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LINEAR HAMILTONIAN SYSTEM IN SCALE OF HILBERT SPACES
AND THE POINCARÉ RECURRENCE THEOREM

Oleg Zubelevich

Abstract. We consider an initial value problem for linear Hamiltonian system in the
scale of Hilbert spaces and prove an existence and uniqueness theorem. We also prove a
version of the Poincaré Recurrence Theorem.

1. Statement of the problem

Linear differential equations in Banach spaces and the semigroup theory have become
a classical topic of PDE since the fifties of the last century.

One of the central results of this theory is the Hille–Yosida theorem [10], [5]. This
theorem provides necessary and sufficient conditions that a densely defined operator
A : E → E of a Banach space E generates a strongly continuous semirgoup {etA} or,
in other words, the initial value problem

ẋ = Ax, x(0) = x̂

has a good enough solution x(t) = etAx̂.
This theorem is formulated in terms of spectrum of the operator A. The point is

that the spectrum of an operator is not always simple to comprehend.
In this short paper we consider a Hamiltonian system in the scale of Hilbert spaces.

Apparently there are no direct ways to solve such systems by means of the standard
spectral methods.

To motivate the statement of our main problem we first simulate the whole con-
struction by means of the easiest example. The matrix J (see below) in this example
is very simple therefore the corresponding result follows from the Hille–Yosida theo-
rem. But, in general case, our main theorem is not deduced from the Hille–Yosida
theorem.

Let Ω ⊂ Rm be a bounded domain with smooth enough boundary ∂Ω. It is
well known that the Laplace operator ∆ has the countable system of eigenfunctions
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260 Linear Hamiltonian system in scale of Hilbert spaces

ej(x) ∈ C∞(Ω),

−∆ej = λ2
jej , ej(∂Ω) = 0, j ∈ N.

These functions form orthogonal basis of L2(Ω) and

0 < λ1 ≤ λ2 ≤ . . . , λj →∞
as j →∞. We also assume that ‖ej‖L2(Ω) = 1.

Introduce a space

Ys =
{
u(x) =

∞∑
k=1

ukek | ‖u‖2s =

∞∑
k=1

u2
kλ

2s
k <∞

}
, s ∈ R.

One may treat elements of Ys as distributions:

φ =

∞∑
k=1

φkek ∈ D(Ω), (u, φ) =

∞∑
k=1

ukφk.

It is not hard to show that the last sum is convergent.

The spaces Ys are Hilbert spaces (all the Hilbert spaces we use are over the field
R) with the inner products

(u, v)s =

∞∑
k=1

λ2s
k ukvk, v(x) =

∞∑
k=1

vkek ∈ Ys.

The spaces Ys are referred to as fractional power spaces associated to the Laplace
operator. Observe that Y0 = L2(Ω), Y1 = H1

0 (Ω).

The power of the Laplace operator is defined in the natural way

(−∆)µu =

∞∑
k=1

λ2µ
k ukek,

and (−∆)µ : Ys → Ys−2µ, µ ∈ R, is an isometric isomorphism.

Consider the wave equation

utt = ∆u, u(t, x) |x∈∂Ω= 0, u(0, x) = û(x), ut(0, x) = v̂(x). (2)

Introduce a vector-valued function f(t, x) = (u(t, x), w(t, x))T and rewrite our prob-
lem as follows

ft = JBf, J =

(
0 1
−1 0

)
, B =

(
(−∆)1/2 0

0 (−∆)1/2

)
.

The initial conditions take the form

w(0, x) = (−∆)−1/2v̂(x).

It is convenient to solve problem (2) in Ys, u(t, ·), w(t, ·) ∈ Ys with

û ∈ Ys, v̂ ∈ Ys−1.

Observe that the Schrödinger equation iψt = ∆ψ, ψ = ψ1 + iψ2 can also be
written in the form ξt = JBξ, ξ = (ψ1, ψ2)T where B is a positively defined self-
adjoint operator and J is a skew-symmetric operator.
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1.1 Abstract construction

In this section we describe the above situation axiomatically. All the inessential
positive constants we denote by the letters c, c1, c2, . . . or by c with another subscript.

