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The Dirichlet space: a survey

Nicola Arcozzi, Richard Rochberg, Eric T. Sawyer
and Brett D. Wick

Abstract. In this paper we survey many results on the Dirichlet space
of analytic functions. Our focus is more on the classical Dirichlet space
on the disc and not the potential generalizations to other domains or
several variables. Additionally, we focus mainly on certain function the-
oretic properties of the Dirichlet space and omit covering the interesting
connections between this space and operator theory. The results dis-
cussed in this survey show what is known about the Dirichlet space and
compares it with the related results for the Hardy space.

Contents

1. Introduction 46
2. The Dirichlet space 47

2.1. The definition of the Dirichlet space 47
2.2. The definition in terms of boundary values and other

characterizations of the Dirichlet norm 50
2.3. The reproducing kernel 51

3. Carleson measures 52
3.1. Definition and the capacitary characterization 52
3.2. Characterizations by testing conditions 54

4. The tree model 58
4.1. The Bergman tree 58
4.2. Detour: the boundary of the tree and its relation with the

disc’s boundary 59
4.3. A version of the Dirichlet space on the tree 61
4.4. Carleson measures on the tree and on the disc 62

Received August 31, 2010.
2000 Mathematics Subject Classification. 30C85, 31C25, 46E22, 30E05.
Key words and phrases. Analytic Dirichlet space, interpolating sequences, capacity,

Carleson measures.
N.A.’s work partially supported by the COFIN project Analisi Armonica, funded by the

Italian Minister for Research. R.R.’s work supported by the National Science Foundation
under Grant No. 0700238. E.S.’s work supported by the National Science and Engineering
Council of Canada. B.W.’s work supported by the National Science Foundation under
Grant No. 1001098.

ISSN 1076-9803/2011

45

http://nyjm.albany.edu/nyjm.html
http://nyjm.albany.edu/j/2011/Vol17a.htm


46 N. ARCOZZI, R. ROCHBERG, E. T. SAWYER AND B. D. WICK

5. The complete Nevanlinna–Pick property 66
6. The multiplier space and other spaces intrinsic to D theory 68

6.1. Multipliers 68
6.2. The weakly factored space D �D and its dual 69
6.3. The Corona theorem 71

7. Interpolating sequences 75
7.1. Interpolating sequences for D and its multiplier space 76
7.2. Weak interpolation and “onto” interpolation 78
7.3. Zero sets 79

8. Some open problems. 80
References 81

1. Introduction

Notation. The unit disc will be denoted by D = {z ∈ C : |z| < 1} and the
unit circle by S = ∂D. If Ω is open in C, H(Ω) is the space of the functions
which are holomorphic in Ω. A function ϕ : S → C is identified with a
function defined on [0, 2π); ϕ(eiθ) = ϕ(θ).

Given two (variable) quantities A and B, we write A ≈ B if there are
universal constants C1, C2 > 0 such that C1A ≤ B ≤ C2A. Similarly,
we use the symbol .. If A1, . . . , An are mathematical objects, the symbol
C(A1, . . . , An) denotes a constant which only depends on A1, . . . , An.

The Dirichlet space, together with the Hardy and the Bergman space, is
one of the three classical spaces of holomorphic functions in the unit disc.
Its theory is old, but over the past thirty years much has been learned about
it and about the operators acting on it. The aim of this article is to survey
some aspects, old and and new, of the Dirichlet theory.

We will concentrate on the “classical” Dirichlet space and we will not
dwell into its interesting extensions and generalizations. The only exception,
because it is instrumental to our discourse, will be some discrete function
spaces on trees.

Our main focus will be a Carleson-type program, which has been unfold-
ing over the past thirty years. In particular, to obtain a knowledge of the
Dirichlet space comparable to that of the Hardy space H2: weighted imbed-
ding theorems (“Carleson measures”); interpolating sequences; the Corona
Theorem. We also consider other topics which are well understood in the
Hardy case: bilinear forms; applications of Nevanlinna–Pick theory; spaces
which are necessary to develop the Hilbert space theory (H1 and BMO,
for instance, in the case of H2). Let us further mention a topic which is
specifically related to the Dirichlet theory, namely the rich relationship with
potential theory and capacity.
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This survey is much less than comprehensive. We will be mainly interested
in the properties of the Dirichlet space per se, and will talk about the rich
operator theory that has been developed on it when this intersects our main
path. We are also biased, more or less voluntarily, towards the topics on
which we have been working. If the scope of the survey is narrow, we will
try to give some details of the ideas and arguments, in the hope to provide
a service to those who for the first time approach the subject.

Let us finally mention the excellent survey [44] by Ross on the Dirichlet
space, to which we direct the reader for the discussion on the local Dirichlet
integral, Carleson’s and Douglas’ formulas, and the theory of invariant sub-
spaces. Also, [44] contains a discussion of zero sets and boundary behavior.
We will only tangentially touch on these topics here. The article [59] surveys
some results in the operator theory on the Dirichlet space.

2. The Dirichlet space

2.1. The definition of the Dirichlet space. The Dirichlet space D is the
Hilbert space of analytic functions f in the unit disc D = {z ∈ C : |z| < 1}
for which the semi-norm

(1) ‖f‖2D,∗ =
∫

D
|f ′(z)|2dA(z)

is finite. Here, dA(x + iy) = 1
πdxdy is normalized area measure. An easy

calculation with Fourier coefficients shows that, if f(z) =
∑∞

n=0 anz
n,

(2) ‖f‖2D,∗ =
∞∑

n=1

n|an|2.

The Dirichlet space sits then inside the analytic Hardy space H2. In par-
ticular, Dirichlet functions have nontangential limits at a.e. point on the
boundary of D. Much more can be said though, both on the kind of ap-
proach region and on the size of the exceptional set, see the papers [41], [44]
and [56].

There are different ways to make the semi-norm into a norm. Here, we
use as norm and inner product, respectively,

‖f‖2D = ‖f‖2D,∗ + ‖f‖2H2(S),(3)

〈f, g〉D = 〈f, g〉D,∗ + 〈f, g〉H2(S)

=
∫

D
f ′(z)g′(z)dA(z) +

1
2π

∫ 2π

0
f(eiθ)g(eiθ)dθ.

Another possibility is to let |||f |||2D = ‖f‖2D,∗ + |f(0)|2. Most analysis on
D carries out in the same way, no matter the chosen norm. There is an
important exception to this rule. The Complete Nevanlinna–Pick Property
is not invariant under change of norm since it is satisfied by ‖ · ‖D, but not
by ||| · |||D.
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The Dirichlet semi-norm has two different, interesting geometric interpre-
tations.

(Area) Since Jf = |f ′|2 is the Jacobian determinant of f ,

(4) ‖f‖2D,∗ =
∫

D
dA(f(z)) = A(f(D))

is the area of the image of f , counting multiplicities. This invariance
property, which depends on the values of functions in D, implies that
the Dirichlet class is invariant under biholomorphisms of the disc.

(Hyp) Let ds2 = |dz|2
(1−|z|2)2

be the hyperbolic metric in the unit disc. The

(normalized) hyperbolic area density is dλ(z) = dA(z)
(1−|z|2)2

and the
intrinsic derivative of a holomorphic f : (D, ds2) → (C, |dz|2) is
δf(z) = (1− |z|2)|f ′(z)|. Then,

(5) ‖f‖2D,∗ =
∫

D
(δf)2dλ

is defined in purely hyperbolic terms.

Since any Blaschke product with n factors is an n-to-1 covering of the unit
disc, (Area) implies that the Dirichlet space only contains finite Blaschke
products. On the positive side, (Area) allows one to define the Dirichlet
space on any simply connected domain Ω ( C,

‖f‖2D(Ω),∗ :=
∫

Ω
|f ′(z)|2dA(z) = ‖f ◦ ϕ‖2D,∗,

where ϕ is any conformal map of the unit disc onto Ω. In particular, this
shows that the Dirichlet semi-norm is invariant under the Möbius group
M(D).

Infinite Blaschke products provide examples of bounded functions which
are not in the Dirichlet space. On the other hand, conformal maps of the
unit disc onto unbounded regions having finite area provide examples of
unbounded Dirichlet functions.

The group M(D) acts on (D, ds2) as the group of the sense preserving
isometries. It follows from (Hyp) as well, then, that the Dirichlet semi-norm
is conformally invariant: ‖f ◦ ϕ‖D,∗ = ‖f‖D,∗ when ϕ ∈ M(D). In fact,
in [6] Arazy and Fischer showed that the Dirichlet semi-norm is the only
Möbius invariant, Hilbert semi-norm for functions holomorphic in the unit
disc. Also, the Dirichlet space is the only Möbius invariant Hilbert space of
holomorphic functions on the unit disc. Sometimes it is preferable to use
the pseudo-hyperbolic metric instead,

ρ(z, w) :=
∣∣∣∣ z − w1− wz

∣∣∣∣ .
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The hyperbolic metric d and the pseudo-hyperbolic metric are functionally
related,

d =
1
2

log
1 + ρ

1− ρ
, ρ =

ed − e−d

ed + e−d
.

The hyperbolic metric is the only Riemannian metric which coincides with
the pseudo-hyperbolic metric in the infinitesimally small. The triangle prop-
erty for the hyperbolic metric is equivalent to an enhanced triangle property
for the pseudo-hyperbolic metric:

ρ(z, w) ≤ ρ(z, t) + ρ(t, w)
1 + ρ(z, t)ρ(t, w)

.

We conclude with a simple and entertaining consequence of (Hyp). The
isoperimetric inequality

(6) Area(Ω) ≤ 1
4π

[Length(∂Ω)]2

is equivalent, by Riemann’s Mapping Theorem and by the extension of (6)
itself to areas with multiplicities, to the inequality

‖f‖2D,∗ =
∫

D
|f ′|2dA ≤

[
1
2π

∫
∂D
|f ′(eiθ)|dθ

]2

= ‖f ′‖2H1 .

Setting f ′ = g in the last inequality, then the isoperimetric inequality be-
comes the imbedding of the Hardy space H1 into the Bergman space A2

with optimal constant:
‖g‖2A2 ≤ ‖g‖2H1 ,

the constant functions being extremal.

2.1.1. The Hardy space H2. The “classical” Hilbert spaces of holomor-
phic functions on the unit disc are the Dirichlet space just introduced, the
Bergman space A2,

‖f‖2A2 =
∫

D
|f(z)|2dA(z),

and the Hardy space H2,

‖f‖2H2 = sup
0<r<1

1
2π

∫ 2π

0
|f(reiθ)|2dθ.

