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Counterexamples on non-a-normal
functions with good integrability

Rauno Aulaskari, Shamil Makhmutov
and Jouni Rattya

ABSTRACT. Blaschke products are used to construct concrete examples
of analytic functions with good integrability and bad behavior of spheri-
cal derivative. These examples are used to show that none of the classes
Mf, 0 < p < 00, is contained in the a-normal class N when 0 < o < 2.
This implies that Mf is in a sense a much larger class than Qf.
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1. Introduction and results

Let M(D) denote the class of all meromorphic functions in the unit disc
D ={z:]|z] <1}. A function f € M(D) is called normal if

1l = sup f#(2)(1 = [2]?) < o0,
z€D

where f7#(2) = |f'(2)|/(1+]f(2)|?) is the spherical derivative of f at z. The
class of normal functions is denoted by N. For a given sequence {z,}2
of points in D for which Y>°° (1 — |2,]?) converges (with the convention
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zn/|zn| = 1 for z, = 0), the Blaschke product associated with the sequence
{zn}52, is defined as

H |Zn‘ Fn T2
2n 1 —Zp2
Allen and Belna [1] showed that the analytic function

fs(z) = B(2)/(1 = 2)%,

where B(z) is the Blaschke product associated with {1 —e™"}2°, is not a

normal function if 0 < s < %, but satisfies the integrability condition

/ F1(2) dA(z) < 00
D

It is well-known that if f is analytic in D and satisfies

/ F(2)2 dA(2) < o,
D

that is, f belongs to the Dirichlet space (analytic functions in D with
bounded area of image counting multiplicities), then f € N. Concerning
the normality, the question arose if

(1) /D F(2)PdA(z) <00, 1<p<2,

implies f € N. Yamashita [9] showed that this is not the case since the
function
1

@ £(2) = B(2)log 7,

where B is a Blaschke product associated with an exponential sequence
{zn}72; whose limit is 1, is not normal but satisfies (1) for all 1 < p < 2.
Recall that a sequence {z,}>2 is exponential if

(3) L—|znp| <B(A —[z]), neN,

for some § € (0,1). It is well known that every such sequence {z,}°°
satisfies

(4) I1

k#n
for some § = §(5) > 0, and is therefore an interpolating sequence (uniformly
separated sequence).

The basic idea in this note is to find a function f that satisfies (1) (or
another integrability condition) but the behavior of f# is worse than the
behavior of the spherical derivative of a nonnormal function necessarily is.
To make this precise, for 0 < a < oo, a function f € M(D) is called a-
normal if

Zn — Z
n =k >0, neN,

1—Z,2;

sup 7 (2)(1 = [2]*)* < oc.
zeD
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The class of all a-normal functions is denoted by N'*.

Theorem 1. Let B be the Blaschke product associated with an exponential
sequence {zp}22 1 whose limit is 1. Let 1 < a < 00, 0 < p < 2 and

_ BG)
(5) 142) = e

Then fs & N for all s > o — 1, but
[ 1P dae) <o
D

0<s<oo.

for all s € (0,2/p —1).

It is easy to see that fo,_1 € N* Moreover, the following result proves
the sharpness of Theorem 1.

Theorem 2. Let B be the Blaschke product associated with an exponential
sequence {zn}22 1 such that |z, — %\ = %, Sz > 0 and limy, o0 2, = 1. Let
0<p<1l. Then

B(z)

f%_1(z) = m

satisfies
[ 12 s@raae) = .
D P
The following result is of the same nature as Theorem 1.

Theorem 3. Let B be the Blaschke product associated with an exponential
sequence {zp}o2 | whose limit is 1. Let 1 < a < oo and

F&) o T

Then f & N, but

() [P @R~ PP dA() < oo
D
for all e > 0.
Waulan [8] showed that the function f, defined in (2), satisfies
(7) ré¢ \J @f but fe [ M7
0<p<oo 0<p<oco
where

Qf = {1 e M) s [ ()20 aA() < oo

a€D
and

af = {1 e MO 1710 =sup [ (770 - leulIPP aA() < oo
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Here ¢4(2) = (a — 2)/(1 — @az) is a Mdbius transformation and g(z,a) =
—log |pa(2)] is a Green’s function of D.
Keeping (7) in mind, we will show that the function f,, defined in (5),

belongs to MI# for certain values of s.

Theorem 4. Let B be the Blaschke product associated with an exponential
sequence {zp}°>2 | whose limit is 1. Then the function fs, defined in (5),

satisfies
fee [ MF
0<p<oo

for all0 < s < 1.
Theorems 1 and 4 have the following immediate consequence.

