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Abstract. A set of verticesW resolves a graph G if every vertex is uniquely determined
by its coordinate of distance to the vertices in W . The minimum cardinality of a resolving
set of G is called the metric dimension of G. In this paper, we consider a graph which is
obtained by the comb product between two connected graphs. Let o be a vertex of H. The
comb product between G and H, denoted by GBoH, is a graph obtained by taking one copy
of G and |V (G)| copies of H and identifying the i-th copy of H at the vertex o to the i-th
vertex of G. We give an exact value of the metric dimension of G Bo H where H is not a
path or H is a path where the vertex o is not a leaf. We also give the sharp general bounds
of β(GBo Pn) for n ≥ 2 where the vertex o is a leaf of Pn.

1. Introduction

Throughout this paper all graphs G are finite, connected, and simple. We denote
by V the vertex set of G and by E the edge set of G. The distance between
two vertices u, v ∈ V (G), denoted by dG (u, v), is the length of the shortest path
from u to v in G. Let W = {w1, w2, . . . , wk} be an ordered subset of V (G).
The representation of a vertex v of G with respect to W is defined as the k-tuple
r (v |W ) = (dG (v, w1) , dG(v, w2), . . . , dG (v, wk)). The set W is called a resolving set
of G if every two distinct vertices x, y ∈ V (G) satisfy r (x |W ) 6= r (y |W ). A basis
of G is a resolving set of G with the minimum cardinality, and the metric dimension
of G refers to its cardinality and is denoted by β (G).

The metric dimension problems were first studied by Harary and Melter [8], and
independently by Slater [20]. Slater considered the minimum resolving set of a graph
as the location of the placement of a minimum number of sonar/loran detecting
devices in a network. So, the position of every vertex in the network can be uniquely
described in terms of its distances to the devices in the set. Meanwhile Chartrand et
al. [5] applied the metric dimension on the robot navigation problem. They considered
the robot navigation in a graph space. A resolving set for a graph corresponds to the
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presence of distinctively labelled “landmark” nodes in the graph. It is assumed that
a robot navigating a graph can sense the distance to each of the landmarks, and
hence uniquely determine its location in the graph. The metric dimension problem is
also applied in the chemical structures, coin weighing problems, and the Mastermind
strategy (see [5, 11,18]).

Determining the metric dimension of a general graph is an NP-complete problem
[7]. There is no efficient algorithm to find the metric dimension of general graph.
However, Chartrand et al. [5] have obtained some results as follows.

Theorem 1.1 ( [5]). Let G be a connected graph of order n ≥ 2. Then

1. β (G) = 1 if and only if G = Pn.
2. β (G) = n− 1 if and only if G = Kn.
3. β (G) = n − 2 if and only if G is either Kr,s for r, s ≥ 1, or Kr + Ks for

r ≥ 1, s ≥ 2, or Kr + (K1 ∪Ks) for r, s ≥ 1.

Some authors also have proven the metric dimension of certain classes of graphs.
Interested readers are referred to a number of relevant literature that are mentioned
in the bibliography section, including [2, 4–6,9, 12–14,16,20].

There are also some results of the metric dimension problem for graphs result-
ing from operations on graphs. Some results on certain joint product graphs have
been proved in [3, 4, 19]. Caceres et al. [4] have determined the metric dimension of
graphs which are obtained by Cartesian product of two or more graphs. The metric
dimension of some graphs which are constructed by corona product of two graphs
have been studied in [10,21]. Saputro et al. [17] have showed the metric dimension of
lexicographic product of connected graph G and an arbitrary graph H. Meanwhile
Rodŕıguez-Velázquez et al. [15] obtained closed formulae and tight bounds for the
metric dimension of strong product graphs.

