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Genericity and rigidity for slow entropy
transformations

Terrence Adams

Abstract. The notion of slow entropy, both upper and lower slow en-
tropy, was defined by Katok and Thouvenot as a more refined measure of
complexity for dynamical systems, than the classical Kolmogorov-Sinai
entropy. For any subexponential rate function an(t), we prove there ex-
ists a generic class of invertible measure preserving systems such that the
lower slow entropy is zero and the upper slow entropy is infinite. Also,
given any subexponential rate an(t), we show there exists a rigid, weak
mixing, invertible system such that the lower slow entropy is infinite
with respect to an(t). This gives a general solution to a question on the
existence of rigid transformations with positive polynomial upper slow
entropy, Finally, we connect slow entropy with the notion of entropy cov-
ergence rate presented by Blume. In particular, we show slow entropy
is a strictly stronger notion of complexity and give examples which have
zero upper slow entropy, but also have an arbitrary sublinear positive
entropy convergence rate.
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1. Introduction

The notion of slow entropy was introduced by Katok and Thouvenot in
[15] for amenable discrete group actions. It generalizes the classical notion of
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Kolmogorov-Sinai entropy [16,19] for Z-actions and gives a method for dis-
tinguishing the complexity of transformations with zero Kolmogorov-Sinai
entropy.1 The recent survey [14] gives a general account of several extensions
of entropy, including a comprehensive background on slow entropy. Slow en-
tropy has been computed for several examples including compact group rota-
tions, Chacon-3 [7], the Thue-Morse system and the Rudin-Shapiro system.
In [5], it is shown that the lower slow entropy of any rank-one transforma-
tion is less than or equal to 2. Also, in [6], it is shown there exist rank-one
transformations with infinite upper slow entropy with respect to any poly-
nomial. In [12], Kanigowski is able to get more precise upper bounds on slow
entropy of local rank-one flows. Also, in [13], the authors obtain polynomial
slow entropies for unipotent flows.

In [14], the following question is given:
Question 6.1.2. Is it possible to have the upper slow entropy for a rigid
transformation positive with respect to an(t) = nt?
We give a positive answer to this question. Given any subexponential rate,
we show that a generic transformation has infinite upper slow entropy with
respect to that rate. We say an(t) > 0, for n ∈ IN and t > 0, is subexpo-

nential, if given β > 1 and t > 0, limn→∞
an(t)
βn = 0. We will only consider

monotone an(t) such that an(t) ≥ an(s) for t > s. Let (X,B, µ) be a stan-
dard probability space (i.e., isomorphic to [0, 1] with Lebesgue measure).
Also, let

M = {T : X → X | T is invertible and preserves µ}.

One of our three main results is the following.

Theorem 1.1. Let an(t) be any subexponential rate function. There exists
a dense Gδ subset G ⊂M such that for each T ∈ G, the upper slow entropy
of T is infinite with respect to an(t).

Thus, the generic transformation answers question 6.1.2 in the affirmative,
since the generic transformation is known to be weak mixing and rigid [10].
Our proof is constructive and provides a recipe for constructing rigid rank-
ones with infinite upper slow entropy.

We show that there is a generic class of transformations such that the
lower slow entropy is zero with respect to a given divergent rate.

Theorem 1.2. Suppose an(t) ∈ IR is a rate such that for t > 0,

lim
n→∞

an(t) =∞.

There exists a dense Gδ subset G ⊂M such that for each T ∈ G, the lower
slow entropy of T is zero with respect to an(t).

1The Kolmogorov-Sinai entropy of a transformation T is referred to as the entropy of
T .
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This shows for any slow rate an(t), the generic transformation has infin-
itely occurring time spans where the complexity is sublinear. This is due to
“super” rigidity times for a typical tranformation. This raises the question
of whether there exists an invertible rigid measure preserving transforma-
tion with infinite polynomial lower slow entropy. We answer this question
by constructing examples with infinite subexponential lower slow entropy in
section 5. This also answers question 6.1.2.

Theorem 1.3. There exists a family F ⊂ M of rigid, weak mixing trans-
formations such that given any subexponential rate an(t), there exists a
transformation in F which has infinite lower slow entropy with respect to
an(t).

In the final section, we give the connections with entropy convergence rate
as defined by Frank Blume in [2].

2. Preliminaries

We describe the setup and then give a few lemmas used in the proofs of
our main results.