Corollary 5.
N MFe |J e

0<p<oo 0<a<?2

Using [6, Theorem 3.3.3], with a = 2 — 2/q, we see that if f € M(D)
satisfies

sup / (F#(2))9(1 = 241 = |pa(2) 2 dA(2) < o0,
acD JD

for some 2 < ¢ < oo and 0 < p < oo, then f € N2. In view of this fact and
Corollary 5 it is natural to ask the following questions.

uestion 6. For which values of p the class M is contained in N?2?
b D

Question 7. Is the class

B = {f e M(D): sup/ (f#(2))?dA(z) < oo}
a€D J D(a,r)

contained in N2?

Recall that M = B# for all 1 < p < oo, see [7, 8].

Before embarking on the proofs of the results presented in this section, a
word about the notation. We will write A < B if there is a positive constant
C such that A < CB. The notation A 2 B is understood in an analogous
manner. In particular, if A < B < A, we will write A ~ B.

2. Proof of Theorem 1

The fact fs € N for all s > a—1 follows at once by the following lemma,
see also [7, Theorem 4.4.2].
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Lemma 8. Let 1 < a < oo and let B be an interpolating Blaschke product

associated with the sequence {zp}°2 . If g is analytic in D and satisfies
19(zn)|(1 = |20, N*! = 00, Kk — o0,

for some subsequence {z,, }?° ,, then Bg ¢ N*.

Proof. Since B is interpolating, there exists § > 0 such that
(Bg)™ (2n,) (1 = |20 [)* = 1B (20 [19(20 ) [(1 = |2 [*)°
> 8]g(zn)I(1 = 2, ) = 00,k — oo,

and hence Bg ¢ N¢. O

To prove the assertion on the integrability, let first 0 < p < 1land s < %—1.
Then

sP|B(z
p —
/|f )P dA(z /‘1_2‘;)5 /‘1_Z‘ps+1 A(z) = I + I,

where I < 0o since s < 5 — 1. To estimate Iy, write

B(z) = (1-2zn2)(2n — 2)
so that
> 1 — |z |zk| 2 — 2
8 B'(z)| = — o kL 2R
(8) |1B(2)] ;(1—znz)(zn—z) kl:[ 2z 1 —Zgz
o
1 — |2n|? |2n — 2|
< B, (z
- ; |zn, — 2||1 — Znz| |1 — znz\| n(2)]
o
<> el (2)],
n=1
where B, (2) = [ [, E—’“ 2=~ . Therefore

9) 1B'(2)P <Y1k, (),
n=1

and the Holder inequality yields

ne [ (Zw;n(z)p) =
n=1

dA(z)
— 1— |2,[?)?
Z( ‘Z ’ ) /]D) |1 _Ensz’l —Z’ps

S (4 ([5)
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where p € (52 % 5) and \ € (L7 %) such that A™! + =1 = 1. The last

integral above is finite because p )\ < 2. Moreover, we may choose u such
that pu > 1. Then

/ dA(z) \¥ _ 1
D |1 — Znz|?P# ~ (1= o]0

and it follows that

o0

2_, ne1)(2_
LSY (=|z)r P <(1-]ap) pZﬁ D)
n=1

since%—p>0.
Letnow1<p<2ands<%—1. Then

/ )P dA()
D

-1 [ 1B'()P -1 [ SPIB(2)[ _
=2 /ID) L=z T2 | e AR =Lt b

where Iy < oo since s < % — 1. By using the inequality (9) with p = 1 and
the Schwarz—Pick lemma, we obtain

I < QP—I/D T |BI_(Z)’ dA(z)

2P — zfpe

L o ) 1 1 27 do
p— _
<2 Z(l |2n] )/0 (1 — r)pstp1 /0 1 —Enre759|2dr

i 1— |z,]?) /l dr .
ot o (1—r)PstP=i(1 — [z,]r)

Choose the conjugate indexes p and A such that < 1/(ps+p —1). Then
the Holder inequality implies

S ()

1
1—|zn|7 Zl—]zn|A.
(1= |znl) )

Since {z,}72  is exponential, it follows that I; < oo, and we are done.
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3. Proof of Theorem 2

Denote D™ = {z € D : ¥z < 0}. By [3, Theorem 1] there exists § > 0
such that |B(z)| > d for all z € D™. Since 0 < p < 1, we have

10) [ 1f2 P dAE) + 175 0P = [ 172, P0 )7 dAG)

—|z]2)P
> [ mer L )

and the assertion follows.
Note that an application of the asymptotic equality in (10) gives an al-
ternative way to prove the case 0 < p < 1 in Theorem 1.

4. Proof of Theorem 3

Denote

1
ga(2) = (1—2’)1*"‘log1 , 1<a<oo.