In this paper, we study the metric dimension of comb product of connected graphs
G and H. In chemistry [1], some classes of chemical graphs can be considered as the
comb product graphs. Let G and H be two connected graphs. Let o be a vertex of
H. The comb product between G and H, denoted by GBoH, is a graph obtained by
taking one copy of G and |V (G)| copies of H and identify the i-th copy of H at the
vertex o with the i-th vertex of G. By the definition of comb product, we can say that
V (G Bo H) = {(a, v) | a ∈ V (G), v ∈ V (H)} and (a, v)(b, w) ∈ E(G Bo H) whenever
a = b and vw ∈ E(H), or ab ∈ E(G) and v = w = o. We consider two different
vertices a, b ∈ V (G) and a vertex o ∈ V (H). We define H(a) = {(a, v) | v ∈ V (H)},
G(o) = {(v, o) | v ∈ V (G)}, and PG(a, b) is the shortest path from a to b in G.

We obtain four main results. The first result is related to G Bo H when G is a
connected graph and either H is not a path or H is a path where the vertex o is not
a leaf.

Theorem 1.2. Let G and H be connected graphs of order at least 2. Let H be not a
path or H be a path where the vertex o is not a leaf. If |V (G)| = m, then

β(GBoH) =

{
m · (β(H)− 1), if there exists a basis of H containing the vertex o,
m · β(H), otherwise.
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Our next results are related to G Bo Pn for a connected graph G and Pn where
the vertex o is a leaf. Note that, there exists a basis of Pn containing the vertex o.
However, the metric dimension of GBoPn with degree of the vertex o is 1, is different
than β(G Bo H) in Theorem 1.2. In the next theorem, we give a lower bound of
β(GBo Pn) where degree of the vertex o is 1. We also prove that the bound is sharp.

Theorem 1.3. Let G be a connected graph of order m ≥ 2. If o is a vertex of Pn

with degree 1, then β(GBo Pn) ≥ β(G). The lower bound is sharp.

For some cases, the lower bound in Theorem 1.3 cannot be attained. In some
theorems below, we give the existence of a connected graph G such that β(GBo Pn)
is not equal to the lower bound in Theorem 1.3, where the vertex o is a leaf of Pn.
Let v be a vertex of G. A branch of G at v is defined as a maximal subgraph of G
which is isomorphic to a tree and containing v as an end point. So, if degree of v is
k, then v has at most k different branches. A branch of v which is isomorphic to a
path is called a path branch of v. If v contains at least two path branches, then v is
called a stem of G. We prove that if G is a connected graph containing p ≥ 1 stems,
then β(GBo Pn) ≥ β(G) + p. We also show that this lower bound is sharp.

Theorem 1.4. Let G be a connected graph containing p ≥ 1 stems. If the vertex o is
a leaf of Pn, then β(GBo Pn) ≥ β(G) + p. The lower bound is sharp.

We also give the existence of a connected graph G which does not contain any
stem vertex such that β(G Bo Pn) also is not equal to the lower bound in Theorem
1.3, where the vertex o is a leaf of Pn.

Theorem 1.5. Let o be a leaf of Pn. There exists a connected graph G which does
not contain any stem vertex such that β(GBo Pn) > β(G).

2. Proof of Theorem 1.2

First, we need to prove the following two propositions.

Proposition 2.1. Let G and H be connected graphs of order at least 2. Let H satisfy
one of two conditions below.

1. H is not a path; or
2. H is a path and the degree of the vertex o is 2.

Then there exist two distinct vertices x, y ∈ V (H)\{o} such that dGBoH((a, x), (a, o)) =
dGBoH((a, y), (a, o)) for every vertex a ∈ V (G).

