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On subnormal operators whose spectrum
are multiply connected domains

M. Carlsson

Abstract. Let Ω be a connected bounded domain with a finite amount
of “holes” and “nice boundary”. We study subnormal operators with
spectrum equal to Ω, while the spectrum of their normal extensions are
supported on the boundary, ∂Ω.
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1. Introduction

Given a pure isometry T on some Hilbert space H with indT = −1,
put K = H	 T (H). The Wold decomposition then says that T is unitarily
equivalent to the shift operator S on ⊕∞k=0T

k(K). In particular, one sees that
T is subnormal since S is the restriction of the bilateral shift to an invariant
subspace. In other words, T is unitarily equivalent to Mz — multiplication
by the independent variable z — on the Hardy space on the unit disc H2(D),
which in turn can be identified with a subspace of L2(m), where m is the
arclength measure on the unit circle T. Analogously, had we started out
with indT = −n, (n ∈ N), we would get that T is unitarily equivalent to Mz

on ⊕nj=1H
2(D), or, if you wish, Mz restricted to an invariant subspace of

L2(m,Cn) — the L2-space of Cn valued analytic functions on T. The setting
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of the present paper is the following. Let Ω ⊂ C be a bounded connected
open set whose boundary consists of N + 1 disjoint simple closed rectifiable
nontrivial Jordan curves. Let µ be a finite Borel-measure on ∂Ω, let H be
an Mz-invariant subspace of L2(µ, l2) and set

(1.1) T = Mz|H,
where Mz|H denotes the restriction of Mz to H. We wish to study the
operator T .

It is well known that one can split H = H1 ⊕H2 where H1 is the largest
reducing subspace with respect to Mz on L2(µ, l2), (see Section 3). Since
Mz|H1 is well understood by multiplicity theory (see Section 2.2), we shall
focus on T = Mz|H2 , that is, we will assume that H = H2 has no reducing
subspaces. Such operators are called “pure”.1 We now collect a few other
observations that simplifies the analysis.

Proposition 1.1. Suppose that µ, H, T are as above and that σ(T ) ⊂
suppµ. Then H is a reducing subspace of L2(µ, l2).

Proposition 1.2. Let N be an operator on a Hilbert space and let H be an
N -invariant subspace. Then

∂σ(N |H) ⊂ ∂σ(N).

For proofs see [8], Theorem 2.11, Ch. II and Corollary 3.7, Ch. V. It
is also shown that the minimal normal extension of a subnormal operator
T has spectrum included in σ(T ), and hence it is no restriction to assume
that suppµ ⊂ σ(T ). By Proposition 1.2 we know that ∂σ(T ) ⊂ suppµ. We
distinguish between three possible cases:

(i) σ(T ) = suppµ,
(ii) σ(T ) = Ω,
(iii) other.
By Proposition 1.1 we know that if (i) holds thenH is a reducing subspace

and hence T is a normal operator. Thus both T and H are well understood
by multiplicity theory, which we briefly recall in Section 2.2. Case (iii) falls
outside the scope of this article so the main part of the paper is devoted
to the study of case (ii). This has previously been considered by M. B.
Abrahamse and R. G. Douglas in [1], although the setting is quite different
and they refer to the corresponding operators as bundle shifts. Their work
requires a lot of prerequisites. Indeed, Abrahamse and Douglas’s framework
involves analytic vector bundles, the universal cover, Forelli’s and Grauert’s

1Again, when speaking of reducing subspace we mean with respect to Mz on L2(µ, l2).
The usual definition of a pure operator T states that T should not have any T -reducing
subspace R such that T |R is normal. However, it follows by standard theory of subnormal
operators (see, e.g., [8]) that such a subspace R is reducing for any normal extension of
T . Thus T is pure if and only if H has no Mz-reducing subspaces. In the remainder, a
subspace R ⊂ H will be called reducing if it is reducing with respect to a (and hence all)
normal extension of T .
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theorems to mention a few ingredients. The aim of this paper and its sequel,
[5], is to provide relatively simple proofs of some of the key results in [1],
that only rely on classical function theory.

For a closed set S we let R(S) denote the rational functions with poles
outside of S, and given M ⊂ H we denote by [M]R(S) the closure of the
span of {rf : r ∈ R(S) and f ∈ M}. Recall that any subnormal operator
T has a minimal normal extension, and that any two such extensions are
unitarily equivalent (see [8]). In particular, the multiplicity function of a
minimal normal extension N of T is unique for T , and we will denote it
MFT or simply MF when T is clear from the context. (If N = Mz on
⊕∞k=1L

2(µk,C) then MFN (x) = #{k : x ∈ suppµk}. For more information,
see [7].) The main result of this paper is the following.