Let

Xs+δ ⊂ Xs, δ > 0, s ∈ R (3)

be a scale of real Hilbert spaces with inner products (·, ·)s and the corresponding
norms ‖ · ‖s, ‖ · ‖s ≤ ‖ · ‖s+δ. The space Xs+δ is dense in Xs. In the above example
Xs = Ys × Ys.

Let

J : Xs → Xs, (Jx, y)s = −(Jy, x)s

stand for a bounded skew-symmetric operator. This means that the operator J is
defined on

⋃
s∈RXs and J(Xs) ⊂ Xs. The same holds for all other operators, yet we

do not stress on this.
If it is not specified anything else, the parameter t belongs to the interval IT =

[0, T ], T > 0.
Introduce a bounded operator B : Xs → Xs−1. This operator enjoys the following

properties.

1. the operator B is self-adjoint and non-negative

(Bx, y)s = (x,By)s, (Bx, x)s ≥ 0, x, y ∈ Xs+1;

2. all the powers Bσ : Xs+σ → Xs are bounded and coercive

(Bσx, x)s ≥ c‖x‖2s+σ/2, σ ≥ 0, x ∈ Xs+σ;

3. the operator −Bσ generates a C0−semigroup [10]

e−tB
σ

: Xs → Xs

such that for any x ∈ Xs+σ we have∥∥∥1

t

(
e−tB

σ

− I
)
x+Bσx

∥∥∥
s
→ 0,

as t→ 0+.

Moreover, e−tB
σ

(Xs) ⊂ Xs+δ, t ∈ (0, T ] and for any x ∈ Xs and for any
δ ∈ (0, cδ) the estimate

‖e−tB
σ

x‖s+δ ≤
c1
tδ/σ
‖x‖s, c1 = c1(s, δ, σ) (4)

is fulfilled.

The main object of our study is the following Hamiltonian initial value problem

ẋ = JBσ̂x, x(0) = x̂ ∈ Xŝ (5)

with some fixed constants σ̂ > 0, ŝ ∈ R.

1.2 Several remarks on accepted hypotheses

In the above example all the hypotheses can be checked by direct calculation.
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Observe that hypotheses on the operator J can be considerably relaxed. Actually,
one can put J : Xs → Xs−µ, µ > 0 to be a bounded and skew-symmetric operator:

(x, Jy)s = −(Jx, y)s, x, y ∈ Xs+µ.

This generalization does not bring any essential difficulties in the proofs of the theo-
rems but makes the formulas more complicated than we have now.

Formula (4) is very standard in the parabolic semigroup theory [9], [1], [11].
In the sequel we do not use all the Hilbert spaces contained in the scale {Xs}.

Actually we use only the spaces with indexes

ŝ, ŝ± γ, ŝ− γ − σ̂, ŝ− γ − 3σ̂/2, ŝ− γ − 2̂σ, ŝ− σ̂/2, ŝ+ σ̂.

But the scales arise in the applications. Furthermore we believe that the scale {Xs}
is more acceptable object than several different spaces which look like a cumbersome
and artificial construction.

2. Main theorems

Let Cw(IT , Xs) stand for the space C(IT , X̃s) and X̃s is the space Xs endowed with
the weak topology.

Theorem 2.1. 1. Problem (5) has a weak solution

x(t) ∈ L∞(IT , Xŝ) ∩ Cw(IT , Xŝ−γ)

with arbitrary T > 0 and arbitrary γ > σ̂. That is

(a) for any ψ ∈ Xŝ−γ it follows that(
ψ, x(t)

)
ŝ−γ →

(
ψ, x(t0)

)
ŝ−γ

as t→ t0 ∈ IT ;

(b) for any u(t) ∈ C1(IT , Xŝ+γ), u(T ) = u(0) = 0 it follows that∫ T

0

(
u̇(t), x(t)

)
ŝ
dt =

∫ T

0

(
Bσ̂Ju(t), x(t)

)
ŝ
dt.