The Hardy space is especially important because of its direct rôle in oper-
ator theory, as a prototype for the study of boundary problems for elliptic
differential equations, for its analogy with important probabilistic objects
(martingales), and for many other reasons. It has been studied in depth and
its theory has become a model for the theory of other classical, and not so
classical, function spaces. Many results surveyed in this article have been
first proved, in a different version, for the Hardy space.
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It is interesting to observe that both the Hardy and the Bergman space
can be thought of as weighted Dirichlet spaces. We consider here the case
of the Hardy space. If f(0) = 0, then

‖f‖2H2 =
∫

D
|f ′(z)|2 log

1
|z|2

dA(z) ≈
∫

D
|f ′(z)|2(1− |z|2)dA(z).

This representation of the Hardy functions is more than a curiosity. SinceH2

is a reproducing kernel Hilbert space (RKHS) of functions, we are interested
in having a norm which depends on the values of f in the interior of the unit
disc. (Indeed, the usual norm is in terms of interior values as well, although
through the mediation of sup).

2.2. The definition in terms of boundary values and other char-
acterizations of the Dirichlet norm. Let S = ∂D be the unit circle and
H1/2(S) be the fractional Sobolev space containing the functions ϕ ∈ L2(S)
having “1/2” derivative in L2(S). More precisely, if

ϕ(θ) =
+∞∑
n=1

[an cos(nθ) + bn sin(nθ)],

then the H1/2(S) semi-norm of ϕ is

(7) ‖ϕ‖2H1/2(S)
=

+∞∑
n=1

n(|an|2 + |bn|2).

By definition,
D ≡ H1/2(S) ∩H(D).

This is a special instance the fact that, restricting Sobolev functions from
the plane to smooth curves, “there is a loss of 1/2 derivative”.

2.2.1. The definition of Rochberg and Wu. In [43], Rochberg and Wu
gave a characterization of the Dirichlet norm in terms of difference quotients
of the function.

Theorem 1 (Rochberg and Wu, [43]). Let σ, τ > −1. For an analytic
function f on the unit disc we have the semi-norm equivalence:

‖f‖2D,∗ ≈
∫

D

∫
D

|f(z)− f(w)|2

|1− zw|σ+τ+4
(1− |z|2)σ(1− |w|2)τdA(w)dA(z).

For σ = τ = 1/2, the theorem holds with equality instead of approximate
equality; see [7]. The result in [43] extends to weighted Dirichlet spaces
and, with a different, essentially, discrete proof, to analytic Besov spaces
[23]. The characterization in Theorem 1 is similar in spirit to the usual
boundary characterization for functions in H1/2(S):

‖ϕ‖2H1/2(S)
≈
∫ 2π

0

∫ 2π

0

|ϕ(ζ)− ϕ(ξ)|2

|ζ − ξ|2
dζdξ.
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2.2.2. The characterization of Böe. In [24], Böe obtained an interesting
characterization of the norm in analytic Besov spaces in terms of the mean
oscillation of the function’s modulus with respect to harmonic measure. We
give Böe’s result in the Dirichlet case.

Theorem 2 (Böe, [24]). For z ∈ D, let

dµz(eiθ) =
1
2π

1− |z|2

|eiθ − z|2
dθ

be harmonic measure on S with respect to z. Then,

‖f‖2D,∗ ≈
∫

D

(∫ 2π

0
|f(eiθ)|dµz(eiθ)− |f(z)|

)2
dA(z)

(1− |z|2)2
.

2.3. The reproducing kernel. The space D has bounded point evalua-
tion ηz : f 7→ f(z) at each point z ∈ D. Equivalently, it has a reproducing
kernel. In fact, it is easily checked that

f(z) = 〈f,Kz〉D, with Kz(w) =
1
zw

log
1

1− zw
.

(For the norm ‖| · |‖D introduced earlier, the reproducing kernel is

K̃z(w) = 1 + log
1

1− zw

which is comfortable in estimates for the integral operator having K̃z(w) as
kernel).

It is a general fact that ‖ηz‖D∗ = ‖Kz‖D and an easy calculation gives

‖Kz‖2D ≈ 1 + log
1

1− |z|
≈ 1 + d(z, 0).

More generally, we have that functions in the Dirichlet space are Hölder
continuous of order 1/2 with respect to the hyperbolic distance:

(8) |f(z)− f(w)| ≤ C‖f‖D,∗d(z, w)1/2.

The reproducing kernel Kz(w) = K(z, w) satisfies some estimates which are
important in applications and reveal its geometric nature:

(a) <K(z, w) ≈ |K(z, w)| (here and below, <(x+iy) = x is the real part
of x+ iy).

(b) Let z ∧ w be the point which is closest to the origin (in either the
hyperbolic or Euclidean metric) on the hyperbolic geodesic joining
z and w. Then,

<K(z, w) ≈ d(0, z ∧ w) + 1.

(c) d
dwK(z, w) = z

1−zw , and we have:
(c1) < 1

1−zw ≥ 0 for all z, w in D;
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(c2) < 1
1−zw ≈ (1− |z|2)−1 for w ∈ S(z), where

S(z) = {w ∈ D : |1− zw| ≤ 1− |z|2}
is the Carleson box with centre z.

3. Carleson measures

3.1. Definition and the capacitary characterization. A positive Borel
measure measure µ on D is called a Carleson measure for the Dirichlet space
if for some finite C > 0

(9)
∫

D
|f |2dµ ≤ C‖f‖2D ∀f ∈ D.

The smallest C in (9) is the Carleson measure norm of µ and it will be
denoted by [µ] = [µ]CM(D). The space of the Carleson measures for D is
denoted by CM(D). Carleson measures supported on the boundary could
be thought of as substitutes for point evaluation (which is not well defined at
boundary points). By definition, in fact, the function f exists, in a quanti-
tative way, on sets which support a strictly positive Carleson measure. It is
then to be expected that there is a relationship between Carleson measures
and boundary values of Dirichlet functions. This is further explained below.

Carleson measures proved to be a central concept in the theory of the
Dirichlet space in many other ways. Let us mention:

• multipliers;
• interpolating sequences;
• bilinear forms;
• boundary values.

Since Carleson measures play such an important role, it is important to have
efficient ways to characterize them. The first such characterization was given
by Stegenga [50] in terms of capacity.

We first introduce the Riesz–Bessel kernel of order 1/2 on S,

(10) kS,1/2(θ, η) = |θ − η|−1/2,

where the difference θ−η ∈ [−π, π) is taken modulo 2π. The kernel extends
to a convolution operator, which we still call kS,1/2, acting on Borel measures
supported on S,

kS,1/2ν(θ) =
∫

S
kS,1/2(θ − η)dν(η).

Let E ⊆ S be a closed set. The (S, 1/2)-Bessel capacity of E is

(11) CapS,1/2(E) := inf
{
‖h‖2L2(S) : h ≥ 0 and k1/2,Sh ≥ 1 on E

}
.

It is a well known fact [51] that ‖kS,1/2h‖H1/2(S) ≈ ‖h‖L2(S), i.e., that h 7→
kS,1/2h is an approximate isometry of L2(S) into H1/2(S). Hence,

CapS,1/2(E) ≈ inf
{
‖ϕ‖2H1/2(S)

: (kS,1/2)
−1ϕ ≥ 0 and ϕ ≥ 1 on E

}
.
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Theorem 3 (Stegenga, [50]). Let µ ≥ 0 be a positive Borel measure on D.
Then µ is Carleson for D if and only if there is a positive constant C(µ)
such that, for any choice of finitely many disjoint, closed arcs I1, . . . , In ⊆ S,
we have that

(12) µ (∪n
i=1S(Ii)) ≤ C(µ)CapS,1/2 (∪n

i=1Ii) .

Moreover, C(µ) ≈ [µ]CM(D).

It is expected that capacity plays a rôle in the theory of the Dirichlet
space. In fact, as we have seen, the Dirichlet space is intimately related to
at least two Sobolev spaces (H1/2(S) and H1(C), which is defined below),
and capacity plays in Sobolev theory the rôle played by Lebesgue measure
in the theory of Hardy spaces. In Dirichlet space theory, this fact has been
recognized for a long time see, for instance, [20]; actually, before Sobolev
theory reached maturity.

It is a useful exercise comparing Stegenga’s capacitary condition and Car-
leson’s condition for the Carleson measures for the Hardy space. In [28]
Carleson proved that for a positive Borel measure µ on D,∫

D
|f |2dµ ≤ C(µ)‖f‖2H2 ⇐⇒ µ(S(I)) ≤ C ′(µ)|I|,

for all closed sub-arcs I of the unit circle. Moreover, the best constants in the
two inequalities are comparable. In some sense, Carleson’s characterization
says that µ satisfies the imbedding H2 ↪→ L2(µ) if and only if it behaves
(no worse than) the arclength measure on S, the measure underlying the
Hardy theory. We could also “explain” Carleson’s condition in terms of the
reproducing kernel for the Hardy space,

KH2

z (w) =
1

1− zw
,
∥∥KH2

z

∥∥2

H2 ≈ (1− |z|)−1.

Let Iz be the arc having center in z/|z| and arclength 2π(1−|z|). Carleson’s
condition can then be rephrased as

µ(S(Iz)) ≤ C(µ)
∥∥KH2

z

∥∥2

H2 .

Similar conditions hold for the (weighted) Bergman spaces. One might ex-
pect that a necessary and sufficient condition for a measure to belong to
belong to CM(D) might be

(13) µ(S(Iz)) ≤ C(µ)‖Kz‖D ≈
1

log 2
1−|z|

≈ CapS,1/2(Iz).

The “simple condition” (13) is necessary, but not sufficient. Essentially, this
follows from the fact that the simple condition does not “add up”. If Ij ,
j = 1, . . . , 2n, are adjacent arcs having the same length, and I is their union,
then ∑

j

CapS,1/2(Ij) ≈
2n

(log 2)n+ log 4π
|I|

> log
1
4π
|I|
≈ CapS,1/2(I).
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Stegenga’s Theorem has counterparts in the theory of Sobolev spaces where
the problem is that of finding necessary and sufficient conditions on a mea-
sure µ so that a trace inequality holds. For instance, consider the case of the
Sobolev space H1(Rn), containing those functions h : Rn → C with finite
norm

‖h‖2H1(Rn) = ‖h‖2L2(Rn) + ‖∇h‖2L2(Rn),

the gradient being the distributional one. The positive Borel measure µ on
Rn satisfies a trace inequality for H1(Rn) if the imbedding inequality

(14)
∫

Rn

|h|2dµ ≤ C(µ)‖h‖2H1(Rn)

holds. It turns out that (14) is equivalent to the condition that

(15) µ(E) ≤ C(µ)CapH1(Rn)(E)

holds for all compact subsets E ⊆ Rn. Here, CapH1(Rn)(E) is the capacity
naturally associated with the space H1(Rn).

There is an extensive literature on trace inequalities, which is closely
related to the study of Carleson measures for the Dirichlet space and its
extensions. We will not discuss it further, but instead direct the interested
reader to [1], [34], [35] and [38], for a first approach to the subject from
different perspectives.