Theorem 1.3. Let T be a pure subnormal operator as above such that (ii)
holds, and for some fixed λ ∈ Ω set n = −ind (T − λ). Then MFT (·) = n
µ-a.e. Moreover, there exists f1, . . . , fn such that H = [f1, . . . , fn]R(σ(T )).

It is tempting to hope that one could go further and choose the fj ’s such
that the [fj ]R(σ(T ))’s become mutually orthogonal, because then the further
study of T would reduce to the case n = 1. When σ(T ) = D, i.e., when T is
an isometry, this is possible by the Wold decomposition mentioned initially.
This is also true for any simply connected domain and, surprisingly, also
when the domain has precisely one “hole”, but in general not for more
holes. This is the topic of [5], which is a sequel to the present paper. It also
contains some examples relevant to this article.

2. Preliminaries

This section is a collection of known results from various areas that will
be used.

2.1. Complex analysis. Given a closed set S ⊂ C we will denote by C(S)
the Banach algebra of continuous functions on S with the supremum norm.
By A(S) ⊂ C(S) we denote the algebra of all functions that are holomorphic
on the interior of S, and by R(S) ⊂ C(S) we denote the closure of all rational
functions with poles outside S. Throughout the paper we will let Ω ⊂ C be
a domain as follows:

Assumption Ω. Let Ω ⊂ C be a bounded connected open set whose
boundary consists ofN+1 disjoint simple closed rectifiable nontrivial Jordan
curves.

Denote the curves that make up ∂Ω by γ0, . . . , γN . Each γn can be chosen
such that

γn(s) = γn(0) +
∫ s

0
gn(t)dt, 0 ≤ s ≤ 1,
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for some (Borel-measurable) integrable function gn : [0, 1] → C. We define
“arc-length measure” m for ∂Ω as the Borel measure on C given by

(2.1) m(S) =
N∑
n=0

∫
γ−1

n (S)
|gn(t)|dt.

By the a.e. Lebesgue differentiability of each gn, it follows that ∂Ω has a
tangent at m-a.e. point. In particular it makes sense to talk about nontan-
gential limits at a.e. boundary point. Let α : ∂Ω → T be the unimodular
function such that α(ξ) points in the direction of the tangent to ∂Ω at a.e.
ξ ∈ ∂Ω and iα(ξ) points inside of Ω. Given any function f ∈ L1(m,C) we
define ∫

∂Ω
f dz =

∫
fα dm.

Theorem 2.1. Let Ω satisfy Assumption Ω, let f ∈ L1(m,C) be given and
define

f̃(w) =
1

2πi

∫
∂Ω

f(ζ)
ζ − w

dz

for all w ∈ C \ ∂Ω. If f̃ ≡ 0 on C \ Ω, then the nontangential limits of f̃ |Ω
coincide with f for m-a.e. ξ ∈ ∂Ω.

Proof. We will only outline the details. Let ξ be a point on ∂Ω, let n and
tξ be such that ξ = γn(tξ) and suppose that gn is Lebesgue differentiable
at tξ. This assumption holds for m-a.e. ξ, (see, e.g., [6]). Moreover, by
reparametrizing the curves with the arc-length, we may assume that α(ξ) =
gn(tξ) holds for a.e. pair ξ and tξ as above. Let L be the line tangent to
∂Ω through ξ, let Γξ be a fixed nontangential cone with vertex at ξ, and
let w ∈ Γξ. Let ŵ be the mirror of w in L. Let I be a small open interval
around tξ. Note that

f̃(w) =
1

2πi

∫
∂Ω
f(ζ)

(
1

ζ − w
− 1
ζ − ŵ

)
dz

for w sufficiently near ξ. We also have

(2.2) lim sup
w→ξ

w∈Γξ∩Ω

f̃(w)− f(ξ)

= lim sup
w→ξ

w∈Γξ∩Ω

[
1

2πi

∫
γn(I)

f(ζ)
(

1
ζ − w

− 1
ζ − ŵ

)
dz − f(ξ)

]

because the kernel goes to zero uniformly on ∂Ω\γn(I). Note that ξ+α(ξ)I
is a piece of L. Tedious estimates then show that the right hand side of (2.2)
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is bounded by

lim sup
w→ξ

w∈Γξ∩Ω

[
1

2πi

∫
I
f(γn(t))

(
1

ξ + α(ξ)t− w
− 1
ξ + α(ξ)t− ŵ

)
dt− f(ξ)

]
+ε(I),

where ε(I) goes to zero when the length of I does. However, the new kernel
is precisely the Poisson kernel for L, so the lim sup equals 0 by the classical
Fatou’s theorem, given that f(ξ) is the Lebesgue derivative of f ◦ γn at tξ.
Since this is true for m-a.e. ξ, the proof is complete. �

Suppose, for the next statement only, that N = 0, i.e., that Ω is simply
connected and let φ : D → Ω be an analytic bijection, as given by the
Riemann mapping theorem. Let θ denote the arc-length measure for T.
The following result is a combination of theorems by F. and M. Riesz and
Carathéodory, (see Section 2.C and 2.D of [14]).