Proof. If degree of the vertex o is at least 2, then we have nothing to prove. Suppose
that degree of the vertex o is 1 which implies H is not a path. So, there exists a vertex
z in H of degree at least 3. Let us consider two different vertices p, q ∈ V (H) such that
pz, qz ∈ E(H) and p, q ∈ V (H)\V (PH(o, z)). Since dH(p, o) = dH(p, z) + dH(z, o) =
1 + dH(z, o) = dH(q, z) + dH(z, o) = dH(q, o), by the definition of comb product, we
obtain that dGBoH((a, x), (a, o)) = dGBoH((a, y), (a, o)). �
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Proposition 2.2. Let G and H be connected graphs of order at least 2. Let H
be not a path or H be a path where the vertex o is not a leaf. For every distinct
vertices a, b ∈ V (G), if there exist distinct vertices x, y, z ∈ V (H)\{o} such that
dGBoH((a, x), (a, y)) = dGBoH((b, z), (a, y)), then

dGBoH((a, x), (a, o)) > dGBoH((b, z), (b, o)).

Proof. Note that we have

dGBoH((a, x), (a, y)) ≤ dGBoH((a, x), (a, o)) + dGBoH((a, o), (a, y)) and

dGBoH((b, z), (a, y)) = dGBoH((b, z), (b, o)) + dGBoH((b, o), (a, o))

+ dGBoH((a, o), (a, y)).

Therefore, we obtain that

dGBoH((b, z), (b, o)) + dGBoH((b, o), (a, o)) ≤ dGBoH((a, x), (a, o)).

Since dGBoH((b, o), (a, o)) ≥ 1, we have dGBoH((b, z), (b, o)) < dGBoH((a, x), (a, o)).
�

According to Proposition 2.1, in order to determine a resolving set of GBoH, we
must find a subset S(a) ⊆ H(a) for every a ∈ V (G).

Lemma 2.3. Let G and H be connected graphs of order at least 2. Let H be not a
path or H be a path where the vertex o is not a leaf. Let W be a basis of GBoH. For
any vertex a ∈ V (G), if S(a) = W ∩H(a), then S(a) 6= ∅. Moreover, if B is a basis
of H, then |S(a)| ≤ |B|.

Proof. Suppose that there exists a vertex a ∈ V (G) such that S(a) = ∅. Let u ∈ W
and u ∈ V (G Bo H) \ H(a). By Proposition 2.1, there exist two different vertices
(a, x) and (a, y) such that dGBoH((a, x), (a, o)) = dGBoH((a, y), (a, o)). It follows
that dGBoH(u, (a, x)) = dGBoH(u, (a, y)), which implies r((a, x) |W ) = r((a, y) |W ),
a contradiction.

Now, let us consider S(a) = {(a, v) | v ∈ B}. Since B resolves every two distinct
vertices of H, we obtain that S(a) also resolves every two different vertices of H(a).

�

Although by Lemma 2.3, a basis of G Bo H contains vertices of H(a) for every
a ∈ V (G), we show that there exists a basis W of G Bo H such that (a, o) /∈ W for
every a ∈ V (G). On the other hand, W ∩G(o) = ∅.

Lemma 2.4. Let G and H be connected graphs of order at least 2. If H is not a path
or H is a path where the vertex o is not a leaf, then there exists a basis W of GBoH
such that W ∩G(o) = ∅.

Proof. Suppose that there exists a basis W of G Bo H containing (a, o) for some
a ∈ V (G). We define W ′ = W\{(a, o)}. Let us consider two distinct vertices x, y ∈
V (GBo H)\W ′. We distinguish two cases.

1. x, y ∈ H(a)
If dGBoH(x, (a, o)) 6= dGBoH(y, (a, o)), then according to Lemma 2.3, x and y
are resolved by a vertex in W ′\H(a). Otherwise, also according to Lemma 2.3,
there exists a vertex z ∈W ′ ∩H(a) and z 6= (a, o) that resolves x and y.
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2. x ∈ H(a) and y ∈ H(b)
If there exists v ∈W ′ ∩H(a) such that dGBoH(v, x) 6= dGBoH(v, y), then x and
y are resolved by v. Otherwise, we have dGBoH(v, x) = dGBoH(v, y) for every
vertex v ∈ W ′ ∩ H(a). By Proposition 2.2, we obtain that dGBoH(x, (a, o)) >
dGBoH(y, (b, o)). Now, we apply Proposition 2.2 to vertices in H(b). So, there
is no vertex z ∈ V (H)\{o} such that dGBoH(y, (b, z)) = dGBoH(x, (b, z)). It
follows that there exists a vertex in W ′ ∩H(b) that resolves x and y.