2.1. Definitions. Given an alphabet α1, α2, . . . , αr, a codeword of length
n is a vector w = 〈w1, w2, . . . , wn〉 = 〈wi〉ni=1 such that wi ∈ {α1, . . . , αr}
for 1 ≤ i ≤ n. Our codewords will be obtained from a measure preserving
system (X,B, µ, T ) and finite partition P = {p1, p2, . . . , pr}. In this case,
we will consider the alphabet to be {1, . . . , r}. Given x ∈ X and n ∈ IN,

define the codeword ~Pn(x) = 〈wi〉ni=1 such that T i−1x ∈ pwi . When using
this notation, the transformation will be fixed.

Let w,w′ be codewords of length n. The (normalized) Hamming distance
is defined as:

d(w,w′) =
1

n

n∑
i=1

(
1− δwiw′i

)
.

Given a codeword w of length n and ε > 0, an ε-ball is the subset V ⊆
{1, . . . , r}n such that d(w, v) < ε for v ∈ V . We will denote the ε-ball as
Bε(w). If given a transformation T and partition P , define

BT,P
ε (w) = {x ∈ X : d(~Pn(x), w) < ε}.

Given ε > 0, δ > 0, n ∈ IN, finite partition P = {p1, p2, . . . , pr} and
dynamical system (X,B, µ, T ), define SP (T, n, ε, δ) = S as:

S = min {k : ∃v1, . . . , vk ∈ {1, . . . , r}n such that µ
( k⋃
i=1

BT,P
ε (vi)

)
≥ 1− δ}.

Now we give the definition of upper and lower slow entropy for Z-actions.
For more general discrete amenable group actions, the interested reader
may see the survey [14]. Also, in [11], slow entropy is used to construct
infinite-measure preserving Z2-actions which cannot be realized as a group
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of diffeomorphisms of a compact manifold preserving a Borel measure. Let
T be an invertible measure preserving transformation defined on a standard
probability space (X,B, µ). Let a = {an(t) : n ∈ IN, t > 0} be a family
of positive sequences monotone in t and such that limn→∞ an(t) = ∞ for
t > 0. Define the upper (measure-theoretic) slow entropy of T with respect
to a finite partition P as

s-Hµa(T, P ) = lim
δ→0

lim
ε→0

s-H
(
ε, δ, P

)
,

where s-H
(
ε, δ, P

)
=

{
supG(ε, δ, P ), if G

(
ε, δ, P

)
6= ∅,

0, if G
(
ε, δ, P

)
= ∅,

and G
(
ε, δ, P

)
= {t > 0 : lim sup

n→∞

SP (T, n, ε, δ)

an(t)
> 0}.

The upper slow entropy of T with respect to an(t) is defined as

s-Hµa(T ) = sup
P

s-Hµa(T, P ).

To define the lower slow entropy of T , replace lim sup in the definition above
with lim inf.

2.2. Supporting lemmas. Define the binary entropy function,

H(x) = −x log2 (x)−
(
1− x

)
log2 (1− x).

We give some preliminary lemmas involving binary codewords and measur-
able partitions that are used in the main results.

Lemma 2.1. Suppose w1, w2 are binary words of length ` with Hamming
distance d = d(w1, w2) > 0. Let m ∈ IN and C be the set of all 2m codewords
consisting of all possible sequences of words w from {w1, w2} of length n =
m`. Given ε, θ > 0 with ε

d + 1
m < 1

2 , the minimum number S of ε-balls
required to cover 1− θ of the words in C satisfies:

S ≥
(
1− θ

)
2m
(

1−H( 2ε
d

+ 1
m

)
)
.

Proof. The proof follows from a standard bound on the size of Hamming
balls [17] (p.310). Suppose v1, . . . , vj are a minimum number of centers such
that ε-balls Bε(vi) cover at least 1− θ of codewords in C. For each i, choose
ui ∈ Bε(vi). Thus, B2ε(ui) ⊇ Bε(vi) and the 2ε-balls B2ε(ui) cover at least
1− θ of the codewords in C.