Theorem 2.2. Let φ be as above, where Ω is simply connected and satisfies
Assumption Ω. Then φ extends to a continuous bijective function on D such
that φ|T is a parametrization of ∂Ω. Moreover, φ′ ∈ H1(D) and given any
f ∈ L1(m) we have ∫

fdm =
∫

T
f ◦ φ |φ′| dθ.

With φ and Ω as in Theorem 2.2, Lindelf’s theorem says that a function
f on Ω has nontangential limits m-a.e. if and only if f ◦φ has nontangential
limits θ-a.e. In particular, Privalov’s theorem holds on Ω, i.e., a meromor-
phic function on Ω can not have nontangential limits equal to zero on a set
of positive measure. This fact easily extends to domains Ω whose boundary
has several components, and will be used frequently in the coming proofs.

Recall that a set E ⊂ ∂Ω is called a peak-set for A(Ω) if there exists an
f ∈ A(Ω) such that f(ζ) = 1 for all ζ ∈ E and |f(ζ)| < 1 for all ζ ∈ Ω \ E.
The next theorem is a combination of results from [12] and [13].

Theorem 2.3. Let Ω be as in Assumption Ω. Then

A(Ω) = R(Ω).

Moreover, if E ⊂ ∂Ω is closed, then E is a peak set for A(Ω) if and only if
m(E) = 0.

2.2. Normal operators. Recall that the concept of weak and strong mea-
surability coincide for functions with values in l2(N), (see [15], sec 3.11). We
thus say that f : C → l2 is (Borel-) measurable if the function 〈f(·), x〉l2
is (Borel-) measurable for all x ∈ l2, which in turn is equivalent to saying
that each “coordinate function” fi = 〈f(·), ei〉l2 is measurable, where {ei}i≥0

denotes the standard orthonormal basis for l2. Let µ denote a compactly
supported finite positive Borel measure on C. We will denote by L2(µ, l2)
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the space of all measurable l2-valued functions f on C such that

‖f‖2 =
∫
‖f‖2

l2 dµ <∞.

To simplify the notation, given f, g ∈ L2(µ, l2), we will often denote the
function 〈f(·), g(·)〉l2 by f · ḡ, and similarly we write |f | instead of ‖f(·)‖l2 .
Let z be the function z(ζ) = ζ, ζ ∈ C, and let Mz denote the operator of
multiplication by the independent variable on L2(µ, l2), i.e.,

Mz(f) = zf.

Let N be a normal operator and let MF (·) denote the multiplicity function
of N , (cf. [7]). Set

σn = {ζ ∈ C : MF (ζ) ≥ n}
and let χσn be the characteristic function of σn. By standard multiplicity
theory, N is unitarily equivalent to Mz on ⊕∞i=1L

2(χσiµ,C), where µ is
the scalar valued spectral measure of N . The latter space can clearly be
viewed as a reducing subspace of L2(µ, l2). (Recall that by reducing we
mean reducing with respect to Mz.) Conversely, if M is a reducing subspace
of L2(µ, l2), then Mz|M is a normal operator.

The next result characterizes all reducing subspaces of L2(µ, l2), and the
next again characterizes operators commutating with Mz restricted to such
subspaces. Although they are not precisely stated in the below form, these
results follows from the theory in [10]. Let B(l2) denote the space of opera-
tors on l2 and recall that a function φ : C → B(l2) is called SOT-measurable
if φ(·)(f(·)) is measurable for every measurable function f : C → l2.

Proposition 2.4. Let M be a reducing subspace of L2(µ, l2). Then there is
an SOT-measurable function PM on C whose values are orthogonal projec-
tions in l2 such that

(2.3) M =
{
f ∈ L2(µ, l2) : f(ζ) ∈ RanPM(ζ) for µ-a.e. ζ ∈ C

}
.

Given a reducing subspace M, we will without comment associate with
it PM as above. Next, we will characterize all operators between subspaces
M and M′ as above, that commute with Mz restricted to the respective
subspaces. Given a function f : C → R+ we will let ess-supµ(f) denote
the essential supremum of f with respect to µ. If φ is SOT-measurable
and ess-sup(‖φ(·)‖) < ∞, then φ clearly defines a bounded operator Φ on
L2(µ, l2) via Φ(f) = φ(·)f(·).

