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One-sided approximation in
affine function spaces

David Handelman and Damien Roy

Abstract. Let H be a subgroup of a partially ordered abelian group
G with order unit u, and let S(G, u) denote the convex subset of RG

consisting of all traces (states) τ on G with τ(u) = 1. We say that H has
property (B) if, for any integer m ≥ 2, any h ∈ H and any ε > 0, there
exists h′ ∈ H such that τ(h) −mτ(h′) ≥ −ε for each τ ∈ S(G, u). We
show that, if S(G, u) is finite-dimensional, this condition is equivalent
to asking that τ(H) is {0} or dense in R for all τ in the smallest face
of S(G, u) containing all traces that vanish identically on H. When G
is a simple dimension group and H is a convex subgroup of G, we show
that G/H is unperforated if and only if H has property (B). We apply
both results to provide a criterion for a trace of G to be refinable when
G is a simple dimension group with finitely many pure traces.
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1. Introduction

Throughout, n will stand for a positive integer. We denote by (Rn)∗, the
dual space to Rn, consisting of the linear functionals on Rn; by (Rn)+, the
set of elements of Rn with non-negative coordinates; and by (Rn)++, the
set of those with strictly positive coordinates. We also denote by ‖x‖ the
Euclidean norm of a point x ∈ Rn.

Let H be a subgroup of Rn, and let m > 1 be an integer. The condition

(Am) for all ε > 0 and h ∈ H, there exists h′ ∈ H such that ‖h−mh′‖ ≤ ε
is independent of m and is equivalent to H being dense in the vector space
RH that it spans; so we may as well refer to it as property (A). By a
theorem of Kronecker, this in turn implies the following.

Theorem A. Let m and H be as above. Then H satisfies property (Am) if
and only if for all τ ∈ (Rn)∗, either τ(H) = {0} or τ(H) is dense in R.

Here, we are interested in the following one-sided approximation property:

(Bm) for all ε > 0 and h ∈ H, there exists h′ ∈ H such that all coordinates
of h−mh′ are bounded below by −ε.

For example, the discrete subgroup H = Zn of Rn has this property, while
H = Z(1,−1) inside R2 does not.

Our principal result, in this context, characterizes subgroups H satisfying
this property, in terms of positive linear functionals in a fashion analogous
to that in Theorem A. Recall that a positive linear functional on Rn is
a linear functional sending (Rn)+ to R+ or, equivalently, that sends the
standard basis elements to nonnegative real numbers. Let Kn denote the
usual standard (n− 1)-simplex consisting of positive linear functionals τ in
(Rn)∗ such that τ(1, . . . , 1) = 1; its vertices are the n coordinate functions
τ1, . . . , τn where τi : Rn → R is projection onto the ith coordinate.

Theorem B. Let m and H be as above. Define F to be the smallest face
of Kn containing the set

Z(H) := {τ ∈ Kn | τ(H) = {0}} .
Then H satisfies property (Bm) if and only if for each τ ∈ F , either we have
τ(H) = {0} or τ(H) is dense in R.

The set Z(H) is a compact convex subset of Kn. If it is empty, then F
is empty and the condition is vacuous, so H satisfies (Bm) in this case. We
will see in section 5 that this happens if and only if H ∩ (Rn)++ 6= ∅. This
can also be viewed as a consequence of Gordan’s theorem (see Appendix A).
In general, F is the convex hull of the set of projections τi for which Z(H)
contains at least one element of the form a1τ1 + · · ·+ anτn with ai > 0.

When H is finitely generated with basis {h1, . . . , hs}, property (Bm) for H
amounts to the solvability of a system of Diophantine inequalities, namely
the conditions that for all ε > 0, all σ ∈ {−1, 1} and all i = 1, . . . , s,
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there exist integers a1, . . . , as ∈ Z such that all coordinates of the point
σhi − a1h1 − · · · − ashs are at least −ε. In Section 9, we give a class of
examples to which Theorem B applies, thereby solving the corresponding
system of Diophantine inequalities.

It follows from Theorem B that property (Bm) is independent of m. In
the next section, we extend this condition to an arbitrary subgroup H of
a partially ordered abelian group G with order unit and we show that, in
that context, it is again independent of m. From that point, we refer to it
as property (B).

In section 3, we establish a necessary condition for H to have property
(B) which, for G = Rn, reduces to that of Theorem B. We show in section
5 that this condition is also sufficient when the trace space of G has finite
dimension, thereby completing the proof of Theorem B. A construction in
section 6 shows however that this is not true for a general group G. When
G is a simple dimension group and H is a convex subgroup of G for which
G/H is torsion-free, we prove in section 7 that G/H is unperforated if and
only if H has property (B). This complements [BH, Proposition B.1] where
the condition is shown to be sufficient.

Section 8 answers a question of [BH] by giving necessary and sufficient
conditions for a trace of G to be refinable when G is a simple dimension
group with finitely many pure traces. The notion of refinable trace arose
from a property of measures on Cantor sets due to Akin [Ak], put in the
context of invariant probability measures on Cantor dynamical systems, and
subsequently translated to the setting of dimension groups by S. Bezuglyi
and the first author via the ordered K0 functor [BH]. Finally, Appendix A
explains the connection between Gordan’s theorem, Farkas’s lemma, and
some of our results.

2. Condition (Bm) in partially ordered abelian groups

By a partially ordered abelian group, we mean an abelian groupG equipped
with a translation invariant partial order ≤. The positive cone of such a pair
(G,≤) is the set G+ = {x ∈ G | 0 ≤ x}. It satisfies

(G+) + (G+) ⊆ G+ and (G+) ∩ (−G+) = {0}.

Conversely, any subset G+ of an abelian group G satisfying these conditions
makes G into a partially ordered abelian group upon defining, for x, y ∈ G,
that x ≤ y ⇔ y − x ∈ G+. As usual, we write x < y when x ≤ y and
x 6= y.

An order unit (or strong unit) of such a group G is a nonzero element,
u, of G+ such that for each g ∈ G, there exists a positive integer N with
−Nu ≤ g ≤ Nu. The set of all order units of G is denoted G++.

Let (G, u) be a partially ordered group with order unit u. A trace (or
state) on G is a nonzero group homomorphism τ : G → R that is positive
in the sense that τ(G+) ⊆ R+. We say that a trace τ is normalized at u if
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τ(u) = 1, and we denote by S(G, u) the set of those traces. It is a compact
and convex subset of RG with respect to the product topology on RG, see
[G; Proposition 6.2]. We denote by Aff S(G, u) the vector space consisting of
all convex-linear continuous real-valued functions on S(G, u), and we equip
it with the supremum norm—so that it becomes a Banach space. It is also
a partially ordered abelian group with respect to pointwise ordering where,
for ϕ,ψ ∈ Aff S(G, u), we write ϕ ≤ ψ when ϕ(τ) ≤ ψ(τ) for all τ ∈ S(G, u).

The affine representation of (G, u) is the second dual map from G to
Aff S(G, u) which, to each group element g ∈ G, associates the evaluation
map ĝ : S(G, u) → R given by ĝ(τ) = τ(g) for all τ ∈ S(G, u). This is an
order-preserving group homomorphism. Within Aff S(G, u), we identify R
with the subspace of constant functions so that, for g ∈ G and a ∈ R, the
condition a ≤ ĝ simply means a ≤ τ(g) for all τ ∈ S(G, u). For much more
on this and other aspects of partially ordered abelian groups, the reader is
referred to [Go].