From the two previous cases, we obtain that W ′ is a resolving set of G Bo H, a
contradiction. �

By Lemma 2.3, in order to determine a resolving set of G Bo H, we must find a
subset S(a) ⊆ H(a) for every a ∈ V (G). However, by Lemma 2.4, there exists a basis
W of GBo H such that W does not contain any vertex of G(o). In the next lemma,
we show that S(a) must contain at least β(H)− 1 vertices of H(a)\{(a, o)}.

Lemma 2.5. Let G and H be connected graphs of order at least 2. Let H be not a
path or H be a path where the vertex o is not a leaf. Let W be a basis of GBoH. For
any vertex a ∈ V (G), if S(a) = W ∩H(a), then |S(a)| ≥ β(H)− 1.

Proof. Suppose that there exists a ∈ V (G) such that |S(a)| ≤ β(H) − 2. We de-
fine X = S(a) ∪ {(a, o)}. Since |X| < β(H) − 1, there exist two distinct vertices
u, v ∈ H(a) such that r(u |X) = r(v |X) which implies r(u |S(a)) = r(v |S(a)) and
dGBoH(u, (a, o)) = dGBoH(v, (a, o)).

Let z ∈W \H(a). According to Lemma 2.3, we obtain that

dGBoH(u, z) = dGBoH(u, (a, o)) + dGBoH((a, o), z)

= dGBoH(v, (a, o)) + dGBoH((a, o), z) = dGBoH(v, z).

Therefore, we have r(u |W ) = r(v |W ), a contradiction. �

Combining Lemmas 2.3 and 2.5 for every vertex a ∈ V (G), we obtain the general
bounds of metric dimension of G Bo H for any connected graph G and a connected
graph H which is not a path or if it is a path, then the vertex o is not a leaf.

Lemma 2.6. Let G and H be connected graphs of order at least 2. Let H be not a
path or H be a path where the vertex o is not a leaf. If |V (G)| = m, then

m · (β(H)− 1) ≤ β(GBo H) ≤ m · β(H)

Now, we will show that for any connected graph G and a connected graph H which
is not a path or H is a path with degree of the vertex o is 2, the metric dimension of
GBoH is equal to either lower bound or upper bound of Lemma 2.6. In other words,
we are ready to prove Theorem 1.2.

2.1 Proof of Theorem 1.2

We distinguish two cases.
Case 1.2.1. There exists a basis of H containing the vertex o

By Lemma 2.6, we only need to show that β(G Bo H) ≤ m · (β(H) − 1). Let B
be a basis of H containing the vertex o of H. For every vertex a ∈ V (G), we define
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W (a) = {(a, v) | v ∈ B\{o}} and W =
⋃

a∈V (G)W (a). Note that |W | = m·(β(H)−1).
We will show that W is a resolving set of GBo H.

Let us consider two different vertices (a, x) and (b, y) for a, b ∈ V (G) and
x, y ∈ V (H).

1. Case a = b
If x and y are resolved by a vertex in B\{o}, then (a, x) and (b, y) are resolved
by a vertex in W (a), which implies r((a, x) |W ) 6= r((b, y) |W ). Otherwise, x
and y are resolved by the vertex o. It follows that (a, x) and (b, y) are resolved
by (a, o). It means that dGBoH((a, x), (a, o)) 6= dGBoH((b, y), (a, o)). Note that
for every p ∈ V (GBoH)\H(a) and q ∈ H(a), dGBoH(p, q) = dGBoH(p, (a, o)) +
dGBoH((a, o), q). According to Lemma 2.3, since there exists a vertex z in
V (G Bo H)\H(a) which is contained in W , we have that (a, o) and (b, y) are
resolved by z.