This reduces the problem to a basic Hamming ball size question. Since
all words are generated by w1, w2, we can map w1 to 0 and w2 to 1, and
consider the number of Hamming balls needed to cover 1 − θ of all binary
words of length m. Thus, if at least d2ε

d me words differ, then the distance

is greater than or equal to 2ε. Also, d2ε
d me ≤ m

(
2ε
d + 1

m

)
. By [17](p.310), a

Hamming ball of radius 2ε
d has a volume less than or equal to:

2mH( 2ε
d

+ 1
m

).
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Therefore, the minimum number of balls required to cover at least (1 − θ)
of the space is: (

1− θ
)
2m
(

1−H( 2ε
d

+ 1
m

)
)
.

�

Lemma 2.2. Suppose the setup is similar to Lemma 2.1 and there are two
generating words w1, w2 of length ` with distance d = d(w1, w2). Suppose
C is the set of 2m codewords consisting of all possible sequences of blocks
of either w1 or w2. Suppose µ is a probability measure and A is a set
of positive measure. 2 Let φ : A → C be a measurable map such that

µ({x ∈ A : φ(x) = v}) = µ(A)
2m for v ∈ C. Suppose ψ : A → C is a

measurable map satisfying:

µ
(
{x ∈ A : d(ψ(x), φ(x)) < η}

)
>
(
1− η

)
µ(A).

The minimum number S of ε-Hamming balls B such that

µ
(
{x ∈ A : ψ(x) ∈ B}

)
≥
(
1− θ

)
µ(A)

satisfies

S ≥
(
1− θ − η

)
2m(1−H(

2(ε+η)
d

+ 1
m

)).

Proof. Let E = {x ∈ A : d(u(x), v(x)) ≥ η}. For x ∈ A \ E, Bε(ψ(x)) ⊆
Bε+η(φ(x)). By applying Lemma 2.1 using the normalized probability mea-
sure µ(·)/µ(A), (

1− θ − η
)

2m(1−H(
2(ε+η)
d

+ 1
m

))

(ε + η)-balls are needed to cover 1 − θ − η of φ(x) words. Thus, the total
number of ε-balls needed to cover (1− θ) mass of ψ(x) words is at least:(

1− θ − η
)

2m(1−H(
2(ε+η)
d

+ 1
m

)).

�

The following lemma is used in the proof of Proposition 4.2.

Lemma 2.3. Let η > 0 and r, n ∈ IN. Let (X,B, µ, T ) be an invertible

measure preserving system and b a set of positive measure such that b̂ =⋃n−1
i=0 T

ib is a disjoint union (except for a set of measure zero). Suppose
P = {p1, p2, . . . , pr} and Q = {q1, q2, . . . , qr} are partitions such that

r∑
i=1

µ
(
(pi ∩ b̂)4(qi ∩ b̂)

)
< η2µ(b̂). (2.1)

Then for n ∈ IN,

µ
(
{x ∈ b : d(~Pn(x), ~Qn(x)) < η}

)
>
(
1− η

)
µ(b).

2For our purposes, A ⊆ X where (X,B, µ) is a Lebesgue probability space.
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Proof. Define

Rn =

n−1∨
i=0

T−i
(
P ∨Q

)
.

Define

A = {p ∈ Rn ∩ b : #{i : 0 ≤ i < n, T ip ⊂
r⋃
j=1

(
pj ∩ qj

)
} ≤ (1− η)n}.

We show µ(A) < ηµ(b). Otherwise, for p ∈ A and i such that T ip ⊆ pj ∩ qk
for j 6= k, this contributes 2µ(p) to the sum (2.1). Thus, for p ∈ A, the
number of such i gives measure greater than or equal to 2µ(p)ηn. Adding

up over all p ∈ A gives measure greater than or equal to 2ηµ(b)ηn > η2µ(b̂).

For a.e. x, y ∈ b ∩ Ac, d(~Pn(x), ~Qn(x)) < η and this holds for µ(b ∩ Ac) >
(1− η)µ(b). �

The following lemma is a more general version of Lemma 2.3 and used
in multiple places throughout this paper. Given two ordered partitions
P = 〈p1, p2, . . . , pr〉 and Q = 〈q1, q2, . . . , qr〉, let

D(P,Q) =
r∑
i=1

µ(pi4qi).

Lemma 2.4. Let (X,B, µ, T ) be ergodic. Let η > 0 and r, n ∈ IN. Suppose
P = 〈p1, p2, . . . , pr〉 and Q = 〈q1, q2, . . . , qr〉 are ordered partitions such that

D(P,Q) < η2. (2.2)

Then for n ∈ IN,

µ
(
{x : d(~Pn(x), ~Qn(x)) < η}

)
> 1− η.