Complex analysts may be more familiar with the logarithmic capacity,
than with Bessel capacities. It is a classical fact that, for subsets E of the
unit circle (or of the real line)

(16) CapS,1/2(E) ≈ log γ(E)−1,

where γ(E) is the logarithmic capacity (the transfinite diameter) of the set
E.

3.2. Characterizations by testing conditions. The capacitary condi-
tion has to be checked over all finite unions of arcs. It is natural to wonder
whether there is a “single box” condition characterizing the Carleson mea-
sures. In fact, there is a string of such conditions, which we are now going
to discuss. The following statement rephrases the characterization given in
[15]. Let k(z, w) = <K(z, w).

Theorem 4 (Arcozzi, Rochberg and Sawyer, [15]). Let µ be a positive Borel
measure on D. Then µ is a Carleson measure for D if and only if µ is finite
and

(17)
∫

S(ζ)

∫
S(ζ)

k(z, w)dµ(w)dµ(z) ≤ C(µ)µ(S(ζ))

for all ζ in D.
Moreover, if Cbest(µ) is the best constant in (17), then

[µ]CM(µ) ≈ Cbest(µ) + µ(D).
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The actual result in [15] is stated differently. There, it is shown that
µ ∈ CM(D) if and only if µ is finite and

(18)
∫

S(ζ)
µ(S(z) ∩ S(ζ))2

dA(z)
(1− |z|2)2

≤ C(µ)µ(S(ζ)),

with [µ]CM(µ) ≈ Cbest(µ)+µ(D). The equivalence between these two condi-
tions will be discussed below, when we will have at our disposal the simple
language of trees.

Proof discussion. The basic tools are a duality argument and two weight
inequalities for positive kernels. It is instructive to enter in some detail
the duality arguments. The definition of Carleson measure says that the
imbedding

Id : D ↪→ L2(µ)
is bounded. Passing to the adjoint Θ = Id∗, this is equivalent to the bound-
edness of

Θ : D ←↩ L2(µ).
The adjoint makes “unstructured” L2(µ) functions into holomorphic func-
tions, so we expect it to be more manageable. Using the reproducing kernel
property, we see that, for g ∈ L2(µ)

Θg(ζ) = 〈Θg,Kζ〉D(19)

= 〈g,Kζ〉L2(µ)

=
∫

D
g(z)Kz(ζ)dµ(z),

because Kζ(z) = Kz(ζ). We now insert (19) in the boundedness property
of Θg:

C(µ)
∫

D
|g|2dµ ≥ ‖Θg‖2D

=
〈∫

D
g(z)Kz(·)dµ(z),

∫
D
g(w)Kw(·)dµ(w)

〉
D

=
∫

D
g(z)

∫
D
g(w)dµ(w)〈Kz,Kw〉Ddµ(z)

=
∫

D
g(z)

∫
D
g(w)dµ(w)Kz(w)dµ(z).

Overall, we have that the measure µ is Carleson for D if and only if the
weighted quadratic inequality

(20)
∫

D
g(z)

∫
D
g(w)dµ(w)Kz(w)dµ(z) ≤ C(µ)

∫
D
|g|2dµ

holds. Recalling that k(z, w) = <Kz(w), it is clear that (20) implies

(21)
∫

D
g(z)

∫
D
g(w)dµ(w)k(z, w)dµ(z) ≤ C(µ)

∫
D
|g|2dµ,
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for real valued g and that, vice-versa, (21) for real valued g implies (20),
with a twice larger constant: ‖Θ(g1 + ig2)‖2D ≤ 2(‖Θg1‖2D + ‖Θg2‖2D). The
same reasoning says that µ is Carleson if and only if (21) holds for positive
g’s since the problem is reduced to a weighted inequality for a real (positive,
in fact), symmetric kernel k. Condition (17) is obtained by testing (21) over
functions of the form g = χ

S(ζ)
. The finiteness of µ follows by testing the

imbedding D ↪→ L2(µ) on the function f ≡ 1.
The hard part is proving the sufficiency of (17): see [10], [13], [15], [34],

[52] for different approaches to the problem. See also the very recent [58]
for an approach covering the full range of the weighted Dirichlet spaces in
the unit ball of Cn, between unweighted Dirichlet and Hardy. �

The reasoning above works the same way with all reproducing kernels
(provided the integrals involved make sense, of course). In particular, the
problem of finding the Carleson measures for a RKHS reduces, in general,
to a weighted quadratic inequality like (21), with positive g’s.

3.2.1. A family of necessary and sufficient testing conditions. Con-
dition (4) is the endpoint of a family of such conditions, and the quadratic
inequality (21) is the endpoint of a corresponding family of quadratic in-
equalities equivalent to the membership of µ to the Carleson class.

The kernels K and k = <K define positive operators on D, hence, by
general Hilbert space theory, the boundedness in the inequality

‖Θg‖2D ≤ C(µ)‖g‖2L2(µ)

is equivalent to the boundedness of the operator

S : g 7→ Sf =
∫

D
k(·, w)g(w)dµ(w)

on L2(µ), i.e., to

(22)
∫

D

(∫
D
k(z, w)g(w)dµ(w)

)2

dµ(z) ≤ C(µ)
∫

D
g2dµ,

with the same constant C(µ). Testing (22) on g = χ
S(ζ)

and restricting, we
have the new testing condition

(23)
∫

S(ζ)

(∫
S(ζ)

k(z, w)dµ(w)

)2

dµ(z) ≤ C(µ)µ(S(ζ)).

Observe that, by Jensen’s inequality, (23) is a priori stronger than (4), al-
though, by the preceding considerations, it is equivalent to it. Assuming the
viewpoint that (22) represents the L2(µ) → L2(µ) inequality for the “sin-
gular integral operator” having kernel k, and using sophisticated machinery
used to solve the Painlevé problem, Tchoundja [52] pushed this kind of
analysis much further. Using also results in [10], he was able to prove the
following.
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Theorem 5 (Tchoundja, [52]). Each of the following conditions on a finite
measure µ is equivalent to the fact that µ ∈ CM(D):

• For some p ∈ (1,∞) the following inequality holds,

(24)
∫

D

(∫
D
k(z, w)g(w)dµ(w)

)p

dµ(z) ≤ Cp(µ)
∫

D
gpdµ.

• Inequality (24) holds for all p ∈ (1,∞).
• For some p ∈ [1,∞) the following testing condition holds,

(25)
∫

S(ζ)

(∫
S(ζ)

k(z, w)dµ(w)

)p

dµ(z) ≤ Cp(µ)µ(S(ζ)).

• The testing condition (25) holds for all p ∈ [1,∞).

Actually, Tchoundja deals with different spaces of holomorphic functions,
but his results extend to the Dirichlet case. As mentioned earlier, the p = 1
endpoint of Theorem 5 is in [10].

3.2.2. Another family of testing conditions. It was proved in [15] that
a measure µ on D is Carleson for D if and only if (18) holds. In [36],
Kerman and Sawyer had found another, seemingly weaker, necessary and
sufficient condition. In order to compare the two conditions, we restate (18)
differently. Let I(z) = ∂S(z) ∩ ∂D. For θ ∈ I(z) and s ∈ [0, 1 − |z|], let
S(θ, s) = S((1 − s)eiθ). Condition (18) is easily seen to be equivalent to
have, for all z ∈ D,

(26)
∫

I(z)

∫ 1−|z|

0

(
µ(S(z) ∩ µ(S(θ, s)))

s1/2

)2 ds

s
dθ ≤ C(µ)µ(S(z)).

Kerman and Sawyer proved that µ is a Carleson measure for D if and only
if for all z ∈ D,

(27)
∫

I(z)
sup

s∈(0,1−|z|]

(
µ(S(z) ∩ µ(S(θ, s)))

s1/2

)2

dθ ≤ C(µ)µ(S(z)).

Now, the quantity inside the integral on the left hand side of (27) is smaller
than the corresponding quantity in (26). Due to the presence of the measure
ds/s and the fact that the quantity µ(S(θ, s)) changes regularly with θ
fixed and s variable the domination of the left hand side (27) by that of
(26) comes from the imbedding `2 ⊆ `∞. The fact that, “on average”, the
inclusion can be reversed is at first surprising. In fact, it is a consequence of
the Muckenhoupt-Wheeden inequality [39] (or an extension of it), that the
quantities on the left hand side of (26) and (27) are equivalent.

Theorem 6 ([15] [36]). A measure µ on D is Carleson for the Dirichlet
space D if and only if it is finite and for some p ∈ [1,∞] (or, which is the
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same, for all p ∈ [1,∞]) and all z ∈ D:

(28)
∫

I(z)

[∫ 1−|z|

0

(
µ(S(z) ∩ µ(S(θ, s)))

s1/2

)p
]2/p

ds

s
dθ ≤ C(µ)µ(S(z)).

The inequality of Muckenhoupt and Wheeden was independently redis-
covered by T. Wolff [32], with a completely new proof. Years later, trying to
understand why the conditions in [15] and [36] where equivalent, although
seemingly different, in [9] the authors, unaware of the results in [32] and
[39], found another (direct) proof of the inequality.

4. The tree model

4.1. The Bergman tree. The unit disc D can be discretized into Whitney
boxes. The set of such boxes has a natural tree structure. In this section, we
want to explain how analysis on the holomorphic Dirichlet space is related
to analysis on similar spaces on the tree, and not only on a metaphoric level.

For integer n ≥ 0 and 1 ≤ k ≤ 2n, consider the regions

Q(n, k) =
{
z = reiθ ∈ D : 2−n ≤ 1− |z| < 2−n−1,

k

2n
≤ θ

2π
<
k + 1
2n

}
.

Let T be the set of the indices α = (n, k). Sometimes we will identify
the index α with the region Q(α). The regions indexed by T form a par-
tition of the unit disc D in regions, whose Euclidean diameter, Euclidean
in-radius, and Euclidean distance to the boundary are comparable to each
other, with constants independent of the considered region. An easy exercise
in hyperbolic geometry shows that the regions α ∈ T have approximatively
the same hyperbolic diameter and hyperbolic in-radius. We give the set T
two geometric-combinatorial structures: a tree structure, in which there is
an edge between α and β when the corresponding regions share an arc of
a circle; a graph structure, in which there is an edge between α and β if
the closures of the corresponding regions have some point of D in common.
When referring to the graph structure, we write G instead of T .

In the tree T , we choose a distinguished point o = α(0, 1), the root of T .
The distance dT (α, β) between two points α, β in T is the minimum number
of edges of T one has to travel going from the vertex α to the vertex β.
Clearly, there is a unique path from α to β having minimal length: it is the
geodesic [α, β] between α and β, which we consider as a set of points. The
choice of the root gives T a partial order structure: α ≤ β if α ∈ [o, β]. The
parent of α ∈ T \ {o} is the point α−1 on [o, α] such that d(α, α−1) = 1.
Each point α is the parent of two points in T (its children), labeled when
necessary as α±. The natural geometry on T is a simplified version of the
hyperbolic geometry of the disc.

