
New York Journal of Mathematics
New York J. Math. 17a (2011) 87–100.

Morita transforms of tensor algebras

Paul S. Muhly and Baruch Solel

Abstract. We show that if M and N are C∗-algebras and if E (resp.
F ) is a C∗-correspondence over M (resp. N), then a Morita equivalence
between (E, M) and (F, N) implements an isometric functor between
the categories of Hilbert modules over the tensor algebras of T+(E) and
T+(F ). We show that this functor maps absolutely continuous Hilbert
modules to absolutely continuous Hilbert modules and provides a new
interpretation of Popescu’s reconstruction operator.
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1. Introduction

Suppose M is a C∗-algebra and E is a C∗-correspondence over M in the
sense of [10]. This means, first of all, that E is a (right) Hilbert C∗-module,
and secondly, that if L(E) denotes the space of all bounded adjointable mod-
ule maps on E, then E becomes a left M -module via a C∗-homomorphism
ϕM from M into L(E). To emphasize the connection between E and M , we
will call the pair, (E,M), a C∗-correspondence pair. Form the Fock space
built from (E,M), F(E). This is the direct sum

∑
n≥0 E⊗n, where E⊗n is

the internal tensor product of E with itself n times. (The tensor products
are balanced over M .) The Fock space F(E) is, itself, a C∗-correspondence
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over M and we write ϕM∞ for the left action of M . For ξ ∈ E, Tξ de-
notes the creation operator on F(E) determined by ξ, i.e., for η ∈ F(E),
Tξη = ξ ⊗ η. We let T+(E) denote the norm closed subalgebra of L(F(E))
generated by ϕM∞(M) and {Tξ | ξ ∈ E}, and we call T+(E) the tensor
algebra of E or of (E,M). In [8, Defintion 2.1], we introduced the following
definition.

Definition 1. We say that two C∗-correspondence pairs (E,M) and (F,N)
are Morita equivalent in case there is a C∗-equivalence bimodule X in the
sense of [16, Definition 7.5] such that

X ⊗N F ' E ⊗M X
as C∗-correspondences. In this case, we say that X implements a Morita
equivalence between (E,M) and (F,N).

Observe that the equation X ⊗N F ' E ⊗M X is equivalent to the equa-
tion X ⊗N F ⊗N X̃ ' E and to the equation F ' X̃ ⊗M E ⊗M X , where X̃
is the dual or opposite module of X . We showed there that if (E,M) and
(F,N) are Morita equivalent, then the tensor algebras T+(E) and T+(F ) are
Morita equivalent in the sense of [1]. It follows that T+(E) and T+(F ) have
isometrically isomorphic representation theories. However, when looking at
the formulas involved in the isomorphism between the representation theo-
ries, certain details become obscure. Our objective in this note is to show
that simply tensoring with X implements an explicit isometric isomorphism
between the representation theories of T+(E) and T+(F ) in a fashion that
preserves important properties that we shall introduce shortly. The first
step is to have a clear picture of the representation theory of an operator
tensor algebra.

2. The representations of T+(E)

We begin with a restatement of Theorem 3.10 in [10].

Theorem 2. Let ρ be a completely contractive representation of T+(E) on
a Hilbert space H. Define σ : M → B(H) by the formula σ(a) = ρ◦ϕM∞(a)
and define T : E → B(H) by the formula T (ξ) = ρ(Tξ). Then σ is a C∗-
representation of M on H and T is a completely contractive bimodule map in
the sense that T (ϕM (a)ξb) = σ(a)T (ξ)σ(b) for all a, b ∈ M and all ξ ∈ E.
Conversely, given a C∗-representation σ : M → B(H) and a completely
contractive bimodule map T : E → B(H), there is a unique completely
contractive representation ρ : T+(E) → B(H) such that σ = ρ ◦ ϕM and
T (ξ) = ρ(Tξ) for all ξ ∈ E.