2. Case a 6= b
If there exists z in W (a) such that dGBoH((a, x), z) 6= dGBoH((b, y), z), then z re-
solves (a, x) and (b, y). Otherwise, for every vertex z ∈W (a), dGBoH((a, x), z) =
dGBoH((b, y), z). By Proposition 2.2, we obtain that dGBoH((a, x), (a, o)) >
dGBoH((b, y), (b, o)). If we consider Proposition 2.2 to W (b), then every ver-
tex w ∈ W (b) satisfies dGBoH((a, x), w) 6= dGBoH((b, y), w) which implies,
r((a, x) |W ) 6= r((b, y) |W ).

From the two previous cases, it follows that W is a resolving set of GBo H.

Case 1.2.2. No basis of H contains the vertex o

By Lemma 2.6, we only need to show that β(G Bo H) ≥ m · β(H). Suppose
that β(G Bo H) ≤ m · β(H) − 1. Let W be a basis of G Bo H. So, there exists a
vertex a ∈ V (G) such that H(a) contributes β(H) − 1 vertices in W . Let W (a) =
W ∩ H(a). Let us consider a subset S of V (H) whose vertices are corresponded to
vertices of W (a). Let A = S ∪ {o}. Since |A| ≤ β(H) and every basis of H does
not contain the vertex o, there exist two different vertices x, y ∈ V (H) such that
r(x |A) = r(y |A). Thus, dH(x, o) = dH(y, o) and r(x |S) = r(y |S), which implies
dGBoH((a, x), (a, o)) = dGBoH((a, y), (a, o)) and r((a, x) |W (a)) = r((a, y) |W (a)).
Therefore, we obtain that r((a, x) |W ) = r((a, y) |W ), a contradiction.

3. Proof of Theorem 1.3

Let V (G) = {g1, g2, . . . , gm} and V (Pn) = {p1, p2, . . . , pn} with E(Pn) = {pipi+1 | 1 ≤
i ≤ n− 1}.

Suppose that β(G Bo Pn) ≤ β(G) − 1. Let W be a basis of G Bo Pn. Let W ′ =
{(a, o) | (a, v) ∈ W, a ∈ V (G)} and B = {a ∈ V (G) | (a, o) ∈ W ′}. Note that B ⊆
V (G). Since |W ′| ≤ |W | ≤ β(G)− 1 and |B| = |W ′|, we obtain that |B| ≤ β(G)− 1.
Thus, there exist two distinct vertices x, y ∈ V (G) such that r(x |B) = r(y |B). It
follows that r((x, o) |W ′) = r((y, o) |W ′) which implies r((x, o) |W ) = r((y, o) |W ),
a contradiction.
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Now, we will show that the bound is sharp. Let G be a complete graph with
m ≥ 3 vertices. Note that β(G) = m − 1 [5]. Let o = p1. We will show that
β(G Bo Pn) = β(G). We only need to show that β(G Bo Pn) ≤ β(G). We define
S = {(gi, pn) | 1 ≤ i ≤ m − 1}. Since |S| = m − 1 = β(G), we will show that S is a
resolving set of GBo Pn.

Let (gi, pr) and (gj , pt) be two different vertices in V (G Bo Pn) \ S where i, j ∈
{1, 2, . . . ,m} and r, t ∈ {1, 2, . . . , n}. We distinguish two cases below.

1. Case i = j
Let r < t. If (gi, pn) ∈ S, then dGBoPn

((gi, pr), (gi, pn)) = dGBoPn
((gi, pt), (gi, pn))+

t−r. Otherwise, for (gk, pn) ∈ S with k 6= i, we have dGBoPn((gi, pt), (gk, pn)) =
dGBoPn((gi, pr), (gk, pn)) + t− r.

2. Case i 6= j
So, (gi, pn) ∈ S or (gj , pn) ∈ S. Without loss of generality, let (gi, pn) ∈ S. Then
dGBoPn

((gj , pt), (gi, pn)) = dGBoPn
((gi, pr), (gi, pn)) + dGBoPn

((gi, pr), (gj , pt)).