We might define a distance dG on the graph G using edges of G instead
of edges of T . The distance dG is realized by geodesics, although we do not
have uniqueness anymore. However, we have “almost uniqueness” in this
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case, two geodesic between α and β maintain a reciprocal distance which is
bounded by a positive constant C, independent of α and β. The following
facts are rather easy to prove:

(1) dG(α, β) ≤ dT (α, β).
(2) If z ∈ α and w ∈ β, then dG(α, β)+1 ≈ d(z, w)+1: the graph metric

is roughly the hyperbolic metric at unit scale.
(3) There are sequences {αn}, {βn} such that dT (αn, βn)/dG(αn, βn)→
∞ as n → ∞. This says there are points which are close in the
graph, but far away in the tree.

While the graph geometry is a good approximation of the hyperbolic ge-
ometry at a fixed scale, the same can not be said about the tree geometry.
Nevertheless, the tree geometry is much more elementary, and it is that we
are going to use. It is a bit surprising that, in spite of the distortion of the
hyperbolic metric pointed out in (3), the tree geometry is so useful.

Let us introduce the analogs of cones and Carleson boxes on the tree:
P(α) = [o, α] ⊂ T is the predecessor set of α ∈ T (when you try to picture
it, you get a sort of cone) and S(α) = {β ∈ T : α ∈ P(α)}, its dual object,
is the successor set of α (a sort of Carleson box).

Given α, β ∈ T , we denote their confluent by α ∧ β. This is the point on
the geodesic between α and β which is closest to the root o. That is,

P(α ∧ β) = P(α) ∩ P(β).

In terms of D geometry, the confluent corresponds to the highest point of
the smallest Carleson box containing two points; if z, w ∈ D are the points,
the point which plays the rôle of α∧β is roughly the point having argument
halfway between that of z and that of w, and having Euclidean distance
|1− zw| from the boundary.

4.2. Detour: the boundary of the tree and its relation with the
disc’s boundary. The distortion of the metric induced by the tree struc-
ture has an interesting effect on the boundary. One can define a boundary
∂T of the tree T . While the boundary of D (which we might think of as a
boundary for the graph G) is connected, the boundary ∂T is totally discon-
nected; it is in fact homeomorphic to a Cantor set. Notions of boundaries
for graphs, and trees in particular, are an old and useful topic in probability
and potential theory. We mention [46] as a nice introduction to this topic.

We will see promptly that the boundary ∂T is compact with respect
to a natural metric and that, as such, it carries positive Borel measures.
Furthermore, if µ is positive Borel measure without atoms with support on
∂D, then it can be identified with a positive Borel measure without atoms
on ∂T .

This is the main reason we are interested in trees and a tree’s boundary.
Some theorems are easier to prove on the tree’s boundary, some estimates
become more transparent and some objects are easier to picture. Often, it
is possible to split a problem in two parts: a “soft” part, to deal with in the
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disc geometry, and a “hard” combinatorial part, which one can formulate
and solve in the easier tree geometry. Many of these results and objects can
then be transplanted in the context of the Dirichlet space.

As a set, the boundary ∂T contains as elements the half-infinite geodesics
on T , having o as endpoint. For convenience, we think of ζ ∈ ∂T as of a
point and we denote by P(ζ) = [o, ζ) ⊂ T the geodesic labeled by ζ. We
introduce on ∂T a metric which mimics the Euclidean metric on the circle:

δT (ζ, ξ) = 2−dT (ζ∧ξ),

where ζ∧ξ is defined as in the “finite” case α, β ∈ T : P(ζ∧ξ) = P(ζ)∩P(ξ).
It is easily verified that, modulo a multiplicative constant, δT is the weighted
length of the doubly infinite geodesic γ(ζ, ξ) which joins ζ and ξ, where the
weight assigns to each edge [α, α−1] the number 2−dT (α). The metric can be
extended to T = T ∪ ∂T by similarly measuring a geodesics’ lengths for all
geodesics. This way, we obtain a compact metric space (T , δT ), where T is
a discrete subset of T , having ∂T as metric boundary. The subset ∂T , as
we said before, turns out to be a totally disconnected, perfect set.

The relationship between ∂T and ∂D is more than metaphoric. Given
a point ζ ∈ ∂T , let P(ζ) = {ζn : n ∈ N} be an enumeration of the
points ζn ∈ T of the corresponding geodesic, ordered in such a way that
d(ζn, o) = n. Each α in T can be identified with a dyadic sub-arc of ∂D. If
Q(α) is the Whitney box labeled by α = (n, k), let

S(α) =
{
z = reiθ ∈ D : 2−n ≤ 1− |z|, k

2n
≤ θ

2π
<
k + 1
2n

}
be the corresponding Carleson box. Consider the arc I(α)∂S(α) ∩ ∂D and
define the map Λ : ∂T → ∂D,

(29) Λ(ζ) =
⋂
n∈N

I(ζn).

It is easily verified that Λ is a Lipschitz continuous map of ∂T onto ∂D,
which fails to be injective at a countable set (the set of the dyadic rationals
×2π). More important is the (elementary, but not obvious) fact that Λ maps
Borel measurable sets in ∂T to Borel measurable sets in ∂D. This allows us
to move Borel measures back and forth from ∂T to ∂D.

Given a positive Borel measure ω on ∂T , let (Λ∗ω)(E) = ω(Λ−1(E)) be
the usual push-forward measure. Given a positive Borel measure µ on S,
define its pull-back Λ∗µ to be the positive Borel measure on ∂T

(30) (Λ∗µ)(F ) =
∫

S

](Λ−1(θ) ∩A)
](Λ−1(θ))

dµ(eiθ).

Proposition 7.
(i) The integrand in (30) is measurable, hence the integral is well-de-

fined.
(ii) Λ∗(Λ∗(µ)) = µ.
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(iii) For any closed subset A of S, Λ∗ω(A) = ω(Λ−1(A)), by definition.
(iv) For any closed subset B of ∂T , Λ∗µ(B) ≈ µ(Λ(B)).
(v) In (iv), we have equality if the measure µ has no atoms.

See [18] for more general versions of the proposition.

4.3. A version of the Dirichlet space on the tree. Consider the Hardy-
type operator I acting on functions ϕ : T → R,

Iϕ(α) =
∑

β∈P(α)

ϕ(β).

The Dirichlet space DT on T is the space of the functions Φ = Iϕ, ϕ ∈ `2(T ),
with norm ‖Φ‖DT = ‖ϕ‖`2 . Actually, we will always talk about the space `2

and the operator I, rather than about the space DT , which is however the
trait d’union between the discrete and the continuous theory.

What we are thinking of, in fact, is discretizing a Dirichlet function f ∈ D
in such a way that:

(1) ϕ(α) ∼ (1− |z(α)|)|f ′(z(α))|, where z(α) is a distinguished point in
the region α (or in its closure);

(2) Iϕ(α) = f(α).
Let us mention a simple example from [14], saying that `2 is “larger” than

D.

Proposition 8. Consider a subset {z(α) : α ∈ T } of D, where z(α) ∈ α,
and let f ∈ D. Then, there is a function ϕ in `2(T ) such that Iϕ(α) =
f(z(α)) for all α ∈ T and ‖ϕ‖`2 . ‖f‖D.

Proof. Assume without loss of generality that f(0) = 0 and let ϕ(α) :=
f(z(α))−f(z(α−1)). By telescoping, ϕ(α) = f(z(α)). To prove the estimate,

‖h‖p
`2(T )

=
∑
α

∣∣f(z(α))− f(z(α−1))
∣∣2

.
∑
α

∣∣(1− |z(α)|)f ′(w(α))
∣∣2

for some w(α) in the closure of α,

≈
∑
α

(1− |z(α)|)2
∣∣∣∣∣ 1
(1− |zα|)2

∫
ζ∈D: |ζ−w(α)|≤(1−|z(α)|)/10

f ′(ζ)dA(ζ)

∣∣∣∣∣
2

by the (local) Mean Value Property,

.
∑
α

∫
ζ: |ζ−w(α)|≤(1−|z(α)|)/10

∣∣f ′(ζ)∣∣2 dA(ζ)

by Jensen′s inequality,

≈ ‖f‖2D,
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since the discs
{
ζ : |ζ − w(α)| ≤ 1−|z(α)|

10

}
clearly have bounded overlap. �

4.4. Carleson measures on the tree and on the disc. Let µ be a
positive measure on the closed unit disc. Identify it with a positive measure
on T by letting

µ(α) =
∫

Q(α)
dµ(z).

4.4.1. Carleson measures. We say that µ is a Carleson measure for DT
if the operator I : `2(T )→ `2(T , µ) is bounded. We write µ ∈ CM(DT ).

Theorem 9. We have that CM(D) = CM(DT ) with comparable norms.

Proof discussion. We can use the restriction argument of Proposition 8
to show that CM(T ) ⊆ CM(D). Suppose for simplicity that µ(∂D) = 0
(dealing with this more general case requires further discussion of the tree’s
boundary) and that µ ∈ CM(T ):∫

D
|f |2dµ =

∑
α

∫
α
|f |2dµ ≤

∑
α

µ(α)|f(z(α))|2

for some z(α) on the boundary of α

=
∑
α

Iϕ(α)µ(α)

with ϕ as in Proposition 8

≤ ‖ϕ‖2`2(T ),

which proves the inclusion.
In the other direction, we use the duality argument used in the proof of

Theorem 4. The fact that µ is Carleson for D is equivalent to the bound-
edness of Θ, the adjoint of the imbedding, and this is equivalent to the
inequality

C(µ)
∫

D
|g|2dµ ≥ ‖Θg‖2D =

∫
D

∣∣(Θg)′(z)∣∣2 dA(z)(31)

this time we use a different way to compute the norm,

≥
∫

D

∣∣∣∣∫
D

d

dz
K(z, w)g(w)dµ(w)

∣∣∣∣2 dA(z)

=
∫

D

∣∣∣∣∫
D

w

1− wz
g(w)dµ(w)

∣∣∣∣2 dA(z).

Testing (31) over all functions g(w) = h(w)/w with h ≥ 0 and using the
geometric properties of the kernel’s derivative, we see that

(32) C(µ)
∫

D
|g|2dµ ≥

∫
D

∣∣∣∣∣
∫

S(z)
wg(w)dµ(w)

∣∣∣∣∣
2

dA(z).
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We can further restrict to the case where h is constant on Whitney boxes
(h =

∑
α∈T ψ(α)χα) and, further restricting the integral, we see that (32)

reduces to

(33) C(µ)‖ψ‖2`2(µ) ≥ ‖I
∗(ψdµ)‖2`2 .

