z 7−→ z,

respectively, but δ̄ cannot. Then, with the same reason as in the preceding para-
graph X is 2-regular.

Now assume that P 6= 〈a, c〉. Thus |〈a, c〉| = p or p2. Assume that |〈a, c〉| = p.
Then c = ar where r ∈ Z∗p. By considering the image of c under β∗, one has
a = (c−1a−1)r, which implies that a = a−r2−r. Consequently r2 + r + 1 = 0.
Since 〈a〉 = 〈c〉, we have 〈aα∗〉 = 〈cα∗〉, implying 〈a−1b〉 = 〈dc−1〉. Hence P =
〈a, b, c, d〉 = 〈a, c, a−1b, dc−1〉 = 〈a, b〉. One may assume that a = x, b = y and
c = xr. Since cα∗ = (aα∗)r, by Table 1, dc−1 = (a−1b)r. This implies that
d = (a−1b)rc = (x−1y)rxr = yrz−r2+(i

2), implying d = yrz2−1
because r2+r+1 = 0.
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Then dα∗ = (bα∗)r(zα∗)2
−1

and hence c−1 = a−r(zα∗). Consequently zα∗ = 1, a
contradiction. Hence |〈a, c〉| = p2 and 〈a, c〉 = 〈a〉 × 〈c〉. Suppose b ∈ 〈a, c〉.
By considering the image of a, b and c under β∗, we have d ∈ 〈a, c〉 and hence
P = 〈a, c〉, a contradiction. Thus b /∈ 〈a, c〉, forcing P = 〈a, b, c〉. Assume that
P 6= 〈a, b〉. Then |〈a, b〉| = p2 and so 〈a, b〉 ∩ 〈a, c〉 = Z(P ). It follows that
a ∈ Z(P ). Therefore aα∗ , aβ∗ ∈ Z(P ) implying b, c ∈ Z(P ) and consequently
P is abelian, a contradiction. Thus P = 〈a, b〉 and one may assume that a =
x and b = y. Since |〈a, c〉| = p2, one has z ∈ 〈a, c〉 and hence c = xizj for
some i, j ∈ Zp. Then c = ai[a, b]j and since cβ∗ = (aβ∗)i[aβ∗ , bβ∗ ]j , we have
that ai2+i+1 ∈ P ′ which implies that i2 + i + 1 = 0. Similarly, by considering
the image of c = ai[a, b]j under α∗, one has dc−1 = (a−1b)i[a−1b, a−1]j , implying
d = bi[a, b]2j+2−1

because i2 + i + 1 = 0. Then dα∗ = (bα∗)i[aα∗ , bα∗ ]2j+2−1
. It

follows that c−1 = ai[a−1b, a−1]2j+2−1
. Therefore x−iz−j = x−iz2j+2−1

, that is
z−j = z2j+2−1

and consequently j = −6−1. Hence a = x, b = y, c = xiz−6−1
and

d = yiz6−1
where i2 + i + 1 = 0. Suppose γ can be extended to an automorphism

of P , say γ∗. By Table 1, zγ∗ = [aγ∗ , bγ∗ ] = [d, b−1] = [yi, y−1] = 1, which is
impossible. One may obtain a similar contradiction if δ can be extended to an
automorphism of P , contrary to Observation (2).

Now by Lemmas 4.1, 4.2, 4.3 and 4.4 we have the following classification the-
orem which is the main result of this paper.

Theorem 4.5. Let X be a connected cubic symmetric graph of order 6p3,
where p is a prime. Then X is 1-, 2- or 3-regular. Furthermore,
(1) X is 1-regular if and only if X is isomorphic to one of the graphs F162B, AF6p3 ,

BF6p3 and CF6p3 , where p− 1 is divisible by 3.
(2) X is 2-regular if and only if X is isomorphic to one of the graphs F48, F750,

F162A and DF6p3 where p ≥ 7.
(3) X is 3-regular if and only if X is isomorphic to the graph F162C .
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