Corollary 2.5. Let M and M′ be reducing subspaces of L2(µ, l2) and let

Φ : M→M′

be such that ΦMz|M = Mz|M′Φ. Then ∀ζ ∈ C, ∃φ(ζ) : RanPM(ζ) →
RanPM′(ζ) such that ess-supµ(‖φ(·)‖) = ‖Φ‖ and

Φ(f)(ζ) = φ(ζ)f(ζ)
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for every f ∈ M and µ-a.e. ζ. Moreover, Φ∗ corresponds in the same way
with φ∗(·) and if Φ has either of the properties injective, bounded below,
dense range, surjective or isometric, then the same is true for µ-a.e. φ(ζ).

In particular, if M is reducing and MF denotes the multiplicity function
of Mz|M, then we easily get that

MF (·) = dim(RanPM(·))
µ-a.e.

2.3. Hilbert spaces of analytic functions. Let n ∈ N be given, let B
be a Hilbert space whose elements are Cn-valued analytic functions on Ω
and assume that B is invariant under multiplication by polynomials. In
particular, Mz is an operator on B by the obvious definition. Given λ ∈ Ω
let Eλ : B → Cn denote the evaluation operator given by

Eλ(f) = f(λ).

Assume in addition that B is such that each Eλ is continuous and surjective,
σ(Mz) = Ω and KerEλ = Ran(Mz − λ) for all λ ∈ Ω. We will then refer to
B as a Hilbert space of Cn-valued analytic functions.

By the work of Cowen and Douglas [9] it follows that if T is an operator
on a Hilbert space X such that σ(T ) = Ω, ∩λ∈ΩRan(T −λ) = {0}, and T −λ
is bounded below with Fredholm index −n for all λ ∈ Ω, then there exists a
unitary map U from X onto a Hilbert space of Cn-valued analytic functions
such that

UT = MzU.

See [3] for a basic proof of the above result. The invariant subspaces of B
are characterized in [4], under the additional assumption that Ran(Mz − λ)
is dense in B for all λ ∈ ∂Ω. To present this characterization, we first need
some notation. For any λ ∈ Ω and t ∈ N we define Etλ : B → (Cn)t by
sending f =

∑∞
k=0 akz

k into

Etλ(f) = (ak)tk=0.

Moreover, let S : (Cn){0,...,t} → (Cn){0,...,t} be the “shift-operator”, i.e.,

S((ak)tk=0) = (0, a0, . . . , at−1).

Example 2.6. Let t,K ∈ N and λ1, . . . , λK ∈ Ω be given. Moreover for
each 1 ≤ k ≤ K let Nk be an S-invariant subspace of (Cn){0,...,t}. Set

(2.4) M =
{
f ∈ H : Etλk

(f) ∈ Nk, ∀k = 1 . . .K
}
.

Then M is an invariant subspace with finite codimension.

Theorem 2.7. Let B be a Hilbert space of Cn-valued analytic functions.
Then the subspace given in Example 2.6 has codimension

codimM =
K∑
k=1

codimNk.
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Moreover, if Ran(Mz − λ) is dense in B for all λ ∈ ∂Ω, then any closed
invariant subspace with finite codimension has the form (2.4).

3. Invariant subspaces of L2(µ, l2).

Assumption T . Throughout this section, Ω will be a domain that satisfies
Assumption Ω, µ will be a finite measure with suppµ ⊂ ∂Ω, andH will be an
Mz-invariant subspace of L2(µ, l2) such that T = Mz|H satisfies σ(T ) = Ω.

The next two propositions show how to do reduce the study of H to the
case when T is pure and µ = m, as defined in Section 2.1. Let µ = µa + µs
be the Lebesgue decomposition of µ in an absolutely continuous measure
µa and singular measure µs, with respect to m. Moreover let sing-supp(µ)
be the singular support of µ, i.e., the (µ-a.e. unique) set such that µs =
χsing-supp(µ)µ.

Proposition 3.1. Let λ0 ∈ Ω be given. Then H0 = ∩
k∈N

Ran(T − λ0)k is the

largest reducing subspace in H. Moreover H1 = H	H0 is T -invariant, T |H1

is pure and µa is mutually absolutely continuous with respect to m. Finally,
for all f ∈ H1 we have f |sing-supp(µ) = 0 µ-a.e. and f 6= 0 m-a.e.

Proof. Fix λ0 ∈ Ω and set

H0 = ∩
k∈N

Ran(T − λ0)k, T0 = T |H0 .

Then T0 − λ0 is invertible and as Ω is connected we conclude by Fredholm
theory that Ω ∩ σ(T0) = ∅. It is also not hard to see that H0 is (T − λ)−1-
invariant for all λ ∈ C\Ω, and hence σ(T0) ⊂ ∂Ω. By Proposition 1.2 we get
that σ(T0) ⊂ suppµ and Proposition 1.1 then implies that H0 is reducing.
Thus H1 = H 	 H0 is T -invariant, so set T1 = T |H1 . If H0 is not the
largest reducing subspace then H1 has a reducing subspace R. But this is
impossible because then (T1 − λ0)|R would be invertible by Proposition 2.4
which would contradict the obvious fact that

∩
k∈N

Ran(T1 − λ0)k = {0}.