A duality argument similar (in the converse direction) to the previous one,
this time in tree-based function spaces, shows that the last assertion is equiv-
alent to having I : `2(T )→ `2(T , µ) bounded, i.e., µ ∈ CM(T ). �

The proof could be carried out completely in the dual side. Actually, this
is almost obliged in several extensions of the theorem (to higher dimensions
[14], to “sub-diagonal” couple of indices [8], etcetera). A critical analysis of
the proof and some further considerations about the boundary of the tree
show that Carleson measures satisfy a stronger property.

Corollary 10 (Arcozzi, Rochberg, and Sawyer, [13]). Let

V (f)(Reiθ) =
∫ R

0
|f ′(reiθ)|dr

be the radial variation of f ∈ D (i.e., the length of the image of the radius
[0, Reiθ] under f). Then, µ ∈ CM(D) if and only if the stronger inequality∫

D
V (f)2dµ ≤ C(µ)‖f‖2D

holds.

Indeed, this remark is meaningful when µ is supported on ∂D.

4.4.2. Testing conditions in the tree language. In the proof discussion
following Theorem 9, we ended by showing that a necessary and sufficient
condition for a measure µ on D to be in CM(D) is (33). Making duality
explicit, one computes

I∗(ψdµ)(α) =
∫
S(α)

gdµ.

Using as testing functions g = χS(α0)
, α0 ∈ T and throwing away some

terms on the right hand side, we obtain the discrete testing condition:

C(µ)µ(S(α0)) ≥
∑

α∈S(α0)

[µ(S(α))]2.(34)

We will denote by [µ] the best constant in (34).

Theorem 11 (Arcozzi, Rochberg, and Sawyer, [15]). A measure µ on D
belongs to CM(D) if, and only if, it is finite and it satisfies (34).

Given Theorem 9, Theorem 11 really becomes a characterization of the
weighted inequalities for the operator I (and/or its adjoint). There is a vast
literature on weighted inequalities for operators having positive kernels, and
virtually all of the proofs translate in the present context. Theorem 11 was



64 N. ARCOZZI, R. ROCHBERG, E. T. SAWYER AND B. D. WICK

proved in [15] by means of a good-λ argument. A different proof could be
deduced by the methods in [34], where a deep equivalence is established
between weighted inequalities and a class of integral (nonlinear) equations.
In [13] a very short proof is given in terms of a maximal inequality.

The fact that the (discrete) testing condition (34) characterizes Carleson
measures raises two natural questions:

• Is there a direct proof that the testing condition (34) is equivalent
to Stegenga’s capacitary condition?
• Is there an “explanation” of how a condition which is expressed in

terms of the tree structure is sufficient to characterize properties
whose natural environment is the graph structure of the unit disc?

4.4.3. Capacities on the tree. Let E be a closed subset of ∂T . We define
a logarithmic-type and a Bessel-type capacity for E. As in the continuous
case, they turn out to be equivalent.

The operator I can be extended in the obvious way on the boundary of
the tree, Iϕ(ζ) =

∑
β∈P(ζ) ϕ(β) for ζ in ∂T . Then,

(35) CapT (E) = inf
{
‖ϕ‖2`2(T ) : Iϕ(ζ) ≥ 1 on E

}
will be the tree capacity of E, which roughly corresponds to logarithmic
capacity.

Define the kernel k∂T : ∂T × ∂T → [0,+∞],

k∂T (ζ, ξ) = 2dT (ζ∧ξ)/2,

which mimics the Bessel kernel kS,1/2. The energy of a measure ω on ∂T
associated with the kernel is

E∂T (ω) =
∫

∂T
(k∂T ω(ζ))2 dm∂T (ζ),

where m∂T = Λ∗m is the pullback of the linear measure on S. More con-
cretely, m∂T ∂S(α) = 2−dT (α). We define another capacity

Cap∂T (E) = sup
{
ω(E)2

E∂T (ω)
: supp(ω) ⊆ E

}
,

the supremum being taken over positive, Borel measures on ∂T .
As in the continuous case (with a simpler proof) one has that the two

capacities are equivalent,

CapT (E) ≈ Cap∂T (E).

It is not obvious that both are equivalent to the logarithmic capacity.

Theorem 12 (Benjamini and Peres, [22]).

CapT (E) ≈ Cap∂T (E) ≈ CapS,1/2(Λ(E)).

See [18] for an extension of this result to Bessel-type capacities on Ahlfors-
regular metric spaces.
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Proof discussion. Let ω be a positive Borel measure on ∂T and µ be a
positive Borel measure on S. It suffices to show that the energy of ω with
respect to the kernel k∂T is comparable with the energy of Λ∗ω with respect
to kS,1/2 and that the energy of µ is comparable with energy of Λ∗µ, with
respect to to the same kernels, obviously taken in reverse order. We can also
assume the measures to be atomless, since atoms, both in S and ∂T , have
infinite energy. Proposition 7 implies that the measure Λ∗µ is well defined
and helps with the energy estimates, which are rather elementary. �

Theorem 12 has direct applications to the theory of the Dirichlet space.
• As explained in [18], there is a direct relationship between tree ca-

pacity CapT and Carleson measures for the Dirichlet space. Let [µ]
be the best value C(µ) in (34). Namely, for a closed subset E of ∂T ,

(36) CapT (E) = sup
µ: supp(µ)⊆E

µ(E)
[µ]

.

• As a consequence, we have that sets having null capacity are exactly
sets which do not support positive Carleson measures. Together
with Corollary (10) and the theorem of Benjamini and Peres, this
fact implies an old theorem by Beurling.

Theorem 13 (Beurling, [20]).

CapS,1/2({ζ ∈ S : V (f)(eiθ) = +∞}) = 0.

Thus, Dirichlet functions have boundary values at all points on
S, but for a subset having null capacity. This result, the basis for
the study of boundary behavior of Dirichlet functions, explains the
differences and similarities between Hardy and Dirichlet theories. It
makes it clear that capacity is for D what arclength measure is inH2.
On the other hand, there are Hardy functions (even bounded analytic
functions) having infinite radial variation at almost all points on S.
Radial variation is for the most part a peculiarly Dirichlet topic.
• Another application is in [16], where boundedness of certain bilinear

forms on D is discussed (and which also contains a different proof of
Theorem [22], of which we were not aware at the moment of writing
the article). Central to the proof of the main result is the holomor-
phic approximation of the discrete potentials which are extremal for
the tree capacity of certain sets. See Section 6 for a discussion of
this and related topics.

4.4.4. Capacitary conditions and testing conditions. The capacitary
condition of Stegenga and the discrete testing condition (34) (plus bounded-
ness of µ) are equivalent, since both characterize CM(D). It is easy to see
that the capacitary condition is a priori stronger than the testing condition.
A direct proof that the testing condition implies the capacitary condition is
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in [11]. The main tool in the proof is the characterization (36) of the tree
capacity.

5. The complete Nevanlinna–Pick property

In 1916 Georg Pick published the solution to the following interpolation
problem.

Problem 14. Given domain points {zi}ni=1 ⊂ D and target points {wi}ni=1 ⊂
D what is a necessary and sufficient condition for there to an f ∈ H∞,
‖f‖∞ ≤ 1 which solves the interpolation problem f (zi) = wi i = 1, . . . , n?

A few years later Rolf Nevanlinna independently found an alternative so-
lution. The problem is now sometimes called Pick’s problem and sometimes
goes with both names; Pick–Nevanlinna (chronological) and Nevanlinna–
Pick (alphabetical). The result has been extraordinarily influential.

One modern extension of Pick’s question is the following:

Problem 15 (Pick Interpolation Question). Suppose H is a Hilbert space of
holomorphic functions on D. Given {zi}ni=1 , {wi}ni=1 ⊂ D is there a function
m in MH , the multiplier algebra, with ‖m‖MH

≤ 1, which performs the
interpolation m(zi) = wi; i = 1, 2, . . . , n?

There is a necessary condition for the interpolation problem to have a
solution which holds for any RKHS. We develop that now. Suppose we are
given the data for the interpolation question.

Theorem 16. Let V be the span of the kernel functions {ki}ni=1. Define the
map T by

T
(∑

aiki

)
=
∑

aiw̄iki.

A necessary condition for the Pick Interpolation Question to have a posi-
tive answer is that ‖T‖ ≤ 1. Equivalently a necessary condition is that the
associated matrix

(37) Mx(T ) = ((1− wjw̄i) kj (zi))
n
i,j=1

be positive semi-definite; Mx(T ) ≥ 0.

Proof. Suppose there is such a multiplier m and let M be the operator of
multiplication by m acting on H. We have ‖M‖ = ‖m‖M(H) ≤ 1. Hence
the adjoint operator, M∗ satisfies ‖M∗‖ ≤ 1. We know that given ζ ∈ D,
M∗kζ = m(ζ)kζ . Thus V is an invariant subspace for M∗ and the restriction
of M∗ to V is the operator T of the theorem. Also the restriction of M∗ to
V has, a fortiori, norm at most one. That gives the first statement.

The fact that the norm of T is at most one means that for scalars {ai}ni=1
we have ∥∥∥∑ aiw̄iki

∥∥∥2
≤
∥∥∥∑ aiki

∥∥∥2
.
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We compute the norms explicitly recalling that 〈ki.kj〉 = ki (zj) and rear-
range the terms and find that∑

i,j

(1− wjw̄i) kj (zi) aj āi ≥ 0.

The scalars {ai}ni=1 were arbitrary. Thus this is the condition that Mx(T ) ≥
0. �

The matrix Mx(T ) is called the Pick matrix of the problem. For the
Hardy space it takes the form

Mx(T ) =
(

1− wiw̄j

1− ziz̄j

)n

i,j=1

.

Theorem 17 (Pick). For the Hardy space, the necessary condition for the
interpolation problem to have a solution, (37), is also sufficient.

See [2] for a proof.

Remark 18. The analog of Pick’s theorem fails for the Bergman space;
(37) is not sufficient.

It is now understood that there are classes of RKHSs for which condition
(37) is sufficient for the interpolation problem to have a solution. Such
spaces are said to have the Pick property. In fact there is a subclass, those
with the Complete Nevanlinna Pick Property, denoted CNPP, for which (37)
is a sufficient condition for the interpolation problem to have a solution, and
for a matricial analog of the interpolation problem to have a solution.

It is a consequence of the general theory of spaces with CNPP that the
kernel functions never vanish; ∀z, w ∈ X, kz(w) 6= 0. For spaces of the type
we are considering there is a surprisingly simple characterization of spaces
with the CNPP. Suppose H is a Hilbert space of holomorphic functions on
the disk in which the monomials {zn}∞n=0 are a complete orthogonal set.
The argument we used to identify the reproducing kernel for the Dirichlet
space can be used again and we find that for ζ ∈ D we have

kH
ζ (z) =

∞∑
n=0

ζ̄nzn

‖zn‖2H

=
∞∑

n=0

anζ̄
nzn.