If T is a completely contractive bimodule map with respect to a C∗-
representation σ of M , then we call (T, σ) a completely contractive covari-
ant pair. We call the completely contractive representation ρ of T+(E) that
(T, σ) determines the integrated form of (T, σ) and write ρ = T × σ. The-
orem 2 begs the question: How does one construct completely contractive
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covariant pairs? For this purpose, we need to recall the definition of Rieffel’s
induced representation [17]. If σ : M → B(H) is a Hilbert space represen-
tation of M , then we may build the Hilbert space E ⊗σ H, which is the
separated completion of the algebraic tensor product E⊗H in the pre-inner
product defined by the formula

〈ξ ⊗ h, η ⊗ k〉 := 〈h, σ(〈ξ, η〉)k〉, ξ ⊗ h, η ⊗ k ∈ E ⊗H.

The representation σE of L(E) on E⊗σ H defined by the formula, σE(T ) :=
T ⊗ I, T ∈ L(E), is called the representation of L(E) induced by σ. The
following theorem is essentially Lemma 2.5 of [7].

Theorem 3. Let σ : M → B(H) be a C∗-representation. A completely
contractive linear map T from E to B(H) is a bimodule map with respect to
σ if and only if there is an operator T̃ : E ⊗σ H → H with ‖T̃‖ ≤ 1 such
that T̃ σE ◦ ϕM = σT̃ and T (ξ)h = T̃ (ξ ⊗ h), for all ξ ⊗ h ∈ E ⊗σ H.

Thus the completely contractive bimodule maps are in bijective corre-
spondence with (contractive) intertwiners. The space of intertwiners of σ
and σE ◦ ϕM is a key player in our theory and to keep the notation man-
ageable, when there is no risk of confusion in the context under discussion,
we shall not distinguish notationally between bimodule maps T and the
corresponding intertwiner T̃ . Further, for reasons that will be explained in
a minute, we frequently also denote bimodule maps by lower case fraktur
letters from the end of the alphabet, as we do now.

Definition 4. Let σ : M → B(H) be a C∗-representation. The σ-dual of
E, denoted Eσ, is defined to be {z ∈ B(H,E ⊗σ H) | zσ = σE ◦ ϕM z}. We
write Eσ∗ for the space {z∗ | z ∈ Eσ} and we write D(Eσ∗) for {z∗ ∈ Eσ∗ |
‖z∗‖ < 1}, i.e., D(Eσ∗) is the open unit ball in Eσ∗.

Thanks to Theorem 3, D(Eσ∗) labels all the completely contractive rep-
resentations ρ of T+(E) with the property that ρ◦ϕM∞ = σ. The reason we
introduced Eσ, instead of focusing exclusively on Eσ∗ is that Eσ is a W ∗-
correspondence over σ(M)′. (A W ∗-correspondence is a C∗-correspondence
with some additional structure that we discuss below.) For z1, z2 ∈ Eσ,
〈z1, z2〉 := z∗1z2, and the σ(M)′-bimodule actions are given by the formula

a · z · b := (IE ⊗ a)zb, a, b ∈ σ(M)′, z ∈ Eσ,

where the products on the right are just composition of the maps involved.
The reason for introducing the notation D(Eσ∗) and writing elements in this
ball as lower case z’s, w’s, etc., is that we may view an element F ∈ T+(E)
as a function F̂ on D(Eσ∗) via the formula

F̂ (z) := z× σ(F ), z ∈ D(Eσ∗).

Functions of the form F̂ are bonafide B(Hσ)-valued analytic functions on
D(Eσ∗) with additional very interesting properties, and they can be stud-
ied with function-theoretic techniques. (See [7, 6, 5].) For the purpose of
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emphasizing the function-theoretic properties of the F̂ ’s, it seems preferable
to write their arguments as z’s instead of T ’s. But when representation-
theoretic features need emphasis, the use of T and T × σ is sometimes
preferable.

3. The functor

Our objective in this section is to show that Morita equivalence of C∗-
correspondence pairs (E,M) and (F,N) gives rise to a natural isometric
isomorphism between representation theory of T+(E) and T+(F ).

Theorem 5. Suppose (E,M) and (F,N) are Morita equivalent C∗-corre-
spondence pairs via an M,N -equivalence bimodule X and correspondence
isomorphism W : E ⊗M X → X ⊗N F . Suppose further that σ : N → B(H)
is a C∗-representation and let σX : M → B(X⊗σH) be the representation of
M induced by X . Then for each z∗ ∈ D(F σ∗), z∗X := (IX ⊗ z∗)(W ⊗ IH) lies
in D(EσX ∗) and the map z∗ → z∗X is an isometric surjection onto D(EσX ∗).