For almost all t ∈ I this solution enjoys the inequality

‖x(t)‖ŝ ≤ c‖x̂‖ŝ. (6)

The constant c does not depend on T .

2. Assume in addition that embeddings (3) are compact. Then the solution

x(t) ∈ C(IT , Xŝ−γ) ∩ C1(IT , Xŝ−γ−σ̂) (7)

is unique. This is a classical solution in the space Xŝ−γ .

Indeed, under the conditions of the second part of the theorem system (5) possesses
the Hamiltonian

H(x) =
1

2

(
Bσ̂x, x

)
ŝ−γ−2σ̂

=
1

2

(
Bσ̂/2x,Bσ̂/2x

)
ŝ−γ−2σ̂

, x = x(t) (8)
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which is the first integral to this system:

Ḣ =
(
Bσ̂x, ẋ

)
ŝ−γ−2σ̂

=
(
Bσ̂x, JBσ̂x

)
ŝ−γ−2σ̂

= 0.

Actually system (5) possesses the continuum set of Hamiltonians:

Hs(x) =
1

2

(
Bσ̂x, x

)
s
, s ≤ ŝ− γ − 2σ̂.

Using formula (8) we see that any solution of the kind (7) satisfies the estimate

c17‖x(t)‖2ŝ−γ−3σ̂/2 ≤ H(x(t)) = H(x̂) ≤ c18‖x̂‖2ŝ−γ−3σ̂/2. (9)

This implies the uniqueness in Theorem 2.1.
Let us formulate a version of the Poincaré Recurrence Theorem.

Theorem 2.2. Assume that both parts of Theorem 2.1 are fulfilled. Then there is an
increasing sequence tk →∞, such that

‖x(tk)− x̂‖ŝ−γ−3σ̂/2 → 0.

Unlike classical Poincaré Recurrence Theorem this assertion deals with a dynam-
ical system on non compact infinite dimensional phase space. Another version of the
recurrence theorem for an infinite dimensional system on non compact space has been
proved for a hydrodynamic problem in [6].

3. Proofs of the theorems

3.1 Auxiliary lemmas

Lemma 3.1. Let µ stand for the standard Lebesgue measure in R+ = (0,∞). Let
τ ⊂ R+ be a full measure set µ(R+\τ) = 0. Then there is a number a > 0 such that
{ak}k∈N ⊂ τ.

Proof. Assume the converse: for any a > 0 there exists k ∈ N such that ak /∈ τ . This
implies that

R+ =
⋃
k∈N

Mk, Mk = {a > 0 | ak /∈ τ} = R+\(τ/k).

It follows that µ(Mk) = 0. This gives a contradiction. �

Lemma 3.2 (the Banach-Steinhaus Theorem [3], [8]). Let

Aν : X → Y, ν ∈ [ν1, ν2]

be a set of bounded operators of a Banach space X to the Banach space Y . Assume
that for each x ∈ X we have

‖Aνx−Ax‖Y → 0 (10)

as ν → ν0 ∈ [ν1, ν2]. Then the operator A : X → Y is also bounded and the conver-
gence (10) is uniform on any compact set of variable x.

Moreover, for any continuous function f : [t1, t2] → X it follows that ‖Aνf(t) −
Af(t0)‖Y → 0 as ν → ν0 and t→ t0 ∈ [t1, t2].
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Proof. Observe only that F = {f(t) | t ∈ [t1, t2]} is a compact set in X as an image
of the compact set [t1, t2] under the continuous mapping f . So that by the previous
propositions Aνx converges to Ax uniformly in x ∈ F . �

Lemma 3.3. Let x ∈ Xs−s0 , s0 > 0. Then the mapping

t 7→ e−tB
γ

x

is a continuous mapping of (0, T ] to Xs.

Proof. Let t→ t̃−, t̃ > 0. We have(
e−tB

γ

− e−t̃B
γ)
x = e−tB

γ/2
(
I − e−(t̃−t)Bγ)e−tBγ/2x.