We know that a0 = ‖1‖−2
H > 0 hence in a neighborhood of the origin the

function
∑∞

n=0 ant
n has a reciprocal given by a power series. Define {cn} by

(38)
1∑∞

n=0 antn
=

∞∑
n=0

cnt
n.

Having a0 > 0 insures c0 > 0.
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Theorem 19. The space H has the CNPP if and only if

cn ≤ 0 ∀n > 0.

Using this we immediately see that the Hardy space has the CNPP and
the Bergman space does not.

Theorem 20. The Dirichlet space D with the norm ‖ · ‖D,∥∥∥∥∥
∞∑

n=0

bnz
n

∥∥∥∥∥
2

D

=
∞∑

n=0

(n+ 1) |bn|2 ,

has the complete Nevanlinna–Pick property.

On the other hand one needs only compute a few of the cn to find out
that:

Remark 21. The space D with the norm∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
∞∑

n=0

bnz
n

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

D

= |b0|2 +
∞∑

n=1

n |bn|2

does not have the CNPP.

If a RKHS has the CNPP then a number of other subtle and interesting
consequences follow. In particular, this applies for the Dirichlet space. We
refer the reader to the foundational article [3] and to the beautiful mono-
graph [2] for a comprehensive introduction to spaces with the CNPP.

6. The multiplier space and other spaces intrinsic to D
theory

6.1. Multipliers. Suppose H is a RKHS of holomorphic functions in the
disk. We say that a function m is a multiplier (of H or for H) if multiplica-
tion by m maps H boundedly to itself; that is there is a C = C(m) so that
for all h ∈ H

‖mh‖H ≤ C ‖h‖H .

Let MH be the space of all multipliers of H and for m ∈ MH let ‖m‖MH

be the operator norm of the multiplication operator. With this norm MH

is a commutative Banach algebra.
It is sometimes easy and sometimes difficult to get a complete description

of the multipliers of a given space H. If the constant functions are in H
(they are, in the case of the Hardy and of the Dirichlet space), thenMH ⊂
H. In fact for ‖1‖H = 1 and hence the inclusion is contractive: ‖m‖H =
‖m · 1‖MH

≤ ‖m‖MH
‖1‖H = ‖m‖MH

.

Also, for each ofD, H2, andA2 (the Bergman space) the multiplier algebra
is contractively contained in H∞,

‖m‖H∞ ≤ ‖m‖MH
.
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One way to see this is by looking at the action of the adjoint of the multi-
plication operator on reproducing kernels. Let H be one of D, H2, and A2;
let m ∈MH and let M be the operator of multiplication by m acting on H.
Let M∗ be the adjoint of the operator M . We select ζ, z ∈ D and compute

M∗kH,ζ(z) = 〈M∗kH,ζ , kH,z〉
= 〈kH,ζ ,MkH,z〉
= 〈kH,ζ ,mkH,z〉

= 〈mkH,z, kH,ζ〉

= m(ζ)kH,z (ζ)

= m(ζ)kH,ζ(z).

Thus kH,ζ is an eigenvector of M∗, the adjoint of the multiplication operator,
with eigenvalue m(ζ). Hence |m(ζ)| ≤ ‖M∗‖ = ‖M‖ . Taking the supremum
over ζ ∈ D gives the desired estimate. For the Hardy space that is the full
story;MH2 = H∞. In the Dirichlet case, things are a bit more complicated.

Proposition 22. A function m is a multiplier for the Dirichlet space if and
only if m ∈ H∞ and dµm(z) = |m′(z)|2 dxdy ∈ CM(D).

This was one of the motivations for Stegenga’s study [50] of the Carleson
measures for the Dirichlet space. Observe that

∫
D dµm = ‖m‖2D,∗.

Let us look again at the Hardy case, in the light of Stegenga’s Propo-
sition 22. Let χH2 be the space of the functions m holomorphic in D
such that the measure dλm(z) = (1− |z|2)|m′(z)|2dA(z) is a Carleson mea-
sure for the Hardy space. The reason for choosing such measure is that∫

D dλm(z) ≈ ‖m‖2H2 (if m(0) = 0), as in the Dirichlet case. Now, it is
known that χH2 = BMOA is the space of the analytic functions in BMO.
Proposition 22 says that multiplier algebra of D is exactly χ∩H∞ (here, χ
contains the functions m such that. dµm(z) = |m′(z)|2 dxdy ∈ CM(D). The
analogous result for H2 would be that the multiplier space of H2 consists
of the functions in BMOA which are essentially bounded. This is true, but
not very interesting, since H∞ ⊆ BMOA.

6.2. The weakly factored space D � D and its dual.

6.2.1. Some facts from H2 theory. It is well known that some spaces
of holomorphic functions naturally arise within H2 theory: H1, H∞, BMO.
We shortly recall some of their mutual connections. We have just seen that
H∞ naturally arises as the multiplier algebra of H2: Mult(H2) = H∞. On
the other hand, by the inner/outer factorization of H2 functions it easily
follows that H1 = H2 · H2 is the space of products of H2 functions. C.
Fefferman’s celebrated theorem says that (H1)∗ = BMO is the space of
analytic functions with bounded mean oscillation. Functions in BMO are
defined by the well-known, elegant integral property to which they owe their
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name, but could be otherwise defined as the functions b analytic in D such
that dµb = (1− |z|2)|b′(z)|2dA(z) is a Carleson measure for H2:∫

D
|f |2dµb ≤ C(µ)‖f‖2H2 .

The spaces just considered are linked with the Hankel forms and Nehari’s
Theorem. Given analytic b, define the Hankel form with symbol b as

Tb(f, g) = 〈b, fg〉H2 .

It was shown by Nehari that

sup
f,g∈H2

|Tb(f, g)|
‖f‖H2‖g‖H2

≈ ‖b‖(H1)∗ ≈ ‖b‖BMO,

the last equality following from Fefferman’s Theorem.

6.2.2. Function spaces naturally related with the Dirichlet space.
One might first think that since the Dirichlet space is naturally defined
in terms of hyperbolic geometry the spaces playing the rôle of H1, H∞

and BMO in Dirichlet theory would be the Bloch space B, defined by the
(conformally invariant) norm:

‖f‖B = ‖δf‖L∞(D) = sup
z∈D

(1− |z|2)|f ′(z)|

and similarly defined invariant spaces (analytic Besov spaces). It turns out
that, from the viewpoint of Hilbert space function theory, the relevant spaces
are others. An a priori reason to guess that Bloch and Besov spaces do
not play in the Dirichlet theory the rôle played by the Hardy spaces Hp

(1 ≤ p ≤ ∞) in H2 theory is that inclusions go the wrong way. For instance,
H∞ ⊂ H2, while D ⊂ B.

Define the weakly factored space D � D to be the completion of finite
sums h =

∑
fjgj using the norm

‖h‖D�D = inf
{∑

‖fj‖D ‖gj‖D : h =
∑

fjgj

}
.

In particular if f ∈ D then f2 ∈ D �D and

(39)
∥∥f2

∥∥
D�D ≤ ‖f‖

2
D .

It is immediate that, in the Hardy case, H2 �H2 = H2 ·H2 = H1.
We also introduce a variant of D �D. Define the space ∂−1 (∂D �D) to

be the completion of the space of functions h such that h′ can be written as
a finite sum, h′ =

∑
f ′jgj (and thus h = ∂−1

∑
(∂fi) gi), with the norm

‖h‖∂−1(∂D�D) = inf
{∑

‖fj‖D ‖gj‖D : h′ =
∑

f ′jgj

}
.

We next introduce the space X which plays a role in the Dirichlet space
theory analogous to the role of BMO in the Hardy space theory. We say
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f ∈ X if

‖f‖2X = |f(0)|2 +
∥∥∥∣∣f ′∣∣2 dA∥∥∥

CM(D)
<∞.

We denote the closure in X of the space of polynomials by X0.
Here is a summary of relations between the spaces. The duality pairings

are with respect to the Dirichlet pairing 〈·, ·〉D .

Theorem 23. We have:
(1) X ∗0 = D �D;
(2) (D �D)∗ = X ;
(3) M(D) = H∞ ∩ X ;
(4) D �D = ∂−1 (∂D �D).

Proof discussion. As we mentioned (3) is proved in [50].
A result essentially equivalent to

(
∂−1 (∂D �D)

)∗ = X was proved by
Coifman–Muri [30] using real variable techniques and in more function the-
oretic contexts by Tolokonnikov [53] and by Rochberg and Wu in [43]. An
interesting alternative approach to the result is given by Treil and Volberg
in [54].

In [60] it is shown that X ∗0 = ∂−1 (∂D �D) . Item (2) is proved in [16]
and when that is combined with the other results we obtain (1) and (4). �

Statement (2) of the theorem is the analog of Nehari’s characterization of
bounded Hankel forms on the Hardy space, recast using the identification
H2 � H2 = H1 and Fefferman’s duality theorem. Item (1) is the analog
of Hartman’s characterization of compact Hankel forms. Statement (4) is
similar in spirit to the weak factorization result for Hardy spaces given by
Aleksandrov and Peller in [4] where they study Foguel–Hankel operators on
the Hardy space.

Given the previous theorem it is easy to check the inclusions

(40) M(D) ⊂ X ⊂ D ⊂ D �D.

In our paper [17] we discuss more facts about these spaces.

6.3. The Corona theorem. In 1962 Lennart Carleson demonstrated in
[26] the absence of a corona in the maximal ideal space of H∞ by showing
that if {gj}Nj=1 is a finite set of functions in H∞ satisfying

(41)
N∑

j=1

|gj (z)| ≥ δ > 0, z ∈ D,

then there are functions {fj}Nj=1 in H∞ with

(42)
N∑

j=1

fj (z) gj (z) = 1, z ∈ D.
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While not immediately obvious, the result of Carleson is in fact equivalent
to the following statement about the Hilbert spaceH2. If one is given a finite
set of functions {gj}Nj=1 in H∞ satisfying (41) and a function h ∈ H2, then
there are functions {fj}Nj=1 in H2 with

(43)
N∑

j=1

fj (z) gj (z) = h(z), z ∈ D.

The key difference between (42) and (43) is that one is solving the problem in
the Hilbert space setting as opposed to the multiplier algebra, which makes
the problem somewhat easier.

In this section we discuss the Corona Theorem for the multiplier algebra
of the Dirichlet space. The method of proof will be intimately connected
with the resulting statements for H∞ and H2. We also will connect this
result to a related statement for the Hilbert space D. The proof of this fact
is given by ∂-methods and the connections between Carleson measures for
the space D. Another proof can be given by simply proving the Hilbert space
version directly and then applying the Toeplitz Corona Theorem. Implicit
in both versions are certain solutions to ∂-problems that arise.

6.3.1. The ∂-equation in the Dirichlet space. As is well-known there
is an intimate connection between the Corona Theorem and ∂-problems. In
our context, a ∂-problem will be to solve the following differential equation

(44) ∂b = µ

where µ is a Carleson measure for the space D and b is some unknown func-
tion. Now solving this problem is an easy application of Cauchy’s formula,
however we will need to obtain estimates of the solutions. Tho obtain these
estimates, one needs a different solution operator to the ∂-problem more
appropriately suited to our contexts.