Proof. For z∗ ∈ D(F σ∗) set z∗1 :=
[

0 z∗

0 0

]
acting on H ⊕ (F ⊗σ H). Then

z∗1 commutes with
[

σ 0
0 σF ◦ ϕN

]
. Consequently, IX ⊗z∗1 =

[
0 IX ⊗ z∗

0 0

]
acting on X⊗σH⊕X⊗σF ◦ϕN

(F⊗σH) commutes with
[

σX 0
0 (σF ◦ ϕN )X

]
.

Since W ⊗ IH : E ⊗ X ⊗σ H → X ⊗ F ⊗σ H intertwines (σX )E ◦ ϕM

and (σF ◦ϕN )X by hypothesis, we see that
[

0 (IX ⊗ z∗)(W ⊗ IH)
0 0

]
com-

mutes with
[

σX 0
0 (σX )E ◦ ϕM

]
. Since ‖(IX ⊗ z∗)(W ⊗ IH)‖ = ‖z∗‖, it

follows that z∗X := (IX ⊗ z∗)(W ⊗ IH) lies in D(EσX ∗) and that the map
z∗ → z∗X is isometric. Finally, to see that the map is surjective, we appeal
to [17, Theorem 6.23]: Let w∗ ∈ D(EσX ∗). Then w∗ intertwines σX and
(σX )E ◦ ϕM by hypothesis. Consequently, w∗(W ⊗ IH)−1 intertwines σX

and (σF ◦ ϕN )X . That is
[

0 w∗(W ⊗ IH)−1

0 0

]
lies in the commutant of[

σX (L(X )) 0
0 (σF ◦ ϕN )X (L(X ))

]
=
[

σ 0
0 (σF ◦ ϕN )

]X
(L(X )) and so,

by [17, Theorem 6.23],
[

0 w∗(W ⊗ IH)−1

0 0

]
must have the form IX ⊗[

z11 z12
z21 z22

]
, where

[
z11 z12
z21 z22

]
lies in the commutant of

[
σ 0
0 (σF ◦ ϕN )

]
.

Since IX ⊗
[

z11 z12
z21 z22

]
maps X ⊗N (F ⊗σ H) to X ⊗σ H and is zero on
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X ⊗σ H, it follows that
[

z11 z12
z21 z22

]
=
[

0 z12
0 0

]
for z12 ∈ D(F σ∗), proving

that the map z∗ → z∗X is surjective. �

Definition 6. If (E,M) and (F,N) are Morita equivalent C∗-correspon-
dence pairs via an equivalence M,N -bimodule X , then the map (T, σ) →
(TX , σX ) from the representation theory of T+(E) to the representation
theory of T+(F ) defined by X will be called the Morita transform determined
by X .

We like to think of the Morita transform as a generalized conformal map.

4. Morita equivalence and absolute continuity

Our focus in this section will be on Morita equivalence in the context
of W ∗-algebras and W ∗-correspondences. As we noted above, a W ∗-corre-
spondence is a C∗-correspondence with additional structure. We begin by
highlighting what the additional structure is and how to deal with it. So,
throughout this section M and N will be W ∗-algebras and E (resp. F )
will be a W ∗-correspondence over M (resp. N). This means, in particular,
that E and F are self-dual Hilbert C∗-modules over M and N , respectively,
in the sense of Paschke [11, Section 3, p. 449], and that the left actions
of M and N are given by normal representations, ϕM and ϕN of M and
N into L(E) and L(F ), respectively. (Recall that Paschke showed that in
the setting of self-dual Hilbert modules over W ∗-algebras, every continuous
module map is adjointable and L(E) is a W ∗-algebra by [11, Corollary 3.5
and Proposition 3.10].) To avoid technical distractions, we assume that ϕM

and ϕN are faithful and unital.
A key role in this theory is played by Paschke’s Theorem 3.2 in [11], which