We will now show that f |sing-supp(µ) = 0 µ-a.e. for all f ∈ H1. Suppose
not and let f ∈ H1 be a nonzero element such that there exists a set E ∈
sing-supp(µ) with µ(E) 6= 0 and f(ζ) 6= 0 for all ζ ∈ E. As µ is a finite
Borel measure on C it follows from standard measure theory (see Proposition
1.5.6 in [6]) that we may assume that E is closed. Moreover we may clearly
assume that E is a subset of one of the closed rectifiable curves that make
up ∂Ω. By Theorem 2.3 there exists a function φ ∈ A(Ω) which peaks at E
and moreover φf ∈ H1. Taking the limit of φkf as k → ∞ we deduce that
χEf ∈ H1. Now, as E is closed and m(E) = 0, we infer that its complement
is connected. By Runge’s theorem it follows that the function (z − λ0)−k,
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k ∈ N, can be approximated uniformly on E by polynomials, so we deduce
that

(z − λ0)−kχEf ∈ H1,

which finally implies the contradiction

χEf ∈ ∩
k∈N

Ran(T1 − λ0)k = {0}.

Let f ∈ H1 be arbitrary and let u be the function such that µa = um. It
remains to show that u and f are nonzero m-a.e. on ∂Ω. Pick a φ ∈ H⊥
such that 〈(Mz − λ0)−1f, φ〉 6= 0 and note that〈

(Mz − λ)−1f, φ
〉

=
∫
f · φ(ζ)
ζ − λ

dµ(ζ) =
∫
f · φ(ζ)
ζ − λ

u(ζ)dm(ζ).(3.1)

(Recall that f · φ denotes the function ζ 7→ 〈f(ζ), φ(ζ)〉l2 .) Clearly, the
function in (3.1) is 0 for λ 6∈ Ω, so by Theorem 2.1 we conclude that

(3.2) nt-lim
λ∈Ω;λ→ξ

∫
f · φ(ζ)
ζ − λ

u(ζ)dm(ζ) = 2πi(f · φ(ξ))
u(ξ)
α(ξ)

for m-a.e. ξ ∈ ∂Ω. The desired conclusion now follows by Privalov’s theo-
rem. �

Due to the above proposition, we will in the remainder assume that H has
no reducing subspaces, as the reducing subspaces of L2(µ, l2) are completely
understood. In other words, we will assume that T = Mz|H is pure. The
next proposition shows that when this is the case we do not loose generality
by assuming that µ = m.

Proposition 3.2. Let T be a pure operator as in Assumption T . Let u
be such that µa = um. Then H is unitarily equivalent to a subspace H̃ ⊂
L2(m, l2), where the unitary operator U : H → H̃ is given by U(f)(ζ) =√
u(ζ)f(ζ).

Proof. By Proposition 3.1 we get

‖f‖2
H =

∫
|f |2dµ =

∫
|f |2dµa =

∫
|
√
uf |2dm = ‖Uf‖2

H̃ ,

from which the proposition immediately follows. �

The following result gives different conditions for T to be pure. It also
enables us to use the results about Hilbert spaces of analytic functions,
Section 2.3.

Proposition 3.3. Let T be an operator as in Assumption T , let λ0 ∈ Ω be
arbitrary and let O ⊂ Ω be any open set. Then

∩
k∈N

Ran(T − λ0)k = ∩
λ∈Ω

Ran(T − λ) = ∩
λ∈O

Ran(T − λ).
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Proof. Let L be the left inverse of T − λ0 that annihilates Kλ0 = H 	
Ran(T − λ0). Then ‖L‖ ≤ dist(λ0, ∂Ω). For |λ − λ0| < (dist(λ0, ∂Ω)) we
define the operator Lλ by

Lλ = L(I − (λ− λ0)L)−1.

Clearly Lλ(T − λ) = I so Pλ = (T − λ)Lλ defines a projection. Given any
f ∈ H we have Pλf ∈ Ran(T − λ) and L(f − Pλf) = 0 so f − Pλf ∈ Kλ0 .
Since Pλ(Kλ0) = {0} we conclude that Pλ is the projection onto Ran(T −λ)
parallel with Kλ0 . Note that

(I − Pλ)f =
∞∑
k=0

(
Lkf − (T − λ0)Lk+1f

)
(λ− λ0)k

and let ε < dist(λ0, ∂Ω) be arbitrary. The following implications are now
easily verified:

f ∈
⋂

|λ−λ0|<ε

Ran(T − λ)

⇐⇒ f = Pλf for all |λ− λ0| < ε

⇐⇒ Lkf = (T − λ0)Lk+1f for all k ∈ N

⇐⇒ f = (T − λ0)kLkf for all k ∈ N

⇐⇒ f ∈ ∩
k∈N

Ran(T − λ0)k.