From the two previous cases, it follows that S is a resolving set of GBo Pn.

4. Proof of Theorem 1.4

Let v be a vertex of G. A branch of G at v is defined as a maximal subset of G which
is isomorphic to a tree and containing v as an end point. So, if degree of v is k, then
v has at most k different branches. A branch of v which is isomorphic to a path is
called a path branch of v. If v has at least 2 path branches, then v is called a stem of
G. Let A(v) be the vertex set of all vertices in path branches of v.

Lemma 4.1. Let G be a connected graph and v be a stem of G having k ≥ 2 path
branches. If W is a resolving set of G, then |A(v) ∩W | ≥ k − 1.

Proof. Suppose that |A(v) ∩W | ≤ k − 2. So, there exist two different path branches
A and B of G at v such that (V (A) \ {v}) ∩ W = ∅ and (V (B) \ {v}) ∩ W = ∅.
Let a ∈ V (A) and b ∈ V (B) such that av, bv ∈ E(G). Note that for every vertex
x ∈ {v}∪V (G)\(V (A)∪V (B)), dG(x, a) = dG(x, v)+dG(v, a) = dG(x, v)+dG(v, b) =
dG(x, b). It follows that r(a |W ) = r(b |W ), a contradiction. �

Lemma 4.2. Let G be a connected graph and v be a stem of G having k ≥ 2 path
branches. There exists a resolving set W of G such that |A(v) ∩W | = k − 1.

Proof. Let v be a stem of G having path branches of size m1,m2, . . . ,mk. Let Xj =
{x(i,mj) | 1 ≤ i ≤ mj} be a vertex set of j-th path branch of v with j ∈ {1, 2, . . . , k}.

Let G′ = G \ A(v) and S be a resolving set of G′. Note that for every s ∈ V (G′),
we have dG(s, x(r,i)) = dG(s, x(t,i)) for r, t ∈ {1, 2, . . . , k} and r 6= t. So, no vertex in
S can resolve x(r,i) and x(t,i). Choose vertex set B = {x(i,mi) | 1 ≤ i ≤ k − 1}. We
will show that every two distinct vertices a and b in A(v) are resolved by B.

1. a, b ∈ Xi for i ∈ {1, 2, . . . , k}
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Let a = x(i,r) and b = x(i,t) where 1 ≤ r < t ≤ mi. If i 6= k, then dG(a, x(i,mi)) >
dG(b, x(i,mi)), otherwise dG(a, x(1,m1)) < dG(b, x(1,m1)). Therefore r(a |B) 6=
r(b |B).

2. a ∈ Xi and b ∈ Xj for i, j ∈ {1, 2, . . . , k} and i 6= j
Without loss of generality, let i ∈ {1, 2, . . . , k − 1}. Then dG(a, x(i,mi)) <
dG(b, x(i,mi)). Therefore r(a |B) 6= r(b |B).

From the two previous cases, we obtain that B is a resolving set of A(v).
Now, we define W = S ∪ B. Since S and B are resolving sets of G′ and A(v),

respectively, we have that W is a resolving set of G. �

Lemma 4.3. Let G be a connected graph and v be a stem of G having k ≥ 2 path
branches. Let W be a resolving set of G such that |A(v) ∩W | = k − 1. Then every
two distinct vertices in A(v) ∩W are from different path branches of v.

Proof. Suppose that there exist two distinct vertices in A(v) ∩ W which are from
a path branch of v. So, there exist two path branches A and B of v such that for
C = (V (A) ∪ V (B)) \ {v}, we have W ∩ C = ∅. Let a and b be two vertices in A
and B, respectively, which are adjacent to v. Note that for every x ∈ V (G) \ C,
dG(a, x) = dG(a, v) + dG(v, x) = dG(b, v) + dG(v, x) = dG(b, x). It follows that
r(a |W ) = r(b |W ), a contradiction. �

Now, we are ready to prove Theorem 1.4.