We view Rn as a partially ordered abelian group with respect to the usual
coordinatewise ordering. Its positive cone is (Rn)+ and its set of order units
is (Rn)++, as defined in the introduction. In particular, the vector

1 = (1, . . . , 1),

with all coordinates equal to 1, is an order unit of Rn. The corresponding
trace space S(Rn,1) is the simplex Kn spanned by the coordinate functions
τ1, . . . , τn in (Rn)∗, and the affine representation from Rn to Aff Kn is an
isomorphism of vector spaces over R. For g ∈ Rn and a ∈ R, the condition
a ≤ ĝ reduces to a ≤ τi(g) for each i = 1, . . . , n. Thus, for a subgroup H of
Rn and an integer m ≥ 2, condition (Bm) can be restated as follows:

(Bm) for all h ∈ H and ε > 0, there exists h′ ∈ H such that ĥ−mĥ′ ≥ −ε.
We use this as a definition of the property (Bm) for a subgroup H of

G. When it holds, then so do (Bn) for all divisors n > 1 of m, and so do
(Bmj ) for all integers j ≥ 1. More generally, the next result shows that the
conditions (Bm) with m > 1 are mutually equivalent.

Proposition 2.1. Let (G, u) be as above. Suppose that a subgroup H of
G satisfies (Bm) for some integer m > 1. Then H satisfies (Bn) for all
integers n > 1.

In view of this, we simply say that H has property (B) if it satisfies (Bm)
for some (and thus all) integers m > 1.

Proof. Let h ∈ H, let n > 1 be an integer and let ε > 0. Since u is an
order unit, there exists ` ∈ N such that h ≤ `u. Choose an integer j ≥ 1
such that mj ≥ (2` + ε)n/ε. Since H satisfies (Bm), it satisfies (Bmj ), and
so there exists h′ ∈ H such that

ĥ−mj ĥ′ ≥ −ε/2.
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Since h ≤ `u, we have ĥ ≤ ` and so the above inequality yields

ĥ′ ≤ m−j(ĥ+ ε/2) ≤ m−j(`+ ε/2) ≤ ε/(2n).

Writing mj = qn− r with integers q ≥ 1 and 0 ≤ r < n, we conclude that

ĥ− nqĥ′ ≥ −rĥ′ − ε/2 ≥ −ε,

thus ĥ−nĥ′′ ≥ −ε where h′′ = qh′ ∈ H. This shows that (Bn) is satisfied. �

If G0 is a subgroup of G containing u, then (G0, u) is a partially ordered
abelian group with order unit, with positive cone G+

0 = G+ ∩ G0. Im-
portantly, by [GoH1, Theorem 3.2] (see also [Go, Corollary 4.3]), the map
ρ : S(G, u)→ S(G0, u) sending a trace on G to its restriction to G0 is a sur-
jective affine (convex-linear) homomorphism. We deduce that the property
(B) for a subgroup H of G depends only on the induced ordering on H+Zu.

Proposition 2.2. Let (G, u) be as above, let H be a subgroup of G, and let
G0 = H + Zu. Then H has property (B) within (G, u) if and only if it has
property (B) within (G0, u).

Proof. Let m > 1 be an integer. The condition (Bm) for H within (G, u)
requests that, for each h ∈ H and each ε > 0, there exists h′ ∈ H such
that τ(h −mh′) ≥ −ε for all τ ∈ S(G, u). The condition within (G0, u) is
the same except that τ varies in S(G0, u). In view of the surjectivity of the
restriction map from S(G, u) to S(G0, u), the two conditions are thus the
same. �

3. A necessary condition for property (B)

Let H be a subgroup of a partially ordered abelian group with order unit
(G, u). The set

ZG(H) := {τ ∈ S(G, u) | τ(h) = 0 for all h ∈ H }
is a compact convex subset of S(G, u). When G = Rn and u = 1, this is the
set denoted Z(H) in Theorem B.

A face of S(G, u) is a (possibly empty) subset F of S(G, u) such that
any line segment in S(G, u) whose relative interior meets F , is contained
in F . For any subset Z of S(G, u), there is a smallest face containing Z.
When Z is convex (such as the set ZG(H) defined above), it consists of all
τ1 ∈ S(G, u) for which there exist τ2 ∈ S(G, u) and λ ∈ (0, 1) such that
λτ1 + (1 − λ)τ2 ∈ Z, see [G, Proposition 5.7]. The extreme boundary of
S(G, u), denoted ∂eS(G, u), is the set of all traces τ ∈ S(G, u), called pure
traces, which by themselves constitute faces {τ} of S(G, u). For example,
∂eS(Rn,1) is the set of coordinates functions {τ1, . . . , τn} in (Rn)∗.

The next result provides a necessary condition for property (B) to hold.
For (G, u) = (Rn,1), it is the same condition as in Theorem B. The proof
that we provide below is an adaptation of the arguments from [BH, Propo-
sition B.4].
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Theorem 3.1. Let (G, u) and H be as above, and let F be the smallest face
of S(G, u) containing ZG(H). Suppose that H satisfies condition (B). Then
for any τ in F , either τ(H) is zero, or it is dense in R.

Proof. Pick τ1 in F . Since ZG(H) is a convex subset of S(G, u), there exist
τ2 ∈ S(G, u) and λ ∈ (0, 1) such that λτ1 + (1 − λ)τ2 ∈ ZG(H). Then, for
any h in H, we have

τ1(h) = −θτ2(h), where θ =
1− λ
λ

> 0.

Suppose that τ1(H) = Zδ for some real δ > 0. For every h in H, it follows
that

(τ1(h), τ2(h)) = `δ(1,−θ) for some ` ∈ Z.

Setting ε = δmin{1, θ}/2, we deduce that (τ1(h), τ2(h)) ≥ (−ε,−ε) in R2

(with respect to the componentwise ordering) if and only if τ1(h) = 0.
Choose h such that τ1(h) = δ generates τ1(H), and let m > 1 be an in-
teger. Then, for every h′ in H, we have τ1(h) 6= mτ1(h

′), so τ1(h−mh′) 6= 0
and by the above we obtain

(ĥ−mĥ′)(τi) = τi(h−mh′) < −ε for some i ∈ {1, 2}.
This contradicts (Bm). Hence τ1(H) is either zero or dense in R. �

In section 5, we will show that the converse holds when S(G, u) spans
a finite-dimensional subspace of RG or when H has finite rank. This will
complete the proof of Theorem B. The next section provides the last tool
that we need for this purpose.

4. An auxiliary result

Throughout this section we fix a Euclidean space E of finite dimension
n > 1 with the scalar product of x,y ∈ E, denoted x · y. We also fix a
compact convex subset K of E containing 0. The notion of a face F of
K and of the extreme boundary ∂eK of K is defined as in section 3, with
S(G, u) replaced by K. In particular, there exists a smallest face F of K
containing 0. Our goal here is to prove the following result. Its relevance to
property (B) will become clearer in the next section.

Proposition 4.1. Let F be the smallest face of K containing 0 and let Y
be a subgroup of E with RY = E. Suppose that {x · y | y ∈ Y } is dense in
R for each x ∈ F \ {0}. Fix an arbitrary choice of ε > 0 and of y ∈ Y .
Then, there exists y2 ∈ Y such that x · (y − 2y2) ≥ −ε for each x ∈ K.