Let γ be any point such that |γ − λ0| < dist(λ0, ∂Ω)/2. As λ0 is arbitrary
and ∩

k∈N
Ran(T − λ0)k does not depend on ε, a short argument shows that

(3.3)
⋂

|λ−λ0|<ε

Ran(T − λ) =
⋂

|λ−γ|<δ

Ran(T − λ)

for all δ < dist(γ, ∂Ω). But if γ ∈ Ω is arbitrary then we can find a finite
sequence λ1, . . . , λN with λN = γ and

|λk−1 − λk| < dist(λk−1, ∂Ω)/2

for all k = 1, . . . , N . By repeated use of (3.3) it then follows that (3.3)
actually holds for all γ ∈ Ω and δ < dist(γ, ∂Ω). By this the equalities

∩
k∈N

Ran(T − λ0)k = ∩
λ∈Ω

Ran(T − λ) = ∩
λ∈O

Ran(T − λ).

are now easily obtained. �

For future use, we record that as a consequence of the statements con-
cerning Pλ, we have

(3.4) Kλ0 + Ran(T − λ) = H, whenever |λ− λ0| < dist(λ0, ∂Ω).

We will now investigate the subspaces Ran(T − λ) for λ ∈ ∂Ω. Part of
the proof of the next proposition follows by a slight modification of the
arguments in [2].
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Proposition 3.4. Let T be a pure operator as in Assumption T and let
λ ∈ ∂Ω be arbitrary. Then

cl(Ran(T − λ)) = H.

Proof. Take fλ ∈ Ran(Mz−λ)⊥. By Theorem 2.3 there is a φ ∈ A(Ω) such
that φ(λ) = 1 and |φ(ζ)| < 1 for all ζ ∈ Ω \ {λ}. With the same argument
as in Lemma 2.1 in [2] we deduce that

〈ψfλ, fλ〉 = ψ(λ) ‖fλ‖2

for all ψ ∈ A(Ω). But then we have

〈φkfλ, fλ〉 = (φ(λ))k ‖fλ‖2 = ‖fλ‖2

for any k ∈ N. Taking the limit as k → ∞ we get, by the dominated
convergence theorem, that ‖fλ‖2 =

∫
{λ} |fλ|

2dµ, which by Proposition 3.1
equals 0, as desired. �

4. Multicyclicity, index and fiber-dimensions on ∂Ω

Following [1], we call T n-multicyclic if n is the smallest cardinality of a
set S such that

[S]R(Ω) = H.
Note that [H]L∞ is the smallest reducing subspace containingH, soMz|[H]L∞

is the minimal unitary extension of T . We will from now on abbreviate
the multiplicity function MFMz |[H]L∞

of the operator Mz|[H]L∞ with MFH.
Intuitively, the number MFH(ξ) is thus the dimension of the space {f(ξ) :
f ∈ H}.

Theorem 4.1. Let T be as in Assumption T . Let λ0 ∈ Ω be arbitrary and
let n ∈ N be given. The following are equivalent:

MFH(·) = n m-a.e. on ∂Ω.(4.1)

ind (T − λ0) = −n.(4.2)

T is n-multicyclic.(4.3)

Moreover, we have H ⊂ [Kλ0 ]L∞ .

Proof. By Propositions 3.1 and 3.2 it follows that it is not a restriction
to assume that µ = m. Assume that there exists a subset E ∈ ∂Ω with
m(E) > 0 such that MFH(·) = n m-a.e. on E, n ∈ N ∪ {∞}. We will first
show that dimKλ0 = n. By the assumption that T is pure, Proposition 3.1
and Proposition 3.3 it follows that Span{Kλ : λ ∈ Ω} is dense in H. Let ñ ≤
n be finite. A short argument shows that we may pick ψ1, . . . , ψñ ∈ ∪λ∈ΩKλ
such that

(4.4) dim Span{ψj(ξ)}ñj=1 = ñ

for each ξ in some set E′ ⊂ E of positive measure. Set φj = (z − λj)ψj ,
where λj is such that ψj ∈ Kλj

, put Φ = Span{φj}ñj=1 and let PΦ denote the
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orthogonal projection in L2(m, l2) onto Φ. Since Φ ⊂ H⊥, equation (3.4)
implies that

PΦ(Mz − λ)−1(f) ∈ PΦ(Mz − λ)−1(Kλ0)

for all f ∈ H and all λ with |λ− λ0| < dist(λ0, ∂Ω). Thus

(4.5) PΦ(Mz −λ)−1(H) = PΦ(Mz −λ)−1(Kλ0), |λ−λ0| < (dist(λ0, ∂Ω)).