Proof. Let η1 ∈ IR such that
r∑
i=1

µ(pi4qi) < η2
1 < η2. (2.3)

Define

Rn =
n−1∨
i=0

T−i
(
P ∨Q

)
.

Let η0 <
1
2 and C = {I0, . . . , In−1} be a Rohklin tower such that µ(

⋃n−1
i=0 Ii) >

1− η0
n . Define

A0 = {p ∈ Rn ∩ I0 : #{i : 0 ≤ i < n, T ip ⊂ ∪rj=1

(
pj ∩ qj

)
} ≤ (1− η1)n}.

We show µ(A0) < η1µ(I0). Otherwise, for each i such that T ip ⊆ pj ∩ qk for
j 6= k, this contributes 2µ(p) to the sum (2.3). Thus, for p ∈ A0, the number
of such i gives measure greater than 2µ(p)η1n. Adding up over all p ∈ A0

gives measure greater than 2η1µ(I0)η1n > 2η2
1(1 − η0). For x, y ∈ I0 ∩ Ac0,
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d(~Pn(x), ~Qn(x)) < η1 and this holds for µ(I0 ∩ Ac0) > (1 − η1)µ(I0). By
showing the analogous result for Ak defined as:

Ak = {p ∈ Rn ∩ Ik : #{i : 0 ≤ i < n, T ip ⊂ ∪rj=1

(
pj ∩ qj

)
} ≤ (1− η1)n},

then µ(Ik ∩Ack) > (1− η1)µ(Ik). Hence,

n−1∑
k=0

µ(Ik ∩Ack) > (1− η1)(1− η0).

Therefore, since η0 may be chosen arbitrarily small, our claim holds. �

2.3. Infinite rank. A result of Ferenczi [5] shows that the lower slow en-
tropy of a rank-one transformation is less than or equal to 2 with respect to
an(t) = nt. Thus, our examples in section 5.4 are not rank-one and instead,
have infinite rank. We will adapt the technique of independent cutting and
stacking to construct rigid transformations with infinite lower slow entropy.
Independent cutting and stacking was originally defined in [9, 18]. A varia-
tion of this technique is used in [15] to obtain different types of important
counterexamples. For a general guide on the cutting and stacking technique,
see [8].

3. Generic class with zero lower slow entropy

Let an(t) be a sequence of real numbers such that an(t) ≥ an(s) for t > s
and limn→∞ an(t) = ∞ for t > 0. For N, t,M ∈ IN and any finite partition
P , define

G(N, t,M,P ) ={
T ∈M : ∃n > N, 0 < δ <

1

M
such that SP (T, n, δ, δ) <

an(1
t )

N

}
. (3.1)

Proposition 3.1. For N, t,M ∈ IN and finite partition P , G(N, t,M,P ) is
open in the weak topology on M.

Proof. Let T0 ∈ G(N, t,M,P ) and n > N , 0 < δ0 < 1
M be such that

SP (T0, n, δ0, δ0) <
an( 1

t
)

N . Let Pn =
∨n−1
i=0 T

−i
0 P . Choose δ1 ∈ IR such that

δ0 < δ1 <
1
M . Let α =

(
δ1 − δ0

)
/2. In the weak topology, choose an open

set U containing T0 such that for T1 ∈ U , 0 ≤ i < n, and p ∈ Pn,

µ(T1T
i
0p4T i+1

0 p) ≤
( α
n2

)
µ(p). (3.2)

We will prove inductively in j, for p ∈ Pn, that

µ(T j0 p4T
j
1 p) ≤

(jα
n2

)
µ(p). (3.3)

The case j = 1 follows directly from (3.2):

µ(T0p4T1p) ≤
( α
n2

)
µ(p).
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Also, the case j = 0 is trivial. Suppose equation (3.3) holds for j = i. Below
shows it holds for j = i+ 1:

µ(T i+1
0 p4T i+1

1 p) ≤ µ(T i+1
0 p4T1T

i
0p) + µ(T1T

i
0p4T i+1

1 p)

= µ(T i+1
0 p4T1T

i
0p) + µ(T i0p4T i1p)

≤
( α
n2

)
µ(p) +

( iα
n2

)
µ(p)

=
((i+ 1)α

n2

)
µ(p).