says among other things that any Hilbert C∗-module E over a W ∗-algebra
has a canonical embedding into a self-dual Hilbert module over the algebra,
which should be viewed as a canonical completion of E. This allows us to
perform C∗-algebraic constructions and pass immediately to the completions
to obtain W ∗-algebraic objects. For instance, if E is a Hilbert W ∗-module
over M , then we may form the C∗-tensor square, E⊗2 = E ⊗M E, which
is not, in general, a W ∗-correspondence over M . However, its self-dual
completion is. More generally, we can form the C∗-Fock space built from
(E,M), Fc(E), as we did at the outset of this note. Then we let F(E) be
the self-dual completion of Fc(E) in the sense of [11, Theorem 3.2], and call
F(E) the Fock space of the W ∗-correspondence E. Similarly, we form Fc(F )
and F(F ). We write ϕM∞ for the left action of M on both Fc(E) and on
F(E). This should cause no confusion, since every element of L(Fc(E))
has a unique extension to an element of L(F(E)), by [11, Corollary 3.7],
and the process of mapping each element in L(Fc(E)) to its extension in
L(F(E)) gives an isometric embedding of L(Fc(E)) in L(F(E)). Likewise,
ϕN∞ denotes the left action of N on both Fc(F ) and F(F ). The creation
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operator Tξ on Fc(E) determined by ξ ∈ E, therefore has a unique extension
to F(E) and we do not distinguish notationally between the original and
the extension. But in the W ∗-setting we let T+(E) denote the norm closed
subalgebra of L(F(E)) generated by ϕM∞(M) and {Tξ | ξ ∈ E}, and we call
T+(E) the tensor algebra of E or of (E,M). That is, we focus on the tensor
algebra as living on the W ∗-Fock space F(E). We view T+(F ) similarly.
Finally, we let H∞(E) denote the ultra-weak closure of T+(E) in L(F(E)),
and we let H∞(F ) denote the ultra-weak closure of T+(F ) in L(F(F )). The
algebras H∞(E) and H∞(F ) are called the Hardy algebras of E and F ,
respectively.

In the special case when M = C = E, we see that Fc(E) = F(E) = `2(N),
T+(E) is the disc algebra A(D) and H∞(E) = H∞(T). More generally, when
M = C and E = Cd, T+(E) is Popescu’s noncommutative disc algebra and
H∞(E) is his noncommutative Hardy algebra [13]. Somewhat later, David-
son and Pitts studied H∞(Cd) under the name noncommutative analytic
Toeplitz algebra [2].

Definition 7. If M and N are W ∗-algebras and if E and F are W ∗-
correspondences over M and N , respectively, we say that (E,M) and (F,N)
are Morita equivalent in case there is a self-dual M−N equivalence bimodule
X in the sense of [16, Definition 7.5] such that

X ⊗N F ' E ⊗M X

as W ∗-correspondences. In this case, we say that X implements a Morita
equivalence between (E,M) and (F,N).

We emphasize that the modules X ⊗N F and E ⊗M X are self-dual com-
pletions of the balanced C∗-tensor products. A completely contractive rep-
resentation of a W ∗-correspondence pair (E,M) on a Hilbert space H is a
pair (T, σ) where σ is a normal representation of M on H and where T is
an ultra-weakly continuous, completely contractive bimodule map from E
to B(H). However, as we noted in [7, Remark 2.6], the ultra-weak conti-
nuity of T follows automatically from the bimodule property of T and the
normality of σ.

Our goal is to show that Morita equivalence in the sense of Definition 7
preserves absolute continuity in the sense of the following definition, which
was inspired by the important paper of Davidson, Li and Pitts [3].

Definition 8. Let (T, σ) be a completely contractive covariant represen-
tation of (E,M) on H and assume that σ is a normal representation of
M . Then a vector x ∈ H is called absolutely continuous if and only if the
functional a → 〈(T × σ)(a)x, x〉, a ∈ T+(E), extends to an ultra-weakly
continuous linear functional on H∞(E). The collection of all absolutely
continuous vectors in H is denoted Vac(T, σ), and we say (T, σ) and T × σ
are absolutely continuous in case Vac(T, σ) = H.
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Remark 9. The definition of an absolutely continuous vector just given
is not quite the one given in [4, Definition 3.1]. However, by [4, Remark
3.2], it is equivalent to the one given there. Also, by virtue of [4, Theorem
4.11], T × σ extends to an ultra-weakly continuous completely contractive
representation of H∞(E) if and only if T × σ is absolutely continuous.