One yields the estimate∥∥∥e−tBγ/2(I − e−(t̃−t)Bγ)e−tBγ/2x∥∥∥
s

≤ c

ts0/γ

∥∥∥(I − e−(t̃−t)Bγ)e−tBγ/2x∥∥∥
s−s0

.

The mapping

t 7→ e−tB
γ/2x

is a continuous mapping of the small neighbourhood of the point t̃ to Xs−s0 . From
Lemma 3.2 it follows that∥∥∥(I − e−(t̃−t)Bγ)e−tBγ/2x∥∥∥

s−s0
→ 0.

If t→ t̃+ then the argument is trivial(
e−tB

γ

− e−t̃B
γ)
x =

(
e−(t−t̃)Bγ − I

)
e−t̃B

γ

x, e−t̃B
γ

x ∈ Xs.

�

Lemma 3.4. Assume that a function u ∈ C([0, t∗)) satisfies the inequality

0 ≤ u(t) ≤ A+B

∫ t

0

u(ξ)

(t− ξ)α
dξ, t > 0 (11)

here A,B, α are positive constants, α < 1. Then supt∈[0,t∗) u(t) <∞.

Proof. Let us take numbers p, q such that
1

p
+

1

q
= 1, 1 < p <

1

α
.

Then the right-hand side of (11) is not greater than

A+B
(∫ t

0

dξ

(t− ξ)αp
) 1
p
(∫ t

0

uq dξ
) 1
q

.

So that

u(t) ≤ A+ C
(∫ t

0

uq dξ
) 1
q

(12)

with some positive constant C.
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Define a function

w(t) =

{
(u(t)−A)q if u(t) ≥ A,
0 if u(t) < A.

The function w is non-negative and continuous in [0, t∗). Observe also that u ≤
A+ w1/q.

Inequality (12) implies

w(t) ≤ Cq
∫ t

0

Φ
(
w(ξ)

)
dξ, Φ(η) =

(
A+ η1/q

)q
. (13)

Recall the following fact.

Proposition 3.5 ( [2]). Let a non negative function v ∈ C([0, t1]) be such that

v(t) ≤ K
∫ t

0

Φ
(
v(ξ)

)
dξ, K = const > 0.

Assume the function Φ ∈ C[0,∞) to be positive and non decreasing.

Assume also that

Ψ(η) =

∫ η

0

dξ

Φ(ξ)
→∞

as η →∞. Then

v(t) ≤ Ψ−1
(
Kt
)
,

here Ψ−1 is the inverse function.

By this Proposition and due to formula (13) the function w is bounded in [0, t∗).
Thus u is also bounded. �

3.2 Proof of the first part of Theorem 2.1

We use a version of the classical parabolic regularization method [7].

We will approximate problem (5) with the following sequence of “paraboli” prob-
lems

ẋn = JBσ̂xn − anBγxn, xn(0) = x̂n = e−anBx̂, (14)

here an = 1/n, n ∈ N. Note that x̂n ∈ Xs, s ∈ R.
Consider corresponding integral equation

xn(t) = e−antB
γ

x̂n +

∫ t

0

e−an(t−ξ)BγJBσ̂xn(ξ) dξ (15)

and the operator

Fn[x(·)] = e−antB
γ

x̂n +

∫ t

0

e−an(t−ξ)BγJBσ̂x(ξ) dξ.

Lemma 3.6. The operator Fn takes the space C(Iτ , Xs) to itself. Here τ > 0, s ∈ R
are arbitrary constants.
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Proof. First note that if t→ 0+ then e−antB
γ

x̂→ x̂ in Xs and

‖Fn[x(·)](t)‖s ≤
∫ t

0

∥∥∥e−an(t−ξ)BγJBσ̂x(ξ)
∥∥∥
s
dξ

≤
∫ t

0

c1(
an(t− ξ)

)σ̂/γ ‖JBσ̂x(ξ)‖s−σ̂ dξ

≤
∫ t

0

c14(
an(t− ξ)

)σ̂/γ ‖x(ξ)‖s dξ → 0.