For the rest of the section, we fix F and Y as in the statement of the
proposition. We also define

E′′ = RF and E′ = (E′′)⊥,

so that E = E′ ⊕ E′′ is an orthogonal sum decomposition. For the proof of
the proposition, we will need the following intermediate results.



380 DAVID HANDELMAN AND DAMIEN ROY

Lemma 4.2. The face F is a neighbourhood of 0 in E′′.

Proof. This is clear if F = {0} because then E′′ = {0}. Suppose that
s = dimRE

′′ is positive, and let {x1, . . . ,xs} be a basis of E′′ contained in
F . Since, for each x ∈ F there exists λ > 0 such that −λx ∈ F , we may
assume that −x1, . . . ,−xs ∈ F . Then F contains the convex hull of the 2s
points ±x1, . . . ,±xs which is a neighbourhood of 0 in E′′. �

Lemma 4.3. Let K ′ = projE′K denote the image of K under the orthogonal
projection on E′. Then K ′ is a compact convex subset of E′ with 0 ∈ ∂eK ′.

Proof. Since the orthogonal projection on E′ is linear, thus continuous,
the image K ′ of K is convex, compact, and contains 0. If 0 /∈ ∂eK ′, there
exists x′ ∈ K ′ \ {0} such that −x′ ∈ K ′. We can write x′ = x1 + y1 and
−x′ = x2 + y2 for some x1,x2 ∈ K and some y1,y2 ∈ E′′. By Lemma
3, there exists δ ∈ (0, 1/2) such that 2δyi ∈ F ⊆ K for i = 1, 2. Since
K is convex, containing 0 and xi, it also contains 2δxi for i = 1, 2. So it
contains δx′ and −δx′, which in turn implies that δx′ ∈ F . However, this
is impossible since F ∩ E′ ⊆ E′′ ∩ E′ = {0}. This contradiction shows that
0 ∈ ∂eK ′. �

Lemma 4.4. The orthogonal projection projE′′Y of Y on E′′ is dense in
E′′.

Proof. The group projE′′Y is dense in E′′ if and only if the orthogonal
projection of Y on Rx is dense in Rx for each x ∈ E′′ \ {0} or, equivalently,
if and only if {x · y | y ∈ Y } is dense in R for each x ∈ E′′ \ {0}. Since,
by Lemma 4.2, F is a neighbourhood of 0 in E′′, this is equivalent to the
hypothesis that {x · y | y ∈ Y } is dense in R for each x ∈ F \ {0}. �

The next lemma is a basic tool of inhomogeneous Diophantine approxi-
mation.

Lemma 4.5. Let C be a convex neighbourhood of 0 in a real vector space
V of finite dimension s ≥ 1, and let {v1, . . . ,vs} be a basis of V contained
in C. Then any translate of sC in V contains at least one element of the
group Zv1 + · · ·+ Zvs.

Proof. Let v ∈ V . Write v = a1v1 + · · ·+ asvs with a1, . . . , as ∈ R. Then
v + sC contains the point da1ev1 + · · · + dasevs, where dae stands for the
least integer greater than or equal to a. �

It has the following consequence.

Lemma 4.6. For each neighbourhood U ′′ of 0 in E′′, there exists a compact
neighbourhood U ′ of 0 in E′ such that each translate of U ′+U ′′ in E contains
at least one element of Y .

Proof. It suffices to prove this for a convex neighbourhood U ′′ of 0, assum-
ing that s = dimR(E′′) > 0. Since, by Lemma 4.4, projE′′Y is dense in
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E′′, there exist elements y1, . . . ,ys of Y whose projections on E′′ form a
basis of E′′ contained in (ns)−1U ′′. Let Y ′′ = Zy1 + · · ·+ Zys. By Lemma
4.5, each translate of n−1U ′′ contains at least one element of projE′′Y ′′. In
particular, each element of Y is congruent modulo Y ′′ to a point y with
projE′′y ∈ n−1U ′′. Since RY = E, we may therefore complete {y1, . . . ,ys}
to a basis {y1, . . . ,yn} of E contained in Y , with projE′′yj ∈ n−1U ′′ for
j = 1, . . . , n. Choose a compact neighbourhood U ′ of 0 in E′ such that
n−1U ′ contains the projections of y1, . . . ,yn on E′. Then n−1(U ′ + U ′′)
contains y1, . . . ,yn and so, by Lemma 4.5, each translate of U ′ + U ′′ in E
contains at least one element of Zy1 + · · ·+ Zyn. �

Lemma 4.7. Let ε > 0 and ρ > 0 be arbitrary. For each nonzero subspace
V of E′, there exists a closed ball B of V of radius ρ such that x · y ≥ −ε
for all x ∈ K ′ ∩ V and all y ∈ B.

Proof. Let V be a nonzero subspace of E′. By Lemma 4.3, the set K ′ is
a compact convex subset of E′ with 0 ∈ ∂eK ′. Then, K ′ ∩ V is a compact
convex subset of V with 0 ∈ ∂e(K

′ ∩ V ). In particular, 0 belongs to the
topological boundary of K ′ ∩ V in V . So, there exists a unit vector u of V
such that u ·x ≥ 0 for each x ∈ K ′∩V , by [Go, Proposition 5.10]. We prove
the existence of B by induction on s = dimR V .

If s = 1, we have K ′ ∩ V ⊆ R+u. Then B = [0, 2ρ]u is a closed ball of V
of radius ρ with x · y ≥ 0 for all x ∈ K ′ ∩ V and y ∈ B.

Suppose now that s > 1. Define V0 = {x ∈ V | u · x = 0} and set K0 =
K ′∩V0. Then, V0 is a subspace of V of dimension s−1. So, we may assume
the existence of a closed ball B0 of V0 of radius ρ such that x ·y ≥ −ε/2 for
all x ∈ K0 and all y ∈ B0. Put

L = sup
{
‖x‖

∣∣ x ∈ K ′ ∩ V } and M = sup {‖y‖ | y ∈ B0 } .

Define also

U = {x ∈ V | ‖x‖ < ε/(2M)} and Fδ =
{
x ∈ K ′ ∩ V

∣∣ u · x ≤ δ}
for each δ > 0. Then {Fδ | δ > 0} is a collection of closed subsets of K ′∩V ,
stable under finite intersections, whose intersection is K0. Since K ′ ∩ V is
compact and since K0+U is an open subset of V containing K0, there exists
therefore δ > 0 for which Fδ ⊆ K0 + U . Let B be any ball of V of radius
ρ contained in B0 + [R,∞)u, where R = ML/δ. We claim that B has the
required property.

To show this, choose any x ∈ K ′∩V and y ∈ B. We may write y = y0+tu
where y0 ∈ B0 and t ≥ R. If x /∈ Fδ, we have u · x > δ and so

x · y = x · y0 + tu · x > −LM +Rδ = 0.
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Otherwise, we have x ∈ Fδ ⊆ K0 + U , so there exists x0 ∈ K0 such that
‖x− x0‖ < ε/(2M). Since u · x ≥ 0 and ‖y0‖ ≤M , we obtain

x · y = x · y0 + tu · x
≥ x · y0

= x0 · y0 + (x− x0) · y0

≥ − ε
2
− ε

2M
M = −ε.