Theorem 10. Suppose that (E,M) and (F,N) are W ∗-correspondence pairs
that are Morita equivalent via an equivalence bimodule X . If (z∗, σ) is a
completely contractive covariant representation of (F,N), where σ is normal,
then

(1) X ⊗σ Vac(z∗, σ) = Vac(zX
∗
, σX ).

In particular, (z∗, σ) is absolutely continuous if and only if (zX
∗
, σX ) is ab-

solutely continuous.

The proof of this theorem rests on a calculation of independent interest.
Recall that each z ∈ D(F σ) determines a completely positive map Φz on
σ(N)′ via the formula

Φz(a) := z∗(IE ⊗ a)z, a ∈ σ(N)′.

Recall, also, that the commutant of σX (M) is IX ⊗ σ(N)′, by [17, Theorem
6.23].

Lemma 11. With the notation as in Theorem 10,

ΦzX = IX ⊗ Φz,

i.e., for all a ∈ σ(N)′, ΦzX (IX ⊗ a) = IX ⊗ Φz(a).

Proof. By Theorem 5, zX = (W ⊗ IH)∗(IX ⊗ z). Consequently, for all
a ∈ σ(N)′,

ΦzX (IX ⊗ a) = zX
∗
(IE ⊗ (IX ⊗ a))zX

= (IX ⊗ z∗)(W ⊗ IH)(IE⊗X ⊗ a)(W ⊗ IH)∗(IX ⊗ z)

= (IX ⊗ z∗)(IX⊗F ⊗ a)(IX ⊗ z)

= (IX ⊗ z∗)(IX ⊗ (IF ⊗ a))(IX ⊗ z)

= IX ⊗ Φz(a). �

For the proof of Theorem 10, we need one more ingredient:

Definition 12. Let Φ be a completely positive map on a W ∗-algebra M .
A positive element a ∈ M is called superharmonic with respect to Φ in case
Φ(a) ≤ a. A superharmonic element a ∈ M is called a pure superharmonic
element in case Φn(a) → 0 ultra-strongly as n →∞.

Proof of Theorem 10. In [4, Theorem 4.7], we proved that the absolutely
continuous subspace for (z∗, σ) is the closed linear span of the ranges of all
the pure superharmonic operators for Φz, i.e., the projection onto Vac(z∗, σ)
is the supremum taken over all the projections P , where P is the projection
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onto the range of a pure superharmonic operator for Φz. From Lemma 11
we see that a ∈ N is a pure superharmonic operator for Φz if and only if
IX ⊗a is a pure superharmonic operator for ΦzX . Since the range projection
of IX ⊗ a is IX ⊗ P , if P is the range projection of a, the equation (1) is
immediate. �

5. Stabilization and reconstruction

We return to the C∗-setting, although everything we will say has an ana-
logue in the W ∗-setting. So let N be a C∗-algebra and let F be a C∗-
correspondence over N . We are out to identify a special pair (E,M) that is
Morita equivalent to (F,N) and is a kind of stabilization of (F,N). As we
will see, (E,M) will have a representation theory that is closely connected
to Popescu’s reconstruction operator.

Form the Fock space over F , F(F ), and let M = K(F(F )). Also, let
P0 be the projection onto the sum F ⊕ F⊗2 ⊕ F⊗3 ⊕ · · · in F(F ). Then
P0 lies in L(F(F )), which is the multiplier algebra of M = K(F(F )). We
set E := P0K(F(F )) and endow E with its obvious structure as a right
Hilbert C∗-module over K(F(F )). Note that L(E) = P0L(F(F ))P0. Define
R : F(F )⊗F → F(F ) by the formula R(ξ⊗f) = ξ⊗f , where the first ξ⊗f ,
the argument of R, is viewed as an element in F(F )⊗N F , while the second
ξ⊗f , the image of R(ξ⊗f), is viewed as an element of F(F ). It appears that
R is the identity map. However, this is only because we have suppressed the
isomorphisms between F⊗n⊗F and F⊗(n+1). The map R is adjointable, and
its adjoint is given by the formulae R∗(a) = 0, if a ∈ N , viewed as the zeroth