In [61] Xiao’s constructed a non-linear solution operator for (44) that is
well adapted to solve (44) and obtain estimates. We note that in the case
of H∞ that this result was first obtained by P. Jones, [33]. First, note that

F (z) =
1

2πi

∫∫
D

dµ (ζ)
ζ − z

dζ ∧ dζ

satisfies ∂F = µ in the sense of distribution.
The difficulty with this solution kernel is that it does not allow for one to

obtain good estimates on the solution. To rectify this, following Jones [33],
we define a new non-linear kernel that will overcome this difficulty.

Theorem 24 (Jones, [33]). Let µ be a complex H2 Carleson measure on D.
Then with S (µ) (z) given by

(45) S (µ) (z) =
∫∫

D
K (σ, z, ζ) dν (ζ)
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where σ = |µ|
‖µ‖CM(H2)

and

K (σ, z, ζ)

≡ 2i
π

1− |ζ|2

(z − ζ)
(
1− ζz

) exp

{∫∫
|ω|≥|ζ|

(
−1 + ωz

1− ωz
+

1 + ωζ

1− ωζ

)
dσ (ω)

}
,

we have that:

(1) S (µ) ∈ L1
loc (D).

(2) ∂S (µ) = µ in the sense of distributions.
(3)

∫∫
D

∣∣∣K ( |µ|
‖µ‖Car

, x, ζ
)∣∣∣ d |µ| (ζ) . ‖µ‖CM(H2) for all x ∈ T = ∂D, so

‖S (µ)‖L∞(T) . ‖µ‖CM(H2).

With this set-up, we now state the following theorem due to Xiao, ex-
tending Theorem 24, about estimates for ∂-problems in the Dirichlet space.

Theorem 25 (Xiao, [61]). If |g(z)|2 dA(z) is a D-Carleson measure then
the function S (g(z)dA) (z) satisfies ∂S(g(z)dA) = g and

‖S(g(z)dA)‖M(H1/2(S)) . ‖ |g(z)|2 dA(z)‖CM(D).

Here, M(H1/2(S)) is the multiplier algebra of the fractional Sobolev space
H1/2(S).

6.3.2. Corona theorems and complete Nevanlinna–Pick kernels.
Let X be a Hilbert space of holomorphic functions in an open set Ω in
Cn that is a reproducing kernel Hilbert space with a complete irreducible
Nevanlinna–Pick kernel (see [2] for the definition). The following Toeplitz
Corona Theorem is due to Ball, Trent and Vinnikov [19] (see also Ambrozie
and Timotin [5] and Theorem 8.57 in [2]).

For f = (fα)N
α=1 ∈ ⊕NX and h ∈ X, define Mfh = (fαh)

N
α=1 and

‖f‖Mult(X,⊕NX) = ‖Mf‖X→⊕NX = sup
‖h‖X≤1

‖Mfh‖⊕NX .

Note that max1≤α≤N ‖Mfα‖MX
≤ ‖f‖Mult(X,⊕NX) ≤

√∑N
α=1 ‖Mfα‖

2
MX

.

Theorem 26 (Toeplitz Corona Theorem). Let X be a Hilbert function space
in an open set Ω in Cn with an irreducible complete Nevanlinna–Pick kernel.
Let δ > 0 and N ∈ N. Then g1, . . . , gN ∈ MX satisfy the following “baby
corona property”: for every h ∈ X, there are f1, . . . , fN ∈ X such that

‖f1‖2X + · · ·+ ‖fN‖2X ≤
1
δ
‖h‖2X ,(46)

g1 (z) f1 (z) + · · ·+ gN (z) fN (z) = h (z) , z ∈ Ω,
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if and only if g1, . . . , gN ∈MX satisfy the following “multiplier corona prop-
erty”: there are ϕ1, . . . , ϕN ∈MX such that

‖ϕ‖Mult(X,⊕NX) ≤ 1,(47)

g1 (z)ϕ1 (z) + · · ·+ gN (z)ϕN (z) =
√
δ, z ∈ Ω.

The baby corona theorem is said to hold for X if whenever g1, · · · , gN ∈
MX satisfy

(48) |g1 (z)|2 + · · ·+ |gN (z)|2 ≥ c > 0, z ∈ Ω,

then g1, . . . , gN satisfy the baby corona property (46).
We now state a simple proposition that will be useful in understanding

the relationships between the Corona problems for D and MD.

Proposition 27. Suppose that g1, . . . , gN ∈M(D). Define the map

M(g1,...,gn)(f1, . . . , fn) :=
N∑

k=1

gk(z)fk(z).

Then the following are equivalent:

(i) M(g1,...,gn) : M(D)× · · · ×M(D) 7→M(D) is onto.
(ii) M(g1,...,gn) : D × · · · × D 7→ D is onto.
(iii) There exists a δ > 0 such that for all z ∈ D we have

N∑
k=1

|gk(z)|2 ≥ δ > 0.

It is easy to see that both (i) and (ii) each individually imply (iii). We will
show that condition (iii) implies both (i) and (ii). Note that by the Toeplitz
Corona Theorem 26 it would suffice to prove that (iii) implies (ii) since the
result then lifts to give the statement in (i). The proof of Proposition 27
follows by the lines of Wolff’s proof of the Corona Theorem for H∞, but
uses the solution operator given by Xiao in Theorem 25.

It is important to point out that there are several other proofs of Proposi-
tion 27 at this point. The first proof of this fact was given by Tolokonnikov,
[53] and was essentially obtained via connections with Carleson’s Corona
Theorem. Another proof of this result, but with the added benefit of being
true for an infinite number of generators was given by Trent [55]. Trent
demonstrated that (iii) implies (ii), and then applied the Toeplitz Corona
Theorem to deduce that (iii) implies (i). This proof exploits the fact that
the kernel for the Dirichlet space is a complete Nevanlinna–Pick kernel. Fi-
nally, there is a more recent proof of this fact by Costea, Sawyer and Wick,
[31]. The method of proof again is to demonstrate the Corona Theorem for
D under the hypothesis (iii). The proof in [31] is true more generally for the
Dirichlet space in any dimension.
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7. Interpolating sequences

Let H be a reproducing kernel Hilbert space (RKHS) of functions defined
on some space X, with kernel functions {kz}z∈X . Let M(H) be the mul-
tiplier space of H. A sequence S ⊆ X is an interpolating sequence for the
multiplier algebra M(H) if the restriction map

RS : g 7→ {g(s) : s ∈ S}

maps M(H) onto `∞. Since M(H) ⊆ L∞(X), the map is automatically
bounded. Consider the weight w : S → R+, w(s) = ‖ks‖−2

H . We say
that the sequence S is an interpolating sequence for the space H if RS is a
bounded map of H onto `2(S,w). In the context of complete Nevanlinna–
Pick RKHS these two notions coincide [37]. Our terminology differs from
some sources. In [21] Bishop, for instance, calls universally interpolating
sequences for D what we call interpolating sequences, and simply calls in-
terpolating sequences what we will call onto interpolating sequences.

Theorem 28 (Marshall and Sundberg, [37]). Let H be a RKHS of func-
tions on some space X, with the complete Nevanlinna–Pick property. For a
sequence S the following are equivalent:

(1) S is interpolating for M(H).
(2) S is interpolating for H.
(3) The family of functions

{
ks

‖ks‖H

}
s∈S

is a Riesz basis for the space H:

∥∥∥∥∥∑
s∈S

as
ks

‖ks‖H

∥∥∥∥∥
2

H

≈
∑
s∈S

|as|2.

Sarason observed that interpolating sequences for the multiplier space
M(H) have a distinguished rôle in the theory of the RKHS space H. Let ϕ
be a multiplier of the space H and S = {sj : j = 1, . . . , n} be a sequence in
X. Let Mϕ the multiplication operator by ϕ and M∗

ϕ be its adjoint. Then,
as we have already seen, {ϕ(sj) : j = 1, . . . , n} is a set of eigenvalues for
M∗

ϕ, having the corresponding kernel functions as eigenvectors: M∗
ϕksj =

ϕ(sj)ksj .
Finding the multiplier ϕ which interpolates data ϕ(sj) = λj corresponds,

then, to extending the diagonal operator ksj 7→ λjksj (which is defined on
span{ksj : j = 1, . . . , n}) to the adjoint of a multiplication operator. We
redirect the interested reader to the book [2], to the article [3] and to the
important manuscript [37] itself for far reaching developments of this line of
reasoning.

For a given sequence S in X, there are two obvious necessary conditions
for it to be interpolating for H:
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(Sep) The sequence S is separated: There is a positive σ < 1 such that for
all s, t ∈ S one has∣∣∣∣〈 ks

‖ks‖H
,

kt

‖kt‖H

〉∣∣∣∣ ≤ σ.
This condition expresses the fact that there exists a function f ∈ H
such that f(s) = 0 and f(t) = 1.

(CM) The measure µS =
∑

s∈S ‖ks‖−2
H δs is a Carleson measure for the

space H: ∫
X
|f |2dµS ≤ C(µ)‖f‖2H,

which expresses the boundedness of the restriction map RS .
Kristian Seip [47] conjectures that, for a RKHS with the complete Nevanlin-
na–Pick property, these two conditions are sufficient for S to be interpolat-
ing. Carleson’s celebrated Interpolation Theorem [28] says that such is the
case when H = H2 is the Hardy space. Böe proved Seip’s conjecture under
an additional assumption on the kernel functions (an assumption which, in-
terestingly, is not satisfied by the Hardy space itself, but which is satisfied
by the Dirichlet space).

7.1. Interpolating sequences for D and its multiplier space. The
characterization of the interpolating functions was independently solved by
Marshall and Sundberg [37] and by Bishop [21] in 1994.

Theorem 29 (Bishop [21], Marshall and Sundberg [37]). A sequence S in
D is interpolating for the Dirichlet space D if and only if it satisfies (Sep)
and (CM).

Actually, Bishop proved that interpolating sequences for D are also inter-
polating forM(D), but not the converse. At the present moment, there are
four essentially different proofs that (Sep) and (CM) are necessary and suf-
ficient for D interpolation: [21], [24], [25] and [37]. Interpolating sequences
for the Dirichlet space differ in one important aspect from interpolating se-
quences for the Hardy space. In the case of H2, in fact, if the restriction
operator is surjective (if, in our terminology, the sequence S is onto inter-
polating), then it is automatically bounded. As we will see in the next
subsection, there are sequences S in the unit disc for which the restriction
operator is surjective, but not bounded.

It is interesting and useful to restate the separation condition in terms of
hyperbolic distance: (Sep) in the Dirichlet space D holds for the sequence
S in D if and only if there are positive constants A,B such that, for all
z 6= w ∈ S

max{d(z), d(w)} ≤ Ad(z, w) +B.