4.1 Proof of Theorem 1.4

Let V (Pn) = {p1, p2, . . . , pn} with E(Pn) = {pipi+1 | 1 ≤ i ≤ n − 1} and o = p1.
Let G be a connected graph with metric dimension β(G). Let v1, v2, . . . , vp be p ≥ 1
stems of G. Suppose that β(GBo Pn) ≤ β(G) + p− 1. Let B be a basis of GBo Pn.

For i ∈ {1, 2, . . . , p}, let vi has mi path branches. Let A(i,1), A(i,2), . . . , A(i,mi)

be mi path branches of vi. By Lemmas 4.2 and 4.3, mi − 1 vertices from mi − 1
different path branches of vi are contributed in a basis W of G. We can say that
β(G) = r+

∑p
i=1(mi−1) where r is a non-negative integer. Without loss of generality,

let W ∩ V (A(i,mi) \ {vi}) = ∅.
Now, we define a vertex set Y = {y(i,j) ∈ V (A(i,j)) | y(i,j) is adjacent to a vertex

of degree 1 in A(i,j), 1 ≤ i ≤ p, 1 ≤ j ≤ mi}. Note that, in G Bo Pn, the vertex
(y(i,j), p1) is a stem. Now, we assume that for 1 ≤ i ≤ p and 1 ≤ j ≤ mi, (y(i,j), p1)
satisfies Lemmas 4.2 and 4.3. Let C ⊂ V (G Bo Pn) be the vertex set of all vertices
in path branches of (y(i,j), p1) with 1 ≤ i ≤ p and 1 ≤ j ≤ mi. So, we obtain that
|B ∩ C| =

∑p
i=1mi.

For a ∈ V (G), let qa be a projection of all vertices of H(a). Let Q be a graph
with V (Q) = {qa | a ∈ V (G)} and qaqb ∈ E(Q) whenever ab ∈ E(G). Let B∗ = {qv ∈
V (Q) | (v, w) ∈ B} and C∗ = {qv ∈ V (Q) | (v, w) ∈ C}. So, |B∗ ∩ C∗| =

∑p
i=1mi.

Note that for every i ∈ {1, 2, . . . , p}, |A(qvi) ∩ B∗| = mi. Let B∗∗ be the set of all
vertices of B∗ except for vertex in the mi-th path branch of qvi

with 1 ≤ i ≤ p. Since
β(GBo Pn) ≤ β(G) + p− 1 = r + p− 1 +

∑p
i=1(mi − 1) = r − 1 +

∑p
i=1mi, we have

that |B∗∗| ≤ r − 1 +
∑p

i=1(mi − 1) = β(G) − 1. So, B∗∗ is not a resolving set of Q



256 The metric dimension of comb product graph

which implies that also B∗ cannot resolve V (Q). It follows that B is not a basis of
GBo Pn, a contradiction.

5. Proof of Theorem 1.5

For n ≥ 3, we define Hn as a graph with vertex set V (Hn) = V1 ∪ V2 where V1 =
{ui | 1 ≤ i ≤ n}, V2 = {vi | 1 ≤ i ≤ n} and edge set E(Hn) = {uiuj | 1 ≤ i < j ≤
n} ∪ {uivi | 1 ≤ i ≤ n}. Note that, an induced subgraph of Hn by V1 is isomorphic
to a complete graph Kn. Also, Hn does not contain a stem. First, we will determine
the metric dimension of Hn which can be seen in the next lemma.

Lemma 5.1. For n ≥ 3, the metric dimension of Hn is n− 1.

Proof. For the upper bound, let us consider W ⊂ V (Hn) where W = {vi | 1 ≤ i ≤
n− 1}. Note that, |W | = n− 1. Now, we will show that W is a resolving set of Hn.
Let x and y be two distinct vertices of Hn. We distinguish three cases.