Claim 1. ∃λ1 ∈ Ω such that PΦ(Mz − λ1)−1(Kλ0) = Φ.

If we assume that the claim is false, then for all |λ− λ0| < (dist(λ0, ∂Ω))
we have

det

〈
ψ1

z−λ , φ1〉 . . . 〈 ψñ
z−λ , φ1〉

...
. . .

...
〈 ψ1

z−λ , φñ〉 . . . 〈 ψñ
z−λ , φñ〉

 = 0,

by (4.5). The left hand side is an analytic function on Ω, which thus vanishes
identically. By Theorem 2.1 we then get

0 =
(

2πi
α(ξ)

)ñ
det

ψ1(ξ) · φ1(ξ) . . . ψñ(ξ) · φ1(ξ)
...

. . .
...

ψ1(ξ) · φñ(ξ) . . . ψñ(ξ) · φñ(ξ)

 =

=
(

2πi
α(ξ)

)ñ( ñ∏
i=1

(ξ − λi)

)
det
((
ψ1(ξ), . . . , ψñ(ξ)

)∗(
ψ1(ξ), . . . , ψñ(ξ)

))
for a.e. ξ ∈ E′, (where

(
ψ1(ξ), . . . , ψñ(ξ)

)
is treated as an ∞× ñ-matrix and

∗ means taking the transpose and conjugate). This clearly contradicts (4.4),
and hence the claim is proven. In particular, we get dimKλ0 ≥ n.

Claim 2. dimKλ0 ≤ n.

If n = ∞ there is nothing to prove. Assume that n <∞ and dimKλ0 > n.
Let {kj}n+1

j=1 be orthonormal vectors in Kλ0 . Note that (z − λ0)ki ∈ H⊥ and
let K(λ) be the matrix-valued analytic function given by

K(λ) = det

 〈 k1
z−λ , (z − λ0)k1〉 . . . 〈kn+1

z−λ , (z − λ0)k1〉
...

. . .
...

〈 k1
z−λ , (z − λ0)kn+1〉 . . . 〈kn+1

z−λ , (z − λ0)kn+1〉

 .

Clearly K(λ0) = 1 and as above we get that

nt-lim
λ→ξ

K(λ)

=
(2πi(ξ − λ0)

α(ξ)

)n+1
det
((
k1(ξ), . . . , kn+1(ξ)

)∗(
k1(ξ), . . . , kn+1(ξ)

))
.

However, since dim RanP[H]L∞ (ξ) = n on E and ki(ξ) ∈ RanP[H]L∞ (ξ) for
a.e. ξ ∈ ∂Ω and all 1 ≤ i ≤ n+1, it is easily seen that the right-hand side is
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zero a.e. on E. By Privalov’s theorem we obtain a contradiction and hence
the claim is proven.

Thus we have shown that (4.1) and (4.2) are equivalent. For the remainder
we let n be as in (4.1) and (4.2). To see that H ⊂ [Kλ0 ]L∞ , note that the
same argument as in the proof of Claim 2, but applied to k1, . . . , kn only,
shows that dim(Span{k1(ξ), . . . , kn(ξ)}) = n m-a.e. on ∂Ω. This implies
that P[H]L∞ = P[Kλ0

]L∞ a.e. on ∂Ω, and hence [H]L∞ = [Kλ0 ]L∞ .
Finally, let T be ñ-multicyclic for some ñ ∈ N ∪ {∞}. Since clearly

MFH(·) ≤ ñ, we have n ≤ ñ. So it remains to exhibit n generating vectors
for H. We first note that [Kλ0 ]R(Ω) has finite codimension in H. To see this,
set A = H 	 [Kλ0 ]R(Ω), let k1, . . . , kn be a basis for Kλ0 and consider the
map T : A → L1(m,Cn) given by

T (φ) =

 φ · k1
...

φ · kn

 .

Since A ⊂ Ran(T − λ0) we have rφ ∈ Ran(T − λ0) for all r ∈ R(Ω) and
φ ∈ A, i.e.,

〈rφ, ki〉 =
∫
∂Ω
rφ · ki dm = 0.

This combined with the obvious fact that 〈φ, rki〉 = 0 for all r ∈ R(Ω)
shows that the measure ki · φ dm annihilates ReR(Ω) - the set of real parts
of R(Ω). It is well known that the set of such measures is finite-dimensional,
(see, e.g., Theorem 4.6, ch. VI in [13]). Thus RanT is a finite-dimensional
space. Moreover, by what we have already shown, φ(ξ) ∈ Span{ki(ξ)}ni=1
for a.e. ξ ∈ ∂Ω, and thus T is an injective map. It follows that A has finite
dimension, as desired. To finish the proof, we prove the following claim.