Thus Fn[x(·)](t) is a continuous function in t = 0.

For 0 ≤ t′′ ≤ t′ ≤ τ one has the identity

Fn[x(·)](t′)−Fn[x(·)](t′′) = e−ant
′′Bγ (e−an(t′−t′′)Bγ − I)x̂n

+

∫ t′

t′′
e−an(t′−ξ)BγJBσ̂x(ξ) dξ

+

∫ τ

0

χ[0,t′′](ξ)(e
−an(t′−t′′)Bγ − I)e−an(t′′−ξ)BγJBσ̂x(ξ) dξ, (16)

here χ is the indicator function.

Assume that t′′ > 0. The integral in the middle of the right-hand side of formula
(16) is not greater than∫ t′

t′′
‖e−an(t′−ξ)BγJBσ̂x(ξ)‖s dξ

≤
∫ t′

t′′

c2(
an(t′ − ξ)

)σ̂/γ ‖JBσ̂x(ξ)‖s−σ̂ dξ

≤ c3
∫ t′

t′′

1(
an(t′ − ξ)

)σ̂/γ ‖x(ξ)‖s dξ

≤ c3 max
ξ∈Iτ
‖x(ξ)‖s

∫ t′

t′′

1(
an(t′ − ξ)

)σ̂/γ dξ → 0 (17)

as t′ → t′′ or t′′ → t′.

The expression under the last integral in the formula (16) is majorated by L1-summable
function of ξ ∈ Iτ :

‖(e−an(t′−t′′)Bγ − I)e−an(t′′−ξ)BγJBσ̂x(ξ)‖s ≤
c5(

an(t′′ − ξ)
)σ̂/γ ‖x(ξ)‖s.

Fix t′ and fix ξ < t′ and let ξ < a < t′. Let a constant a ∈ (ξ, t′). By Lemma 3.3 the
mapping

t′′ 7→ e−an(t′′−ξ)BγJBσ̂x(ξ)

is a continuous mapping of [a, t′] to Xs. By Lemma 3.2

(Aν = e−anνB
γ

− I, ν = t′ − t′′, X = Y = Xs)
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it follows that

‖(e−an(t′−t′′)Bγ − I)e−an(t′′−ξ)BγJBσ̂x(ξ)‖s → 0

as t′′ → t′.

When t′ → t′′, the asymptotics

‖(e−an(t′−t′′)Bγ − I)e−an(t′′−ξ)BγJBσ̂x(ξ)‖s → 0, ξ < t′′

is obtained directly. Thus by the dominated convergence theorem we have∥∥∥ ∫ τ

0

χ[0,t′′](ξ)(e
−an(t′−t′′)Bγ − I)e−an(t′′−ξ)BγJBσ̂x(ξ) dξ

∥∥∥
s
→ 0

as t′ → t′′ or t′′ → t′.

Analogously one has

‖(e−an(t′−t′′)Bγ − I)e−ant
′′Bγ x̂n‖s → 0

as t′ → t′′ or t′′ → t′. �

Lemma 3.7. For any n ∈ N and for any s ∈ R equation (15) has a unique solution

xn(t) ∈ C(IT , Xs).

Proof. After already prepared estimates it is clear that for sufficiently small τ > 0 the
mapping Fn is a contraction of C(Iτ , Xs) and thus there is a fixed point Fn[xn] = xn.
This is true for all s ∈ R but τ depends on s.

The solution xn can actually be extended to the whole interval IT . Assume
the converse: there is a positive constant t∗ < T such that the solution xn(t) ∈
C([0, t∗), Xs) but the limit limt→t∗− xn(t) does not exist in Xs. If this limit would
exist we could take x(t∗) as a new initial condition and use again the contraction
mapping principle to prolong the solution forward over t∗.

Observe that ∥∥∥e−tBσx∥∥∥
s
≤ cs,σ‖x‖s, t ≥ 0, t ∈ IT

see for example [10]. Thus taking in estimate (17) t′ = t and t′′ = 0 and replacing x
with xn, from equation (15) we get

‖xn(t)‖s ≤ c4‖x̂n‖s + c3

∫ t

0

‖xn(ξ)‖s(
an(t− ξ)

)σ̂/γ dξ.
Consequently, by Lemma 3.4 the solution xn(t) is bounded on [t, t∗).