This huge separation, which is related to the hyperbolic invariance of the
Dirichlet norm, compensates — in the solution of the interpolating sequences
problem and in other questions — for the lack of Blaschke products. In fact,
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it allows much space for crafting holomorphic functions from smooth ones
with little overlap.

Proof(s) Discussion. [37]. In their article, Marshall and Sundberg first
developed a general theory concerning interpolating sequences in spaces with
the complete Nevanlinna–Pick property. In particular, they reduced the
problem of characterizing the interpolating sequences for D to that of the
interpolating sequences for its multiplier space. This left them with the
(hard) task of showing that, given (Sep) and (CM), one could interpolate
bounded sequences by multiplier functions. In order to do that, they first
solved the easier (but still difficult) problem of interpolating the data by
means of a smooth function ϕ : D → R, having properties similar to those
of a multiplier in M(D). In particular, ϕ is bounded, it has finite Dirichlet
norm and, more, |∇ϕ|2dA ∈ CM(D).

The basic building block for constructing such ϕ are functions ϕz attached
to points z in D, which are, substantially, the best smoothed version (in
terms of Dirichlet integral) of the function χS̃(z), where

S̃(z) =
{
w ∈ D :

∣∣∣∣w − z

|z|

∣∣∣∣ ≤ (1− |z|)α

}
(α < 1 suitably chosen) is the “enlarged Carleson box” having center in
z. The separation condition (Sep) ensures that, if z1, z2 are points of the
sequence S and supp(ϕz1)∩ supp(ϕz2) 6= 0, then one of the points has to be
much closer to the boundary than the other. This is one of the two main tools
(the other being the Carleson measure condition, which further separates the
points of the sequence) in the various estimates for linear combinations of
basic building functions. These basic building blocks and their holomorphic
modifications are the main tool in the proofs of the interpolating theorems in
[12] and [25]. The rest of the proof consists in showing that one can correct
the function ϕ, making it harmonic, and from this, one easily proceeds to
the holomorphic case.

Bishop, instead, uses as building blocks conformal maps, (see [21], p.27).
In his article, he observes that the construction of the interpolating functions
for D does not require the full use of the assumption (CM). This is contrary
to the Hardy case, where there are sequences S for which the restriction
operator is onto and unbounded. We will return on this in the next section.

Böe’s short proof in [24] is less constructive, and it relies on Hilbert space
arguments. However, in his paper [25], dealing with the more general case of
the analytic Besov spaces, Böe has an explicit construction of the interpolat-
ing sequences for D andM(D). He makes use of holomorphic modifications
of the functions ϕz in [37], which are the starting point for a hard and clever
recursion scheme.

It is clear from the construction in [24] that, under the assumptions (Sep)
and (CM), one has linear interpolation of data, both in D andM(D): there
exist linear operators LS : `∞(S) → M(D) and ΛS : `2(S,w) → D such
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that LS{as : s ∈ S} solves the interpolating problem in M(D) with data
{as : s ∈ S} ∈ `∞(S) and ΛS{bs : s ∈ S} solves the interpolating problem
in D with data {bs : s ∈ S} ∈ `2(S,w). �

7.2. Weak interpolation and “onto” interpolation. A sequence S in
D is onto interpolating if the restriction operator RS maps D onto `2(S,w).
We do not ask the operator RS to be bounded (hence, to be defined on
all of D). It follows from the Closed Graph Theorem that, if S is onto
interpolating, then it is interpolating with norm control. Namely, there is
a constant C > 0 such that for {as : s ∈ S} ∈ `2(S,w) there is f ∈ D
such that f(s) = as and ‖f‖D ≤ C‖{as : s ∈ S}‖`2(S,w). Furthermore,
interpolation can be realized linearly.

A sequence S in D is weakly interpolating if there is C > 0 such that,
for all s0 ∈ S there is fs0 ∈ D with fs0(s) = δs0(s) for s ∈ S (δs0 is the
Kroenecker function) and norm control ‖fs0‖2D ≤ C‖δs0‖2`2(S,w) ≈ d(s0)−1.
Clearly, weakly interpolating is weaker than onto interpolating.

Remark 30.
(a) Weak interpolation (a fortiori, onto interpolation) implies the sepa-

ration condition (Sep).
(b) By adding a finite number of points to an onto interpolating se-

quence, we obtain another onto interpolating sequence.

A geometric characterization of the onto interpolating sequences is still
lacking. However, the following facts are known.

Theorem 31 (Bishop [21]). The sequence S is onto interpolating if and
only if it is weakly interpolating, and this is in turn equivalent to having
weak interpolation with functions which satisfy the further condition that
‖fs‖L∞(D) ≤ C for some constant C.

The proof of Bishop’s Theorem involves the clever use of a variety of
sophisticated tools. It would be interesting having a different proof (one
which worked for the analytic Besov spaces, for instance). Unfortunately,
establishing whether a given sequence S is weakly interpolating is not much
easier than establishing if it is onto interpolating.

Both Bishop [21] and Böe realized that a sequence S is onto interpolating
if the associated measure µS satisfies the simple condition (13) instead of the
stronger Carleson measure condition (CM). The simple condition implies,
in particular, that the measure µS is finite and Bishop asked whether there
are onto interpolating sequences with infinite µS . The answer is affirmative:

Theorem 32 (Arcozzi, Rochberg, and Sawyer, [12]). There exist sequences
S in D with µS(D) = +∞, which are onto interpolating for D.

The proof of Theorem 32 relies on a modification of Böe’s recursive
scheme, using Böe’s functions. In [12] there is another partial result, which
extends the theorems of Bishop and Böe. In order to state it, we have to
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go back to the tree language. Let T be the dyadic tree associated with the
disc D. By Remark 30, we can assume that each box α in T contains at
most one point from the candidate interpolating sequence S in D. We can
therefore identify points in S with distinguished boxes in T . We say that S
in D satisfies the weak simple condition if for all α in T ,

(49)
∑

β∈S, β≥α
µS(γ)=0 for α<γ<β

µS (β) ≤ Cd (α)−1 .

Theorem 33 (Arcozzi, Rochberg and Sawyer [12]). Let S be a sequence in
D and suppose that µS(D) < ∞. If µS satisfies (Sep) and the weak simple
condition (49), then S is onto interpolating for D.

We observe that the weak simple condition can not be necessary for onto
interpolation. In fact, it is easy to produce examples of sequences S satisfy-
ing (49), having subsequences S′ (which are then onto interpolating for D)
for which (49) is not satisfied. Such examples, however, have µS(D) = +∞.
We do not know whether, under the assumptions µS(D) = +∞ and (Sep),
the weak simple condition is necessary for onto interpolation.

In terms of partial results about onto interpolation, let us mention a
necessary condition of capacitary type. If S an onto interpolating sequence
for D in D, which we might identify with a subsequence of the tree T , then
the discrete capacitary condition holds: to each s0 in S, there corresponds a
positive function ϕs0 on T such that ‖ϕs0‖2`2 ≤ Cd(s0)

−1 and ϕs0(s) = δs0(s)
whenever s ∈ S.

A proof of this fact easily follows from Proposition 8. The discrete capac-
itary condition can be stated in terms of discrete condenser capacities:

CapT (S \ {s0}, {s0}) ≤ Cd(s0)−1.

A reasonable conjecture is that the discrete capacitary condition, plus the
separation condition (Sep), are necessary and sufficient in order for S to be
onto interpolating. Other material on the problem of the onto interpolating
sequences is in [12].

7.3. Zero sets. We briefly mention, because related to the interpolating
sequences, the zero sets for Dirichlet functions. A sequence of points Z =
{zn : n ≥ 0} in D is a zero set for D if there is a nonvanishing function f
in D such that f(zn) = 0. By conformal invariance, we might also require
f(0) = 1. In [48] Shapiro and Shields, improving on a theorem of Carleson
[29], proved that if

(50)
∑

n

1
log 1

1−|zn|
<∞,

then Z is a zero set for the Dirichlet spaces. This condition, shown in [41], is
sharp among conditions which only depend on the distance from the origin;
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but it does not characterize the zero sets. We direct the interested reader
to [44] for more information on zero sets.

8. Some open problems.

We conclude this survey with some open problems strictly related to the
topics we have discussed.

Since the Dirichlet space is conformally invariant, it would be interesting
to have conformally invariant counterparts of definitions and theorems con-
cerning the Dirichlet space, in which the origin plays a privileged rôle. A
natural conformally invariant definition of the Carleson measure norm for a
measure µ on D is

[µ]CMinv(D) := sup

∫
D |f − µ(f)|2dµ
‖f‖2D,∗

,

where µ(f) =
∫

D fdµ. Given a Möbius map of the disc ϕ, let ϕ∗µ, defined
as ϕ∗µ(E) = µ(ϕ−1(E)), be the push forward measure. It is easily verified
that [ϕ∗µ]CMinv(D) = [µ]CMinv(D).

Problem 34. Give a quantitative, geometric characterization of [µ]CMinv(D).

Let [µ]CM(D) be the best constant in the Carleson imbedding inequality
(9). It is proved in [15] that (if µ(∂D) = 0) then [µ]CMinv(D) is finite if and
only if [µ]CM(D) is finite. The proof there, however, is by contradiction and
does not seem to give quantitative information. Also note that the case of the
point mass µ = δ0 shows that [µ]CM(D) and [µ]CMinv(D) are not equivalent
in general. It would also be interesting to have a conformally invariant
definition and geometric characterization of the interpolating sequences for
the Dirichlet space.

The circle of ideas revolving around Nehari’s Theorem and duality is now
established for the Hardy space H2 and for the Dirichlet space D. Similar,
deep results have been obtained for spaces which are not holomorphic spaces
on the unit disc.

Problem 35. Does the same theory hold for the weighted Dirichlet spaces
sitting between Hardy and Dirichlet?

The weighted Dirichlet spaces we are referring to are those semi-normed
by

‖f‖2Da,∗ =
∫

D
|f ′|2(1− |z|2)adA(z),

where 0 < a < 1: D0 = D and D1 = H2. The techniques in [16] can not be
directly applied to the weighted case.

About interpolating sequences, the following problem is still open:

Problem 36. Give a geometric characterization of the onto-interpolating
sequences for the Dirichlet space.
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Some results in [12] seem to imply that, in order to solve this problem, one
has to depart from Böe’s constructive techniques [25]. Onto interpolation is
related to the following old problem.

Problem 37. Characterize the zero sets for D.

The interpretation of the Dirichlet norm in terms of area of the image
provides a natural, conformal invariant definition of the Dirichlet norm on
any planar domain.

Problem 38. Develop a theory of Dirichlet spaces on planar domains.

Of special interest, in view of potential applications to condenser capaci-
ties, would be a theory of Dirichlet spaces on annuli.
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