component of F(F ), while R∗(ξ1⊗ξ2⊗ξ3⊗· · ·⊗ξn) = (ξ1⊗ξ2⊗· · ·⊗ξn−1)⊗ξn,
if n ≥ 1 and ξ1⊗ξ2⊗ξ3⊗· · ·⊗ξn is a decomposable element of F⊗n ⊆ F(F ).
In particular, RR∗ = P0. We define ϕM : M → L(E) by the formula

ϕM (a) := R(a⊗ IF )R∗, a ∈ M.

Observe that ϕM extends naturally to the multiplier algebra of M , which is
L(F(F )) and ϕM (I) = P0. Consequently, E is an essential left module over
M .

Proposition 13. If X = F(F ), then X is an equivalence bimodule between
M = K(F(F )) and N and the map W from E ⊗M X to X ⊗N F defined by
the formula

W (P0a⊗ ξ) = R∗P0aξ, P0a⊗ ξ ∈ E ⊗M X ,

is an isomorphism of M,N -correspondences. Consequently, (E,M) and
(F,N) are Morita equivalent.

Proof. By definition, X is an equivalence bimodule implementing a Morita
equivalence between M and N . Also, it is clear that W is a right N -module
map. To see that W is a left M -module map, it may be helpful to emphasize
that the tensor product E ⊗M X is balanced over M . So, if P0 and I were
in K(F(F )) (which they aren’t; they’re only multipliers of K(F(F ))), then
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P0a ⊗ ξ could be replaced by P0 ⊗ ξ, which in turn could be replaced by
I ⊗ P0ξ. Further, sending I ⊗ P0ξ to P0ξ effects an isomorphism between
E ⊗M X and P0F(F ). It results that W is effectively R∗. The following
equation, then, gives the desired result.

WϕM (b)(P0a⊗ ξ) = W (R(b⊗ IF )R∗)P0a⊗ ξ

= (b⊗ IF )R∗aξ

= (b⊗ IF )W (P0a⊗ ξ).

The fact that W is isometric is another easy computation: For all a, b ∈ M ,
and ξ, η ∈ F ,

〈P0a⊗ ξ, P0b⊗ η〉 = 〈ξ, a∗P0bη〉
= 〈P0aξ, P0bη〉
= 〈R∗aξ, R∗bη〉
= 〈W (P0a⊗ ξ),W (P0b⊗ η)〉.

(Note that we have used the fact that P0 = RR∗ when passing from the
second line to the third.) Since K(F(F ))F(F ) = F(F ), P0K(F(F ))F(F ) =
P0F(F ), and so R∗P0K(F(F ))F(F ) = R∗P0F(F ) = F(F )⊗F . This shows
that W is surjective. �

Definition 14. Given a C∗-correspondence pair (F,N), we call the C∗-
correspondence pair (E,M) = (P0K(F(F )),K(F(F )) constructed in Propo-
sition 13 the canonical stabilization of (F,N), and we call (F(F ),W ) the
canonical (E,M), (F,N)-equivalence.

We want to illustrate the calculations of Proposition 13 in a concrete
setting first considered by Popescu. For this purpose, we require two ob-
servations. First, recall that E has the form PM . In general, if M is
a C∗-algebra and if E has the form PM , where P is a projection in the
multiplier algebra of M , then we called (E,M) strictly cyclic in [10, Page
419]. In this case, if (T, σ) is a completely contractive covariant repre-
sentation of (E,M) on a Hilbert space H, then E ⊗σ H is really σ(P )H,
where we have extended σ to the multiplier algebra of M , if M is not uni-
tal. Consequently, the intertwiner T̃ really maps the subspace σ(P )H into
H but the adjoint of T̃ may be viewed as an operator on H, i.e., from
H to H, with range contained in σ(P )H, of course. Second, observe that
in general, if (T, σ) is a covariant representation of (F,N) on a Hilbert
space H, then the representation induced from the canonical equivalence is
(TF(F ), σF(F )). We know σF(F ) represents K(F(F )) on F(F )⊗σ H via the
ordinary action of K(F(F )) on F(F ), tensored with the identity operator on