To get the contradiction it is sufficient to observe that if t′, t′′ → t∗− then

‖xn(t′)− xn(t′′)‖s → 0.

Since xn is a fixed point of Fn, the proof repeats the argument of Lemma 3.6. �

Lemma 3.8. The function xn(t) ∈ C1(IT , Xs), s ∈ R solves initial value problem
(14).

Proof. In this lemma we already know that the function x(ξ) belongs to C(IT , Xs)
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for all s ∈ R. One must check that for s ∈ R it follows that

lim
h→0

∥∥∥xn(t+ h)− xn(t)

h
+
(
− JBσ̂ + anB

γ
)
Fn[xn](t)

∥∥∥
s

= 0, for t > 0 and

lim
h→0+

∥∥∥xn(h)− x̂n
h

− JBσ̂x̂n + anB
γ x̂n

∥∥∥
s

= 0.

This follows from the same argument which is employed in Lemma 3.2. One must use
formula (16) taking once t′ = t+ h, t′′ = t > 0, h > 0 and after this checking the
case t′′ = t− h, t′ = t > 0.

The operator
1

h

(
e−anhB

γ

− I
)

appears instead of the operator e−an(t′−t′′)Bγ −I. To pass to the corresponding limits
one must use again the dominated convergence theorem and Lemma 3.2.

For example, let us show that

Ah =
1

h

∥∥∥∫ t+h

t

e−an(t+h−ξ)BγJBσ̂x(ξ) dξ − JBσ̂x(t)
∥∥∥
s
→ 0

as h→ 0+. Observe that since x(t) ∈ C(IT , Xs+σ̂) the function

ξ →
∥∥∥e−an(t+h−ξ)BγJBσ̂x(ξ)dξ − JBσ̂x(t)

∥∥∥
s

is continuous and therefore by the Mean Value Theorem for integrals we have

Ah ≤
1

h

∫ t+h

t

∥∥∥e−an(t+h−ξ)BγJBσ̂x(ξ)− JBσ̂x(t)
∥∥∥
s
dξ

=
∥∥∥e−an(t+h−η)BγJBσ̂x(η)− JBσ̂x(t)

∥∥∥
s
, η ∈ [t, t+ h].

We obtain x(η)→ x(t) in Xs+σ̂ as η → t; thus

JBσ̂x(η)→ JBσ̂x(t), e−an(t+h−η)BγJBσ̂x(η)→ JBσ̂x(t)

in Xs. The last asymptotic goes from Lemma 3.2. �

Lemma 3.9. The following inequality holds supn∈N maxt∈IT ‖xn(t)‖ŝ ≤ c7‖x̂‖ŝ.

Proof. Due to equation (14) and since J is a skew symmetric operator we obtain

d

dt

(
Bσ̂xn(t), xn(t)

)
ŝ−σ̂/2 = −2an

(
Bσ̂+γxn(t), xn(t)

)
ŝ−σ̂/2 ≤ 0.

Hence,

c8‖xn(t)‖ŝ ≤
(
Bσ̂xn(t), xn(t)

)
ŝ−σ̂/2 ≤

(
Bσ̂xn(0), xn(0)

)
ŝ−σ̂/2

=
(
Bσ̂e−anBx̂, e−anBx̂

)
ŝ−σ̂/2 =

(
Bσ̂/2e−anBx̂, Bσ̂/2e−anBx̂

)
ŝ−σ̂/2

≤ c9‖x̂‖ŝ.
�

Corollary 3.10. The following inequality holds

sup
n∈N

max
t∈IT
‖ẋn(t)‖ŝ−γ ≤ c10‖x̂‖ŝ.
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Proof. This directly follows from Lemma 3.9 and equation (14). �

From Lemma 3.9 it follows that the sequence {xn(t)} is *-weakly relatively com-
pact in L∞(IT , Xŝ). Recall that for any normed space X, the strongly closed ball of

X ′ is a σ(X ′, X)-compact set [10]. Note also that L∞(IT , Xŝ) =
(
L1(IT , Xŝ)

)′
[4].