Claim 3. Given f1, . . . , fn ∈ H with dim
(
H	 [f1, . . . , fn]R(Ω)

)
= N for

some N ∈ N, there are g1, . . . , gn ∈ H with dim
(
H	 [g1, . . . , gn]R(Ω)

)
< N .

By section 2.3, H is unitarily equivalent to a Hilbert space B of Cn-valued
analytic functions on Ω, such that T corresponds to Mz on B. By Propo-
sition 3.4 the invariant subspaces of finite codimension of B are described
by Theorem 2.7. Denote by f̃1, . . . , f̃n the elements of B that correspond to
f1, . . . , fn, and set

M = [f̃1, . . . , f̃n]R(Ω).

Let t,K ∈ N, λ1, . . . , λK ∈ Ω and Nk ⊂ (Cn){0,...,t} describe M via (2.4).
Moreover, define N 0

k ⊂ Cn via

N 0
k = RanE0

λk
= {f̃(0) : f̃ ∈ Nk}.

If N 0
k = Cn for some k, then by the shift invariance of Nk it is easy to see

that Nk = (Cn){0,...,t}, and hence we may assume that N 0
k 6= Cn for some k,
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because otherwise M = B and we are done. The map

Span{f̃1, . . . , f̃n} 3 f̃ 7→ E0
λk

(f̃) ∈ Cn

is then a linear map that is not surjective, and thus we can take new a basis
{h̃1, . . . , h̃n} for Span{f̃1, . . . , f̃n} such that E0

λk
(h̃1) = 0. Note that

M = [f̃1, . . . , f̃n]R(Ω) = [h̃1, . . . , h̃n]R(Ω).

Since KerE0
λk

= Ran(Mz − λk) by Section 2.3, we can pick g1 ∈ H such that

g̃1 =
h̃1

(z − λk)
.

Set g̃i = h̃i for 1 < i ≤ n. Clearly

M⊂ [g̃1, . . . , g̃n]R(Ω) ⊂ B

and we are done if we show that the first inclusion is strict. If not, we have

(4.6) h̃1 ∈ (z − λk)M,

which is impossible. One way to see this is to note that

dim (M	 (z − λk)M) = n,

which is not hard to see using the material in Section 2.3. But if (4.6) holds
then

M = (z − λk)M+ Span{hi}ni=2. �

As noted in the introduction, the above theorem has been obtained earlier
in [1], but with completely different methods. We note that if one knows
Kλ explicitly, then it is possible with the above proof to actually calculate
the generating vectors f1, . . . , fn, which might be one advantage of this
approach. In the sequel, [5], we will go further in the case when Ω has only
one hole, and prove that one can pick f1, . . . , fn such that

H = [f1]R(Ω) ⊕ . . .⊕ [fn]R(Ω).
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[6] Cohn, D. L. Measure theory. Birkhäuser, Boston, 1980. ix+373 pp. ISBN: 3-7643-
3003-1. MR0578344 (81k:28001), Zbl 0436.28001.

http://www.ams.org/mathscinet-getitem?mr=0397468
http://www.emis.de/cgi-bin/MATH-item?0321.47019
http://www.ams.org/mathscinet-getitem?mr=1255271
http://www.emis.de/cgi-bin/MATH-item?0804.46033
http://www.ams.org/mathscinet-getitem?mr=2434343
http://www.emis.de/cgi-bin/MATH-item?pre05617551
http://www.emis.de/cgi-bin/MATH-item?pre05804434
http://nyjm.albany.edu/j/2011/17a_193.html
http://www.ams.org/mathscinet-getitem?mr=0578344
http://www.emis.de/cgi-bin/MATH-item?0436.28001


ON SUBNORMAL OPERATORS 191

[7] Conway, J. B. A course in functional analysis. Second edition. Graduate Texts in
Mathematics, 96. Springer-Verlag, New York, 1990. xvi+399 pp. ISBN: 0-387-97245-
5. MR1070713 (91e:46001), Zbl 0706.46003.

[8] Conway, J. B. The theory of subnormal operators. Mathematical Surveys and Mono-
graphs, 36. American Mathematical Society, Providence, RI, 1991. xvi+436 pp. ISBN:
0-8218-1536-9. MR1112128 (92h:47026), Zbl 0743.47012.

[9] Cowen, M. J.; Douglas, R. G. Complex geometry and operator theory. Acta Math.
141 (1978) 187–261. MR0501368 (80f:47012), Zbl 0427.47016.
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