H, i.e., σF(H)(a) = a ⊗ IH . On the other hand, from Theorem 5, T̃F(F ) =
(IF(F ) ⊗ T̃ )(W ⊗ IH). But as we noted in the proof of Proposition 13, W is
effectively R∗, and taking into account all the balancing that is taking place,

we may write T̃F(F ) = (IF(F ) ⊗ T̃ )(R∗ ⊗ IH). Since, as we just remarked,
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T̃F(F ) maps from E ⊗M F(F ) ⊗σ H = P0K(F(F )) ⊗K(F(F )) F(F ) ⊗σ H,
which can be identified with the subspace P0F(F ) ⊗σ H of F(F ) ⊗σ H, it
will be more convenient in the example below to work with the adjoint of

T̃F(F ),

(2)
(

T̃F(F )

)∗
= (R⊗ IH)(IF(F ) ⊗ T̃ ∗),

and view
(

T̃F(F )

)∗
as an operator in B(F(F )⊗σ H).

Example 15. In this example, we let N = C and we let F = Cd. We
interpret Cd as `2(N), if d = ∞. If (T, σ) is a completely contractive co-
variant representation of (Cd, C) on a Hilbert space H, then σ is just the
n-fold multiple of the identity representation of C, where n is the dimension
of H. Also, T̃ may be viewed in terms of a 1 × d matrix of operators on
H, [T1, T2, · · · , Td], such that

∑d
i=1 TiT

∗
i ≤ IH , i.e. [T1, T2, · · · , Td] is a row

contraction. When Cd ⊗ H is identified with the column direct sum of d

copies of H, the formula for T̃ : Cd ⊗H → H is T̃ (


h1

h2
...

hd

) =
∑d

i=1 Tihi.

Consequently, T̃ ∗ : H → Cd ⊗H is given by the formula

T̃ ∗h =


T ∗1 h
T ∗2 h

...
T ∗d h

 .

On the other hand, F(Cd) ⊗ Cd may be viewed as the column direct sum
of d copies of F(Cd) and when this is done, R has a matricial representa-
tion as [R1, R2, · · · , Rd], where Ri is the right creation operator on F(Cd)
determined by the ith canonical basis vector ei = (0, 0, · · · , 0, 1, 0, · · · , 0)ᵀ

for Cd, i.e., Riξ = ξ ⊗ ei. Notice that [R1, R2, · · · , Rd] is a row isometry,
meaning that Ri’s are all isometries and that their range projections RiR

∗
i

are mutually orthogonal. Thus, the formula for R : F(Cd) ⊗ Cd → F(Cd)

is R


ξ1

ξ2
...
ξd

 =
∑d

i=1 Riξi. Consequently, in the context of this example,
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equation (2) becomes(
T̃F(Cd)

)∗
(ξ ⊗ h) = (R⊗ IH)(IF(Cd) ⊗ T̃ ∗)(ξ ⊗ h)

= (R⊗ IH)


ξ ⊗ T ∗1 h
ξ ⊗ T ∗2 h

...
ξ ⊗ T ∗d h


=

d∑
i=1

Riξ ⊗ T ∗i h

=

(
d∑

i=1

Ri ⊗ T ∗i

)
(ξ ⊗ h),

i.e.,
(

T̃F(Cd)

)∗
is Popescu’s reconstruction operator

∑d
i=1 Ri ⊗ T ∗i .

The reconstruction operator first appeared implicitly in [12], where Popes-
cu developed a characteristic operator function for noncommuting d-tuples
of contractions. (In this connection it was used explicitly in [14].) The
first place the term “reconstruction operator” appeared in the literature is
[15, Page 50], which began circulating as a preprint in 2004. Since that
time, the reconstruction operator has played an increasingly prominent role
in Popescu’s work. In addition, the reconstruction operator has popped
up elsewhere in the literature, but without the name attached to it. One
notable example is Orr Shalit’s paper [18, Page 69]. There he attached a
whole semigroup of them to representations of certain product systems of
correspondences. Because of Example 15 we feel justified in introducing the
following terminology.