This finishes the proof of the lemma. �

Proof of Proposition 4.1. By Lemma 4.4, the group projE′′Y is dense
in E′′. Thus, the same is true of projE′′(2Y ). If E′ = {0}, this means
that 2Y is dense in E and the conclusion follows. We thus assume that
E′ 6= {0}. Then, for each δ > 0, Lemma 4.6 shows the existence of ρ > 0 such
that each translate of B′ρ + B′′δ contains at least one element of 2Y , where
B′ρ = {y′ ∈ E′ | ‖y′‖ ≤ ρ} and B′′δ = {y′′ ∈ E′′ | ‖y′′‖ ≤ δ}. Moreover,
applying Lemma 4.7 to the choice of V = E′, we obtain a translate B′ of
B′ρ with the property that x′ · y′ ≥ −ε/2 for any x′ ∈ K ′ and any y′ ∈ B′.

We apply the above with δ = ε/(2L) where L = sup{‖x‖ ; x ∈ K}. Put
B = B′+B′′δ for the corresponding choice of B′. Then any translate of B in
E contains at least one element of 2Y . In particular, for the given y ∈ Y ,
there exists y2 ∈ Y such that 2(−y2) ∈ (−y) + B, and thus y − 2y2 ∈ B.
Write y − 2y2 = y′ + y′′ with y′ ∈ B′ and y′′ ∈ B′′δ . Then, for any x ∈ K,
we find

x · (y − 2y2) = projE′(x) · y′ + projE′′(x) · y′′ ≥ (−ε/2)− Lδ ≥ −ε ,
as required. �

5. Sufficient conditions for property (B)

We begin with the following observation.

Proposition 5.1. Let H be a subgroup of a partially ordered abelian group
with order unit (G, u). We have

ZG(H) = ∅ ⇐⇒ H ∩G++ 6= ∅.
When this happens, the group H has property (B).

The first assertion generalizes Gordan’s theorem [Gor], see Appendix A.
When G = Rn and u = 1, the second proves Theorem B in the case that
ZG(H) = Z(H) is empty.

Proof. If H contains no order units, then G0 = H⊕Zu is a direct sum and
the map τ0 : G0 → R given by τ0(h + `u) = ` for each pair (h, `) ∈ H × Z
is a positive homomorphism for the restriction to G0 of the partial order on
G. Since u ∈ G0 and τ0(u) = 1, this maps extends to a trace τ ∈ S(G, u).
Then ZG(H) is not empty, as it contains τ .
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Conversely, if H contains an order unit v, then u ≤ kv for some positive
integer k, so v̂ ≥ k−1û = k−1, and thus ZG(H) = ∅. Moreover, let m > 1
be an integer and let h ∈ H. Since mv is an order unit, we have −h ≤ `mv
for some ` ∈ N, thus ĥ−mĥ′ ≥ 0 for h′ = −`v ∈ H. Thus H satisfies (Bm)
as well. �

Theorem 5.2. Let (G, u) be a partially ordered abelian group with order
unit, let H be a subgroup of G, and let F be the smallest face of S(G, u)

containing ZG(H). Let Ĥ denote the image of H in Aff (S(G, u)) under the

affine representation of (G, u). Suppose that RĤ is finite-dimensional and
that τ(H) is dense in R for each τ ∈ F \ZG(H). Then, H has property (B).

In particular, H has property (B) if ZG(H) is a face of S(G, u) and RĤ
has finite dimension. We will show in the next section that property (B)

may fail if finite-dimensionality of RĤ is dropped.

Proof. We may assume that ZG(H) 6= ∅ since otherwise we already know,
by Proposition 5.1, that H has property (B). From this, we proceed in two
steps. We first prove the statement when G = H +Zu. Then, we show that
the general case reduces to this special case.

So, assume first that G = H + Zu. Then, as ZG(H) is not empty, we
have H ∩ Zu = {0} and ZG(H) consists of the single group homomorphism
τ0 : G→ Z given by τ0(h+nu) = n for each h ∈ H and each n ∈ Z. Choose

h1, . . . , hn ∈ H such that {ĥ1, . . . , ĥn} is a basis of RĤ over R. We denote
by ϕ : H → Rn the group homomorphism that sends an element of h to the

coordinates of ĥ in that basis, namely the n-tuple ϕ(h) = (y1, . . . , yn) ∈ Rn
such that

ĥ = y1ĥ1 + · · ·+ ynĥn.

We also form the linear map ψ : RG → Rn given by

ψ(τ) = (τ(h1), . . . , τ(hn))

for each τ ∈ RG. Then, for each τ ∈ S(G, u) and each h ∈ H, we have

τ(h) = ĥ(τ) = ψ(τ) · ϕ(h)

using the standard scalar product on Rn. We deduce from this that ψ is
one-to-one on S(G, u), because if elements τ1, τ2 of S(G, u) have the same
image under ψ then, by the formula above, they coincide on H and therefore
they coincide on G (since they take the value 1 at u).

Let K = ψ(S(G, u)) and Y = ϕ(H). Then, K is a convex subset of Rn
containing ψ(τ0) = 0 and ψ induces an affine homeomorphism from S(G, u)
to K. Accordingly, F0 := ψ(F ) is the smallest face of K containing 0.
Moreover, Y is a subgroup of Rn which contains Zn, the image of the group
Zh1+ · · ·+Zhn under ϕ. So, we have RY = Rn. The hypothesis also implies
that {x · y ; y ∈ Y } is dense in R for each x ∈ F0 \ {0}. So, K and Y fulfil
all the hypotheses of Proposition 2 within the Euclidean space Rn.
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Let ε > 0 and h ∈ H. Putting y = ϕ(h), Proposition 2 yields a point
y′ ∈ Y such that x · (y−2y′) ≥ −ε for each x ∈ K. Choose any h′ ∈ H such

that ϕ(h′) = y′. Then, the above property translates into ĥ(τ)−2ĥ′(τ) ≥ −ε
for each τ ∈ S(G, u), showing that H has property (B2).

Now, we turn to the general case. Consider the group G0 = H + Zu
with the induced ordering from G. Since the map ρ : S(G, u) → S(G0, u)
sending a trace on (G, u) to its restriction on (G0, u) is a surjective affine
order-preserving homomorphism (see section 2), we have

ZG(H) = ρ−1(ZG0(H)) and F = ρ−1(F0),

where F0 denotes the smallest face of S(G0, u) containing ZG0(H). In par-
ticular ZG0(H) is not empty, and the hypothesis that τ(H) be dense in R for

each τ ∈ F \ZG(H) implies the same for each τ ∈ F0 \ZG0(H). Let Ĥ0 de-
note the image of H in Aff (S(G0, u)). The dual map ρ∗ from Aff (S(G0, u))
to Aff (S(G, u)) given by composition with ρ is R-linear and restricts to an

isomorphism of R-vector spaces from RĤ0 to RĤ. In particular, RĤ0 is
finite-dimensional. Thus the hypotheses of the theorem hold for H as a
subgroup of G0 and therefore, by the special case proved above, the group
H has property (B) within G0. By Proposition 2.1, we conclude that it also
has property (B) within G. �

6. A class of counter-examples

The criterion for property (B) given in Theorem 5.2 requires that RĤ have
finite dimension. The goal of this section is to exhibit examples showing that
the theorem is false without this hypothesis. Our construction is based on
the following observation.