1. x, y ∈ V1
Let x = ui and y = uj with i 6= j. So, we have vi ∈ W or vj ∈ W . Now, we
assume that vi ∈ W . Since dHn(y, vi) = dHn(x, vi) + 1, we obtain r(x |W ) 6=
r(y |W ).

2. x, y ∈ V2
Then we obtain x ∈W or y ∈W , which trivially implies r(x |W ) 6= r(y |W ).

3. x ∈ V1 and y ∈ V2
If y ∈W , then we have r(x |W ) 6= r(y |W ). Otherwise, we have two possibilities
for x. If x = ui with i ∈ {1, 2, . . . , n − 1}, then dHn

(y, vi) = dHn
(x, vi) + 2. If

x = un, then for every w ∈W , we have dHn
(y, w) = dHn

(x,w) + 1. From both
possibilities, we obtain r(x |W ) 6= r(y |W ).

From the three previous cases, we can say that W is a resolving set of Hn.
For the lower bound, suppose that β(Hn) ≤ n − 2. Let B be a basis of Hn. So,

there exist i and j where i, j ∈ {1, 2, . . . , n} and i 6= j such that ui, vi, uj , vj /∈ B. For
z ∈ V (Hn) \ {ui, vi, uj , vj}, if z ∈ V1, then dHn

(ui, z) = 1 = dHn
(uj , z), otherwise

dHn
(ui, z) = 2 = dHn

(uj , z). It follows that r(ui | B) = r(uj | B), a contradiction. �

Now, we are ready to prove Theorem 1.5.

5.1 Proof of Theorem 1.5

For m ≥ 2 and n ≥ 3, let Pm be a path graph with V (Pm) = {pi | 1 ≤ i ≤ m}
and E(Pm) = {pipi+1 | 1 ≤ i ≤ m − 1}, and G ∼= Hn. We consider a comb product
G Bo Pm where o = p1. By Lemma 5.1, we have β(G) = n − 1. However, we will
prove that β(GBo Pm) = n which is greater than the lower bound in Theorem 1.3.

Since G Bo Pm contains n stems having 2 path branches, by Lemma 4.1, we
obtain β(G Bo Pm) ≥ n. Now, we will show that β(G Bo Pm) ≤ n. We define
W = {(v, pm) | v ∈ V2}. We will show that W is a resolving set of G Bo Pm. Let x
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and y be two distinct vertices of GBo Pm. For z1, z2 ∈ V (G), we assume x ∈ Pm(z1)
and y ∈ Pm(z2). We distinguish two cases.

1. z1 = z2
We assume x = (z1, pr) and y = (z2, pt) where 1 ≤ r < t ≤ m. If z1 = z2 ∈ V2,
then we obtain dGBoPm

(x, (z1, pm)) = dGBoPm
(y, (z1, pm)) + t − r. Otherwise,

we have dGBoPm(y, (z1, pm)) = dGBoPm(x, (z1, pm)) + t− r.
2. z1 6= z2

We distinguish three subcases.

(a) z1, z2 ∈ V2
Then we obtain dGBoPm(y, (z1, pm)) = dGBoPm(x, (z1, pm)) + r + t+ 3.

(b) z1, z2 ∈ V1
Let z1 = ui and z2 = uj where i, j ∈ {1, 2, . . . , n}. If dGBoPm

(y, (vj , pm)) 6=
dGBoPm

(x, (vj , pm)), then we have nothing to prove. Otherwise, we con-
sider that dGBoPm

(y, (vi, pm)) = dGBoPm
(x, (vi, pm)) + t− r + 1.

(c) z1 ∈ V1 and z2 ∈ V2
Let z2 = vj where j ∈ {1, 2, . . . , n}. If z1 = uj , then we obtain

dGBoPm(x, (z2, pm)) = dGBoPm(y, (z2, pm)) + r + t+ 1.

Otherwise, dGBoPm(x, (z2, pm)) = dGBoPm(y, (z2, pm)) + r + t+ 2.

From the two previous cases, we can say that W with |W | = n is a resolving set of
GBo Pm.
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