Lemma 3.9, its Corollary 3.10 and the third Ascoli theorem [8] imply that the
sequence {xn(t)} is relatively compact in Cw(IT , Xŝ−γ). Note also that each bounded
in Xŝ−γ set is weakly relatively compact.

Furthermore since the closed ball of Xŝ−γ is weakly compact, it is also weakly
complete.

Hence the sequence {xn(t)} contains a subnet {xnα} with some directed set A 3 α
such that

lim
A
xnα = x

in Cw(IT , Xŝ−γ) and in L∞(IT , Xŝ) equipped with *-weak topology; and ‖x‖L∞(IT ,Xŝ) ≤
c7‖x̂‖ŝ.

By virtue of equation (14) it remains to pass to the limit in

−
∫ T

0

(
(u̇(t), xnα(t)

)
ŝ
dt =

∫ T

0

(
(−Bσ̂J − anαBγ)u(t), xnα(t)

)
ŝ
dt.

3.3 Proof of the second part of Theorem 2.1

From Lemma 3.9 and Corollary 3.10 by the Third Ascoli theorem [8] it follows that the
sequence {xn(t)} is relatively compact in C(IT , Xŝ−γ). Here we use the hypothesis
on compactness of embedding Xŝ ⊂ Xŝ−γ .

Thus there is a subnet {xnα} ⊂ {xn} such that in addition to enumerated above
properties it is convergent to x(t) in C(IT , Xŝ−γ) as α ∈ A.

In the space C(IT , Xŝ−γ−σ̂) we pass to the limit in (15) and obtain that x(t) is a
solution to integral equation

x(t) = x̂+

∫ t

0

JBσ̂x(ξ) dξ. (18)

Differentiating equation (18) in t in the space Xŝ−γ−σ̂ we obtain

ẋ = JBσ̂x, ẋ ∈ C(IT , Xŝ−γ−σ̂).

Theorem 2.1 is proved.

3.4 Proof of Theorem 2.2

We employ Lemma 3.1. Let τ stand for the set of values t > 0 such that x(t) ∈ Xŝ

and inequality (6) holds. Then put t′i = ai. Observe that t′i − t′j ∈ τ provided i > j.

Let etJB
σ̂

x̂ stand for the solution with initial condition x̂ ∈ Xŝ. Since e(t′i−t
′
j)JB

σ̂

x̂ ∈
Xŝ we can write

et
′
iJB

σ̂

x̂− et
′
jJB

σ̂

x̂ = et
′
jJB

σ̂(
(e(t′i−t

′
j)JB

σ̂

− I)x̂
)
.
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The sequence {x(t′i)} is bounded inXŝ. Thus it contains a subsequence {x(t̃i)}, {t̃i} ⊂
{t′i} that is convergent in Xŝ−γ−3σ̂/2,

‖x(t̃i)− x(t̃j)‖ŝ−γ−3σ̂/2 → 0

as i, j →∞.
By the same argument as in formula (9) we can write

c17

∥∥e(t̃i−t̃j)JBσ̂ x̂− x̂
∥∥2

ŝ−γ−3σ̂/2
≤ H

((
e(t̃i−t̃j)JBσ̂ − I

)
x̂
)

= H
(
et̃jJB

σ̂(
e(t̃i−t̃j)JBσ̂ − I

)
x̂
)
≤ c18‖x(t̃i)− x(t̃j)‖2ŝ−γ−3σ̂/2. (19)

It remains to choose a sequence j = j(i) such that ti = t̃i − t̃j(i) →∞ and j(i)→∞
as i→∞. Indeed, from inequality (19) it follows that

‖etiJB
σ̂

x̂− x̂
∥∥
ŝ−γ−3σ̂/2

→ 0.

Theorem 2.2 is proved.
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