Proposition 6.1. Let X be any infinite set, and let H be the subgroup
of RX generated by an infinite R-linearly independent sequence of bounded
functions (hi : X → R)i∈N. Suppose that, for each nonzero f in RH, there
exists x ∈ X for which f(x) > 0. Then there is a sequence of positive
integers (mi)i∈N such that each nonzero element h of H ′ =

∑
i≥1 Zmihi

satisfies supX h ≥ 1.

Proof. We construct inductively integers m1,m2, . . . so that supX h ≥ 1
for each n ≥ 1 and each nonzero h in Hn = Zm1h1 + · · ·+ Zmnhn.

For n = 1, we choose x1, x2 ∈ X such that h1(x1) > 0 and (−h1)(x2) > 0,
and we select m1 ∈ N large enough so that m1h1(x1) ≥ 1 and −m1h1(x2) ≥
1. Then, for each nonzero h ∈ H1 = Zm1h1, we obtain

sup
X
h ≥ max{h(x1), h(x2)} ≥ 1.

Suppose that m1, . . . ,mn have been constructed for some integer n ≥ 1.
For each point u = (u1, . . . , un+1) in the unit sphere S of Rn+1, the function
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f = u1h1 + · · ·+ un+1hn+1 is a nonzero element of RH, and so there exists
xu ∈ X such that f(xu) > 0. Define

Vu = {(v1, . . . , vn+1) ∈ Rn+1 ; (v1h1 + · · ·+ vn+1hn+1)(xu) > 0}.
Then (Vu)u∈S is an open covering of S. Since S is compact, it admits a
finite subcover by open sets corresponding to points x1, . . . , xk ∈ X. This
means that the function g : S → R given by

g(u1, . . . , un+1) = max
1≤i≤k

(u1h1 + · · ·+ un+1hn+1)(xi)

is strictly positive on S. Since it is continuous, it is therefore bounded below
by some positive constant δ > 0. We chose mn+1 ∈ N so that mn+1δ ≥ 1,
and claim that this integer has the desired property.

To show this, choose any nonzero element h of Hn+1 = Hn+Zmn+1hn+1.
If h ∈ Hn, then by hypothesis we have supX h ≥ 1. Otherwise, we can write
h = `1m1h1 + · · · + `n+1mn+1hn+1 for some integers `1, . . . , `n+1 ∈ Z with
`n+1 6= 0. Put v = (`1m1, . . . , `n+1mn+1) and u = ‖v‖−1v. Since u ∈ S
and ‖v‖ ≥ mn+1, we obtain

sup
X
h ≥ max

1≤i≤k
h(xi) = ‖v‖g(u) ≥ mn+1δ ≥ 1,

as desired. �

Consider the vector space G = C(X,R) consisting of continuous real-
valued functions on a compact Hausdorff topological space X. This is a
partially ordered abelian group with respect to the pointwise ordering and
the constant function 1 is an order unit. Each trace τ in S(G,1) is given
by τ(f) =

∫
X f dµ for a unique Borel probability measure µ on X and this

identifies S(G,1) to the set M+
1 (X) of probability measures on X with the

weak* topology (see [Go, Chapter 5]). Moreover, the extreme boundary of
S(G,1) is homeomorphic to X under the map that sends a point x in X to
the evaluation εx at x given by

εx(f) = f(x) (f ∈ G)

corresponding to the point-mass measure δx at x [Go, Proposition 5.24]. In
particular {εx} is a face of S(G,1) for any x ∈ X.

Proposition 6.2. Let X be an infinite compact metrizable topological space.
Choose x0 ∈ X such that X0 := X \ {x0} is dense in X, and consider
G = C(X,R) as a partially ordered abelian group as above. Then there
exists a subgroup H of G with the following properties:

(i) ZG(H) = {εx0},
(ii) supX h ≥ 1 for each h ∈ H \ {0}.

In particular, ZG(H) is a face of S(G,1), and H does not satisfy property
(B).

The existence of x0 follows from the fact that X is not discrete, since a
discrete compact Hausdorff space is finite.
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Proof. Let G0 = ker(εx0) = {g ∈ G ; g(x0) = 0}. Since X is compact
metrizable, C(X,R) is a separable topologial space; so the group G0 contains
a dense countable sequence (fn)n∈N consisting of continuous functions with
compact support in X0. Choose a dense sequence (xn)n∈N in X0 and a
subsequence (yn)n∈N converging to x0. Let

µ =

∞∑
n=1

1

2n
δxn +

∞∑
n=1

δyn .

This defines a finite positive measure on each compact subset K of X0 since
X \ K contains yn for all but finitely many n. Since µ(X0) = ∞, there
is also, for each m ∈ N, a function gm ∈ G0 with compact support in X0

such that ‖gm‖∞ ≤ 1/m and
∫
X gmdµ = 1. Let H0 be the subgroup of G0

generated by the functions

fn −
(∫

X
fn dµ

)
gm, (m,n) ∈ N2.

Since the sequence (gm)m∈N converges uniformly to 0 on X, the topological
closure H0 of H0 in G contains fn for each n ∈ N. We conclude that H0 =
G0, and so ZG(H0) = ZG(G0) = {εx0}. Moreover, we have

∫
X f dµ = 0 for

each f in H0. Therefore, the same is true for each f in RH0 and thus, for
each non-zero f ∈ RH0, there exists n ∈ N for which f(xn) > 0. Choose
a basis (hi)i∈N of RH0 contained in H0. By Proposition 6.1, there exists a
sequence (mi)i∈N in N such that the subgroup H of G spanned by (mihi)i∈N
satisfies condition (ii). It also satisfies condition (i) since ZG(H) = ZG(H0).

Finally, let h ∈ H \ 2H (for example h = m1h1), and let h′ ∈ H. Then
2h′ − h 6= 0 satisfies supX(2h′ − h) ≥ 1, so h(x) − 2h′(x) ≤ −1 for some
x ∈ X, meaning that τ(h)− 2τ(h′) ≤ −1 for the trace τ = εx. Thus H does
not satisfy property (B2). �

7. Link with unperforation of quotients

Let G be a partially ordered abelian group. We recall the following defi-
nitions:

• G is directed if any finite subset of G has an upper bound in G;
• G is simple if it is nonzero, directed, and G+ \ {0} = G++;
• G is unperforated if the condition mg ≥ 0 with g ∈ G and m ∈ N

implies that g ≥ 0;
• G has the Riesz interpolation property if, given g1, g2, g

′
1, g
′
2 ∈ G with

gi ≤ g′j for each i, j ∈ {1, 2}, there exists g ∈ G such that gi ≤ g ≤ g′j
for each i, j ∈ {1, 2}.

Clearly, G is directed if it admits an order unit. If G is unperforated,
then it is torsion-free as an abelian group, and an element g of G is an
order unit if and only if τ(g) > 0 for all traces τ on G [EHS, Theorem
1.4] or [Go, Corollary 4.13]. The group G is called a dimension group if
it is directed, unperforated, and has the Riesz interpolation property. For
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example, Rn is a simple dimension group for the strict ordering with positive
cone {0} ∪ (Rn)++, and so is any dense subgroup G of Rn with respect to
the inherited ordering. This also applies to Z but not to Zn if n > 1.