Then Lemma 8 implies that f = Bg, & N°.
To show that (6) is satisfied for all € > 0, observe first that |f’|? <
4(194* + 19a]?| B'?). Now

hzédﬁWﬂﬂﬁW”“M@

|
1 2 2m
dé
5/ (log ‘ ) (1 — )22t </ wza)dr
0 1—7r o |1 —re?|
1 e \3
5/0 (lOgl—r) (1—7r)tdr < oo

for all € > 0, so it suffices to show that

I = /D 190(2)B'(2) P (1 = [2)** 7272 dA(2) < .

By using the inequality (9) with p = 1 and the Schwarz—Pick lemma, we
obtain

bSAMMWB%MFVWm“WM@

oo ) 1 e 2 ) 2m de
D (1= |z )/0 <log1_r> (1—r)6—/0 7|1_2T6i9|2dr

e \2
— r) (1-— T‘)E_l(]_ - \zn]r)_ldr.
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Choose the conjugate indexes p and ¢ such that p(1—¢) < 1. Here we assume,
without loss of generality, that € € (0,1). Then the Holder inequality implies
1

<3 (- Jzl) 7:i1—\zn\%

n=1 (1 —[zn])
Since {z }52; is exponential, there exists 5 € (0, 1) such that (1 —|zp41]) <

B(1 — |z,|) for all n € N. Therefore Io < (1 — |zl|)% Yo ﬁnT_l < oo, and
we are done.

5. Proof of Theorem 4

This proof uses ideas from [2]. Let 0 < p < co and 0 < s < 1. Let
0* = /4, and consider the pseudohyperbolic discs

Dy, = D(zp,0%) ={z: |ps, ()| <}
Then D, N Dy = ( if n # k. Denote gs(z) = (1 — )%, so that
[fs(2) < |B'(2)|lgs(2)] + [ B(2)|lgs(2)]-
Further, denote £y = U2 D, and Eo =D\ E;. Then
1y = [ 1P = o2 aa)

<2 (sup[l(El) + sup I1(E2) + sup I2(E1) + sup IQ(EQ)) ,

a€D a€eD a€D a€eD
where
"(2)gs(2)]?
WP = [ et P 44
and
2)d. ()
BlF) = [ o (et P 44
for F' C D.

Recall that {z,}°, satisfies (4) for some 6 = §(8) > 0, and therefore
|B(z)| >~y =~(6) >0 for all z € Ey by [3, Theorem 1]. It follows that

/(5 <(2 2

2 > 2
< L O~ PP a4

/|B’ 2(1 — (=) )P dA(z) < My < o0

| /\
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for all a € D by [4, p. 208 (2)]. Moreover,

2)gl(2)|?
b‘E”::JQ T B0 G~ (P 442

/ 2
A §}< ~ eal2)P) dA()

/ 11— Z\l 5 —lpa(2)P)P dA(z) < Mz < o0

forallp>0and 0 < s <1.
To estimate the integrals over Fy, note first that

|Pa(2)] = |Pga(w) (Pul2)],  2zw,aeD,

and hence
D =11 ¢ (2)| = ez ] ] #20(2)
n=1 n#k
= |(sz ()] H Spapzn(zk)((»@zk (Z))‘
n#k
This yields
(11) 3Z5|§Ozk(z)‘ < |B(2)| < |z (2)], 2 € D(z,0%).
Therefore
B(z 204/ > 2
/l)k (1’+ |(B)(‘z|)ggz((z))||2)2 (1-— \Sﬁa(z)|2)p dA(z)

< [ leaIPIg)PA = a2 dA()
Dy,
= [ Pl )P~ lealea )PPl () dAGw)
D(0,6%)
S leal)PP [ gkl ()Pl W) dAw)
D(0,6%)

where

/ 16, (220 ()2l () > dA(w)
D(0,6%)

L (w)?
< k dA(w
TLWH—%WWM”()

< (1 - ‘Zk‘)4_2(s+l) <1.

~
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Hence
2)q.(2)|?
BlF) = /E (i ﬁégzg)i()lmz (1= lpa(2)[*)" dA(2)
Ssup > (1= [pa(z)*) < o0
a€D k—1
by [5].

A similar reasoning as above together with the Schwarz—Pick lemma yields

/ |B'(2)*lgs(2)|*
p, (14 1B(2)gs(2)1?)

7 (1= lpa(2)[*)P dA(2)

w 2
SO-lenllty [ G e P )

where

w))|?
/D |98(902k( ))’ 2]cplzk(w)!2dA(w)

0,54 (1= [z, (w)[?)

6, (w)?
<4/ B dA(w) S (1 —|z)* = < L.
0.0y (L~ Jipay (w) PYFE 2

It follows that
(o 2 <(z 2

o0
Ssup y (1= [palzr)[*)? < oo
a€D k=1

Putting everything together, we obtain f € M#.
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