Definition 16. If (T, σ) is a completely contractive covariant representation
of a C∗-correspondence pair (F,N) on a Hilbert space H, then the adjoint
of the intertwiner of the Morita transform of the canonical stabilization of
(F,N) is called the reconstruction operator of (T, σ); i.e., the reconstruc-

tion operator of (T, σ) is defined to be (T̃F(F ))∗ viewed as an operator in
B(F(F )⊗σ H).

Our analysis begs the questions: How unique is the canonical stabilization
of a C∗-correspondence pair? Are there noncanonical stabilizations? In
general there are many stabilizations that “compete” with the canonical
stabilization. Organizing them seems to be a complicated matter. To see a
little of what is possible, we will briefly outline what happens in the setting
of Example 15. So fix (Cd, C). We shall assume d is finite to keep matters
simple. We can stabilize C as a C∗- algebra getting the compact operators
on `2(N). It is important to do this explicitly, however. So let X be column
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Hilbert space C∞. This is `2(N) with the operator space structure it inherits
as the set of all operators from C to `2(N). Equivalently, it is the set of all
infinite matrices T = (tij) that represent a compact operator on `2(N) and
have the property that tij = 0, when j > 1. (See [1].) We then have
C̃∞ = R∞, the row Hilbert space. Also, if K = K(`2(N)), then C∞ is a
K, C-equivalence bimodule. So, if E is any correspondence over K that is
equivalent to Cd, then E must be isomorphic to

C∞ ⊗C Cd ⊗C R∞ ' Cd(K)

with its usual left and right actions of K. Because K is stable, there is
an endomorphism α of K such that Cd(K) is isomorphic to αK. That is,
αK is K as a right K-module (the module product is just the product in K
and the K-valued inner product is 〈ξ, η〉 := ξ∗η.) The left action of K is
that which is implemented by α, i.e., a · ξ := α(a)ξ. General theory tells
us this is the case, but we can see it explicitly as follows. Choose a Cuntz
family of d isometries on `2(N), {Si}d

i=1. (This means that S∗i Sj = δijI and∑d
i=1 SiS

∗
i = I.) Then, as is well known, {Si}d

i=1 defines an endomorphism
of K via the formula α(a) =

∑d
i=1 SiaS∗i . Note, too, that α extends to be a

unital endomorphism of B(`2(N)) since
∑d

i=1 SiS
∗
i = I. On the other hand,

define V : Cd(K) → K via the formula

V




a1

a2
...

ad


 =

d∑
i=1

Siai,


a1

a2
...

ad

 ∈ Cd(K).

Then it is a straightforward calculation to see that V is a correspondence
isomorphism from Cd(K) onto αK. Thus X = C∞ is an equivalence bimod-
ule between (αK,K) and (Cd, C) and (αK,K) is a bona fide contender for
a stabilization of (Cd, C). Note that this time αK is strictly cyclic, but the
projection P is the identity.

Suppose, now, that (T, σ) is a completely contractive covariant repre-
sentation of (Cd, C) on a Hilbert space H. Then as before σ is an n-fold
multiple of the identity representation of C on C, where n is the dimen-
sion of H and T̃ : Cd ⊗ H → H may be viewed as a row contraction
[T1, T2, · · · , Td] of operators on H. The induced representation of K, σC∞

is the n-fold multiple of the identity representation of K (same n) and a
calculation along the lines of that was carried out in Example 15 shows that(
T̃C∞

)∗
= S1 ⊗ T ∗1 + S2 ⊗ T ∗2 + · · ·+ Sd ⊗ T ∗d acting on `2(N)⊗H. Thus,(

T̃C∞
)∗

is an alternative for Popescu’s reconstruction operator. How dif-

ferent from his reconstruction operator
(
T̃C∞

)∗
is remains to be seen. We
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believe the difference could be very interesting. We believe that the depen-
dence of

(
T̃C∞

)∗
on the Cuntz family {Si}d

i=1 could be very interesting,
also.
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