A subgroup H of G is said to be convex if whenever h ≤ g ≤ h′ with
h, h′ ∈ H and g ∈ G, we have g ∈ H. Suppose that H is such a subgroup.
Then the quotient G/H is a partially ordered abelian group with positive
cone (G/H)+ = (G+ + H)/H ; given g, g′ ∈ G, we have g + H ≤ g′ + H if
and only if g ≤ g′ + h for some h ∈ H. (This does not assume that H is
directed.) The following result links unperforation of G/H to property (B)
for H.

Proposition 7.1. Suppose that (G, u) is a simple unperforated partially
ordered abelian group with order unit, and let H be a convex subgroup of G
for which G/H is torsion-free.

(i) If H has property (B), then G/H is unperforated.
(ii) If G/H is unperforated and if {ĝ | g ∈ G} is dense in Aff S(G, u),

then H has property (B).

The argument for (i) follows the proof of [BH, Proposition B.1], together
with a simplification.

Proof. (i) Suppose that H has property (B). Let g ∈ G and m ≥ 2 be an
integer such that m(g + H) ≥ H. We need to show that g + H ≥ H. If
m(g + H) = H then g + H = H because G/H is torsion-free, and we are
done. Otherwise, we have mg+h > 0 for some h ∈ H and so mg+h ∈ G++

because G is simple. Choose n ∈ N such that n(mg + h) ≥ u. Then, we

have mĝ + ĥ ≥ 1/n. Moreover, since H satisfies (Bm), there exists h′ ∈ H
with −ĥ + mĥ′ ≥ −1/(2n). Combining these inequalities, we deduce that

ĝ + ĥ′ ≥ 1/(2mn). This implies that g + h′ ∈ G++ since G is unperforated,
and so g +H ≥ H.

(ii) Suppose that G/H is unperforated and that {ĝ | g ∈ G} is dense
in Aff S(G, u). Let h ∈ H and ε > 0. The set of a ∈ Aff S(G, u) with

ε/4 < a− ĥ/2 < ε/2 is open and not empty as it contains ĥ/2 + ε/3. Thus

it contains ĝ for some g ∈ G. This means that ε/2 ≤ 2ĝ − ĥ ≤ ε. The first
inequality implies that 2g−h ∈ G++ since G is unperforated. In particular,
we have 2g − h ≥ 0, so 2(g + H) ≥ H, and unperforation of G/H yields
g + H ∈ (G/H)+. Thus there exists h′ in H such that g − h′ ∈ G+. Then

ĝ ≥ ĥ′ and we obtain −ε ≤ ĥ − 2ĝ ≤ ĥ − 2ĥ′, showing that H satisfies
(B2). �

Corollary 7.2. Suppose that (G, u) is a simple dimension group with order
unit, and let H be a convex subgroup of G for which G/H is torsion-free.
Then G/H is unperforated if and only if H has property (B) inside G.

Necessity of the condition is proved in [BH, Proposition B.1].
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Proof. If G is cyclic as an abelian group, then H is {0} or G. So G/H is
unperforated and H has property (B). If G is noncyclic, then {ĝ | g ∈ G}
is dense in Aff S(G, u) by [GoH2, Corollary 4.10] or [Go, Theorem 14.14],
and the conclusion follows from the Proposition. �

An example of a convex subgroup H of a simple dimension group G
such that G/H is torsion-free but holey, i.e., not unperforated, is given in
[BH, Appendix B]. It suffices to take for G a rank 3 dense subgroup of R2

of the form G = Z2 + Z(α, β) with the strict ordering, where {1, α, β} is
linearly independent over Q, and to take H = Z(−1, 1) (it is convex since
H ∩G+ = {(0, 0)}).

8. Application to refinable traces

The motivating reason to consider unperforation of quotients comes from
the study of refinable traces (originally refinable measures on Cantor dynam-
ical systems, see [Ak]). We first recall some definitions from [BH, Sections 1
and 7].

Let (G, u) be a dimension group with order unit, and let U be a nonempty
subset of S(G, u). We say that U is

• refinable if whenever a1, a2, b ∈ G+ satisfy τ(a1) + τ(a2) = τ(b) for
each τ ∈ U , there exist a′1, a

′
2 ∈ G+ such that a′1 + a′2 = b and

τ(a′i) = τ(ai) for each i = 1, 2 and each τ ∈ U ;
• weakly good if for any a, b ∈ G+ \ {0} satisfying

inf
τ∈U

(τ(b)− τ(a)) > 0

there exists a′ ∈ G+ \ {0} such that a′ < b and τ(a′) = τ(a) for each
τ ∈ U ;
• good if for any a ∈ G and b ∈ G+ \ {0} satisfying

inf
τ∈U

τ(a) > 0 and inf
τ∈U

(τ(b)− τ(a)) > 0

there exists a′ ∈ G+ \ {0} such that a′ < b and τ(a′) = τ(a) for each
τ ∈ U .

Note that when U is a compact subset of S(G, u), for example when U is fi-
nite or when U = ZG(H) for a subgroup H of G, the condition infτ∈U τ(a) >
0 for a ∈ G is equivalent to τ(a) > 0 for each τ ∈ U ; similarly the condition
infτ∈U (τ(b) − τ(a)) > 0 for a, b ∈ G is then equivalent to τ(a) < τ(b) for
each τ ∈ U .

We say that a single trace τ ∈ S(G, u) is refinable, weakly good, or good
if the singleton {τ} has the corresponding property.

There are generalizations, variations, and implications discussed in [BH].
For example, [BH, Lemma 1.1(b)] shows that a trace τ ∈ S(G, u) is good
if and only if it is weakly good. Moreover, a good trace is refinable. Here
we combine our previous results with [BH, Proposition 7.6] to prove the
following.
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Theorem 8.1. Let (G, u) be a simple dimension group for which Aff S(G, u)
is finite-dimensional, let τ ∈ S(G, u), and let

Z := ZG(ker τ) = {σ ∈ S(G, u) | ker τ ⊆ kerσ} .
The following conditions are equivalent:

(i) τ is refinable,
(ii) Z is refinable,
(iii) Z is good,
(iv) Z is weakly good.

When they are satisfied, G/ ker τ is a simple dimension group; in particular,
it is unperforated.

Proof. (i) ⇔ (ii): This is because elements a1, a2, b of G satisfy the condi-
tion τ(a1) + τ(a2) = τ(b) if and only if σ(a1) + σ(a2) = σ(b) for each σ ∈ Z;
similarly a, a′ ∈ G satisfy τ(a) = τ(a′) if and only if σ(a) = σ(a′) for each
σ ∈ Z.

(ii) ⇒ (iii): Suppose that Z is refinable. Put H = ker τ = ∩σ∈Z kerσ.
Then, by [BH, Proposition B.5], every trace in S(G, u) maps H to {0} or to
a dense subgroup of R. As Aff S(G, u) has finite dimension, it follows from
Theorem 5.2 that H has property (B) inside G and so, by Corollary 7.2,
the torsion-free group G/H is unperforated. By [BH, Proposition 7.6(a)],
this quotient also has the Riesz interpolation property. So, G/H is a simple
dimension group. To conclude that Z is a good set of traces, we need to
modify slightly the argument of [BH, Proposition 7.6(f)] as follows.

Let a ∈ G and b ∈ G+ with 0 < σ(a) < σ(b) for each σ ∈ Z. As the traces
in S(G/H, u+H) are induced by the elements of ZG(H) = Z, and as G/H
is unperforated, we deduce that a + H and b − a + H belong to (G/H)++

[Go, Corollary 4.13]. Thus, these classes contain elements a1 and a2 of G+,
respectively. We have σ(a1) + σ(a2) = σ(b) for each σ ∈ Z. Since Z is
refinable, there exist a′1, a

′
2 ∈ G+ such that a′1 + a′2 = b and σ(a′i) = σ(ai)

for each i = 1, 2 and each σ ∈ Z. In particular, a′1 ∈ G+ satisfies a′1 ≤ b
and σ(a′1) = σ(a) for each σ ∈ Z. We have a′1 6= 0 and a′1 6= b since
0 < τ(a′1) < τ(b), thus 0 < a′1 < b since G is simple. Therefore Z is good.

(iv)⇒ (ii): Suppose that Z is weakly good, and that a1, a2, b ∈ G+ satisfy
σ(a1) + σ(a2) = σ(b) for all σ ∈ Z. If a2 6= 0, then a2 ∈ G++, so for all
σ ∈ Z we have σ(a1) = σ(b) − σ(a2) < σ(b). As Z is weakly good, there
exists a′1 ∈ G+ such that a′1 ≤ b and σ(a′1) = σ(a1) for all σ ∈ Z. Put
a′2 = b− a′1. Then a′1, a

′
2 ∈ G+ satisfy a′1 + a′2 = b and σ(a′i) = σ(ai) for all

i = 1, 2 and all σ ∈ Z. If a2 = 0, the same holds for the choice of a′1 = b
and a′2 = 0. Thus, Z is refinable.

This completes the proof since the implication (iii) ⇒ (iv) is immediate
and the last assertion has been established in the course of proving (ii) ⇒
(iii). �

Corollary 8.2. Under the same hypotheses, the following conditions are
equivalent:
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(i) τ is good;
(ii) τ is refinable and ZG(ker τ) = {τ}.

Proof. Suppose first that τ is good, and let σ ∈ ZG(ker τ). Since we have
ker τ ⊆ kerσ, there exists a group homomorphism ψ : τ(G) → R such that
σ(a) = ψ(τ(a)) for each a ∈ G. We have ψ(1) = 1 since σ(u) = τ(u) = 1.
Moreover, ψ is order preserving: if τ(a) ≥ 0 for some a ∈ G, then, since τ
is good and a ≤ nu for some n ∈ N, there exists a′ ∈ G+ with τ(a′) = τ(a),
and so ψ(τ(a)) = σ(a) = σ(a′) ≥ 0. Thus, ψ is the inclusion of τ(G) in R
and therefore σ = τ . As τ is refinable, this proves that (i) implies (ii). The
converse follows from Theorem 8.1. �

Suppose now that (G, u) is an arbitrary simple dimension group G with
order unit, and let φ : G → Aff S(G, u) be the natural map. It is shown in
[BH, Corollary 1.8] that a trace τ ∈ S(G, u) is good if and only if φ(ker τ)
is dense in {h ∈ Aff S(G, u) | h(τ) = 0}, and this characterization is very
useful. There is a similar necessary condition for τ to be refinable [BH,
Proposition 7.7(e)], but this is far from sufficient, even when Aff S(G, u)
has finite dimension. However, when G is Rn with the strict ordering, [H2,
Appendix 2] provides a simple geometric description of the good subsets
of S(Rn,1) = Kn of the form Kn ∩ V for a subspace V of (Rn)∗ (conjec-
tured in [BH, p. 6295]). Together with Theorem 8.1, this yields a geometric
description of the refinable traces of Rn.

As shown in [BH, Lemma 7.3], sufficient for a trace τ ∈ S(G, u) to be
refinable is that ker τ = Inf G, where Inf G = kerφ is called the infinitesimal
subgroup of G. If G is countable, it follows from [GiHH, Proposition 1.7]
that the collection of such traces is a dense Gδ of S(G, u). It is contained
in the set of refinable traces of G. The next proposition provides a case of
equality.

Proposition 8.3. Let G be a dense subgroup of Rn, free of rank n + 1,
equipped with the strict ordering inherited from Rn, and let τ ∈ S(G, u) for
some u ∈ G++. Then τ is refinable if and only if ker τ = {0}.

A partially ordered abelian group G as in the statement of the proposition
is called a critical dimension group of rank n+ 1 (cf., [H1]).

Proof. Suppose that τ is refinable, and let H = ker τ . Since H is a proper
subgroup of G, it is discrete in Rn. Let S denote the set of all linear forms
σ : Rn → R for which σ(H) is a nonzero discrete subgroup of R. If H 6= {0},
then S is a dense subset of (Rn)∗, stable under multiplication by positive
real numbers; in particular S contains an element of S(G, u), contradicting
[BH, Proposition B.5]. Thus H must be {0}. The converse is clear. �

9. A class of examples

Recall that Theorem B (stated in the introduction) follows from Theorems
3.1 and 5.2. In this section, we apply the result to determine, among a class



ONE-SIDED APPROXIMATION 391

of subgroups of Rn, those that have the one-sided approximation property
(B). We will also use the following consequence of Theorem B, emphasizing
the link between properties (A) and (B).

Theorem 9.1. Let H be a subgroup of Rn, let F be the smallest face of Kn

containing Z(H) = {τ ∈ Kn | τ(H) = {0}}, let τi1 , . . . , τi` be the vertices of
F , and let {τj1 , . . . , τjk} be a maximal set of vertices of F whose restrictions
to RH are linearly independent over R. Then the following conditions are
equivalent:

(i) the group H has property (B) as a subgroup of Rn,
(ii) its projection H ′ := {(τi1(h), . . . , τi`(h)) | h ∈ H } has property (A)

in R`,
(iii) its projection H ′′ := {(τj1(h), . . . , τjk(h)) | h ∈ H } is dense in Rk.

Recall that {τ1, . . . , τn} denotes the basis of (Rn)∗ dual to the canonical
basis {e1, . . . , en} of Rn.

Proof. By Theorem B, condition (i) is equivalent to requiring that τ(H)
be {0} or dense in R for each τ ∈ F , while by Theorem A, condition (ii) is
equivalent to asking that φ(H) is {0} or dense in R for each φ ∈ RF . Thus
the latter implies the former. To prove the converse, suppose that condition
(i) holds and let φ ∈ RF . We have φ = φ(ei1)τi1 + · · · + φ(ei`)τi` . By
hypothesis, each ν ∈ Z(H) admits a similar decomposition with coefficients
ν(eij ) ≥ 0 (1 ≤ j ≤ `) of sum 1 and, for each j = 1, . . . , `, there is at least one

element νj of Z(H) with νj(eij ) > 0. Then, ν = `−1(ν1+· · ·+ν`) ∈ Z(H) has
ν(eij ) > 0 for j = 1, . . . , `. In other words, ν belongs to the relative interior
of F . Choose a > 0 such that cj := φ(eij ) + aν(eij ) > 0 for j = 1, . . . , ` and

let c = c1 + · · · + c`. Then τ := c−1(φ + aν) belongs to F and so τ(H) is
zero or dense in R. Therefore, the same applies to φ(H) = cτ(H), showing
that condition (ii) holds.

Finally, the projection map π : R` → Rk given by

π(xi1 , . . . , xi`) = (xj1 , . . . , xjk)

maps H ′ to H ′′ and induces an isomorphism of vector spaces from RH ′
to RH ′′ = Rk. By Kronecker’s theorem, condition (ii) is equivalent to H ′

being dense in RH ′. Thus it is equivalent to H ′′ being dense in Rk, which
is condition (iii). �

Suppose that n ≥ 2 and let τ = (τ1 + τ2)/2 ∈ Kn. We consider subgroups
H of Rn contained in ker τ , or equivalently, for which τ ∈ Z(H). We first
note the following simple consequence of the result above.

Corollary 9.2. With the notation above, suppose that Z(H) = {τ}. Then
H has property (B) if and only if τ1(H) is dense in R.

Proof. Here the smallest face F of Kn that contains Z(H) is the convex hull
of τ1 and τ2. As the restriction of τ1 to RH is nonzero while τ2 coincides
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with −τ1 on RH, Theorem 9.1 applies with k = 1 and j1 = 1, and the
conclusion follows. �

We now turn to a more specific example.

Example 9.3. Suppose that n ≥ 3 and let α1, . . . , αn−1, η1, . . . , ηn−2 ∈ R.
Consider the subgroup H of Rn generated by the rows h1, . . . , hn−1 of the
matrix

C =


α1 −α1
...

... In−2
αn−2 −αn−2
αn−1 −αn−1 η1 η2 . . . ηn−2

 ,

where In−2 is the identity matrix of size n − 2. Let S denote the set of
indices j with 1 ≤ j ≤ n− 2 for which αj 6= 0. Then H has property (B) if
and only if τ1(H) = Zα1 + · · ·+Zαn−1 is zero or dense in R and one of the
following mutually exclusive conditions holds.

(i) The rank of C is n− 1.
(ii) The rank of C is n−2 and not all αj with j ∈ S have the same sign.
(iii) The rank of C is n − 2, all αj with j ∈ S have the same sign, and

the set {1} ∪ {ηj | j ∈ S } is linearly independent over Q.

As the proof will show, Z(H) is the singleton {τ} in cases (i) and (ii),
while it is a line segment in case (iii).

Proof. Since τ ∈ Z(H) and since τ1 belongs to the smallest face of Kn

containing τ , the condition that τ1(H) is zero or dense in R is necessary by
Theorem B. Suppose that it holds. If the rank of C is n−1, then RH = ker τ ,
thus Z(H) = Kn ∩ Rτ = {τ} and so H has property (B) by Corollary 9.2.
Otherwise, the rank of C is n− 2 and we have

hn−1 = η1h1 + · · ·+ ηn−2hn−2.

Moreover, the linear form φ given by

φ = τ2 + α1τ3 + · · ·+ αn−2τn = τ2 +
∑
j∈S

αjτj+2

vanishes on h1, . . . , hn−2 and therefore on the whole of H. This means that
the annihilator of H in (Rn)∗ is Rτ + Rφ and so

Z(H) = Kn ∩ (Rτ + Rφ).

If the real numbers αj with j ∈ S do not all have the same sign, this implies
that Z(H) = Kn ∩ Rτ = {τ} and again H has property (B) by Corollary
9.2. Otherwise φ or 2τ − φ is a positive linear functional and we find that
Z(H) is the line segment in Kn joining τ to either c−1φ or c−1(2τ − φ),
where c = 1 +

∑
j∈S |αj |. Then the smallest face F of Kn containing Z(H)

is the convex hull of the set {τ1, τ2}∪ {τj+2 | j ∈ S } and {τj+2 | j ∈ S } is a
maximal set of vertices of F whose restriction to RH are linearly independent
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over R. Letting j1, . . . , jk denote the distinct elements of S, we deduce from
Theorem 9.1, that H has property (B) if and only if its projection

{(tj1+2(h), . . . , τjk+2(h)) | h ∈ H } = Zk + Z(ηj1 , . . . , ηjk).

is dense in Rk, that is if and only if 1, ηj1 , . . . , ηjk are linearly independent
over Q. �

Appendix A. Gordan’s theorem and Farkas’ lemma

Gordan’s theorem (not to be confused with Gordan’s lemma, a result—by
the same Gordan—concerning toric varieties) asserts the following [Gor].

Theorem A.1 (Gordan). Let A be an m × n real matrix. Exactly one of
the following is true.

(i) There exists y ∈ (Rn)+ \ {000} such that Ayt = 0.
(ii) There exists x ∈ Rm such that xA ∈ (Rm)++.

Here, we view the elements of Rm and of Rn as row vectors. If (ii)
holds, then we may choose x in Zm, by a simple density argument. Thus
Gordan’s theorem is the special case of Proposition 5.1 applied to the group
G = Rn with the usual coordinatewise ordering, and to the subgroup H of
G generated by the rows of A: alternative (i) says that there exists a trace
τ of G such that τ(H) = {0}, while alternative (ii) with x ∈ Zm says that
H contains an element of G++.

Gordan’s theorem was followed 29 years later by Farkas’ lemma [F], which
is now typically used to prove the former. We state Farkas’ Lemma below
in one of its numerous equivalent forms. It can be used to provide a direct
proof of Theorem B.

Theorem A.2 (Farkas). Let A be a real m × n matrix, and let b ∈ Rn.
Exactly one of the following is true.

(i) There exists y ∈ (Rn)+ such that Ayt = 0 and byt < 0.
(ii) There exists x ∈ Rm such that xA ≤ b.

Contrary to Gordan’s theorem, this result has limited extension to par-
tially ordered abelian groups. To explain, let G = Rn equipped with the
coordinatewise ordering, and let H be the subspace of Rn generated, over
R, by the rows of A, where A is as in the statement of Theorem A.2. Then
the result says that, for any g ∈ G, either (ii) there exists h ∈ H such that
h ≤ g, or (i) there exists a trace τ ∈ S(G,1) such that τ(H) = {0} and
τ(g) < 0. Equivalently, this means that, for any g ∈ G, we have

(g +H) ∩G+ 6= {0} ⇐⇒ τ(g) ≥ 0 for all τ ∈ ZG(H). (A.1)

This property is easy to characterize when H∩G+ = {0}, or more generally,
when H is a convex subgroup of G.



394 DAVID HANDELMAN AND DAMIEN ROY

Lemma A.3. Let (G, u) be a partially ordered abelian group with order unit,
and let H be a convex subgroup of G. Then (A.1) holds for each g ∈ G if
and only if the partially ordered group G/H is archimedean.

Recall that a partially ordered abelian group G is archimedean if for x, y ∈
G, the condition nx ≤ y for all positive integers n entails that −x ∈ G+

(a inequivalent definition, frequently seen, requires x ∈ G+ at the outset).
When G has an order unit u, it is archimedean if and only if the traces in
S(G, u) determine the ordering on G, that is, G+ = {g ∈ G | ĝ ≥ 0} ([Go,
Theorem 4.14]). Under the hypotheses of Lemma A.3, this is exactly what
(A.1) means for the pair (G/H, u+H).

Archimedeanness is a strong property, particularly if the partially or-
dered abelian group is simple. It was not known until 2013 that for every
(infinite-dimensional) metrizable Choquet simplex K, there exists a simple
archimedean dimension group (G, u) whose trace space is K [H3].
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