For p ∈ Pn, let

Ep =
n−1⋂
i=0

T−i1 T i0p.

Thus,

µ
(
Ep
)
≥ µ(p)−

n−1∑
i=1

µ(p4T−i1 T i0p)

= µ(p)−
n−1∑
i=1

µ(T i1p4T i0p)

> (1− α)µ(p).

Hence, if E =
⋃
p∈Pn Ep, µ(E) > 1 − α. Each x ∈ E has the same P -name

under T1 and T0. Suppose V ⊆ 2{0,1}
n

is such that A0 =
⋃
v∈V B

T0
δ0

(v)

satisfies µ(A0) ≥ 1− δ0 and

card(V ) <
an(1

t )

N
.

Let A1 =
⋃
v∈V B

T1
δ1

(v) and A′1 =
⋃
v∈V B

T1
δ0

(v). Since µ(A04A′1) ≤ µ(Ec) <
α, then

µ(A1) ≥ µ(A′1) > 1− δ0 − α > 1− δ1.

Therefore, since card(V ) < an(1/t)
N , SP (T1, n, δ1, δ1) <

an( 1
t
)

N and we are
done. �

Now we prove the density of the class G(N, t,M,P ).

Proposition 3.2. For N, t,M ∈ IN and finite partition P , G(N, t,M,P ) is
dense in the weak topology on M.

Proof. Let P = {p1, p2, . . . , pr} be the partition into r elements for r ∈ IN.
We can discard elements with zero measure. Since rank-ones are dense in
M, let T0 ∈M be a rank-one transformation and let ε > 0. Let δ < 1

M and

define η = min {δ2, ε}. Choose a rank-one column C = {I0, I1, . . . , Ih−1} for
T0 such that

(1) µ(
⋃h−1
i=0 Ii) > 1− η

2 ,
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(2) h > 2
η ,

(3) there exist disjoint collections Ji such that µ(pi4
⋃
j∈Ji Ij) <

η
4rµ(pi).

Let qi =
⋃
j∈Ji Ij and Q = {q1, q2, . . . , qr}. Now we show how to construct a

transformation T1 ∈ G(N, t,M,P ). Since T1 will differ by T0 inside the top
level or outside the column, then T1 will be within ε of T0. Choose k1 ∈ IN
such that k1h > N and for n = k1h,

an(
1

t
) > Nh.

Choose k2 ∈ IN such that k2 >
2
η . Cut column C into k1k2 columns of equal

width and stack from left to right. Call this column C′ which has height

k1k2h. Let A1 = {x : d(~Pn(x), ~Qn(x)) < δ
2}. By Lemma 2.4, since

r∑
i=1

µ(pi4qi) <
η

4
≤ δ2

4
,

then

µ
(
A1

)
> 1− δ

2
.

Let A2 be the union of levels in C′ except for the top n levels. For x ∈ A2,
~Qn(x) gives at most h distinct vectors. Also, δ-balls centered at these words
will cover A1 ∩A2. Precisely,⋃

x∈A2

BT1,Q
δ

(
~Qn(x)

)
⊇ A1 ∩A2.

Since µ(A1 ∩ A2) > 1 − δ, then SP (T1, n, δ, δ) ≤ h < an(1/t)
N . Therefore, we

are done. �

Theorem 3.3. Suppose an(t) ∈ IR is such that for t > s, an(t) ≥ an(s)
and for t > 0, limn→∞ an(t) = ∞. There exists a dense Gδ subset G ⊂ M
such that for each T ∈ G, the lower slow entropy of T is zero with respect
to an(t).

Proof. Let PL be a sequence of nontrivial measurable partitions such that
for each k ∈ IN, the collection {PL : L ∈ IN} is dense in the class of all
measurable partitions with k nontrivial elements. By Proposition 3.2, for
N, t,M,L ∈ IN, the set G(N, t,M,PL) is dense, and also open by Proposition
3.1. Thus,

G =
∞⋂
L=1

∞⋂
t=1

∞⋂
M=1

∞⋂
N=1

G(N, t,M,PL)

is a dense Gδ. Given a nontrivial measurable partition P and t,M ∈ IN,
choose L ∈ IN such that

D(P, PL) <
1

9M2
.
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For T ∈
⋂∞
N=1G(N, t, 3M,PL),

lim inf
n→∞

SPL(T, n, 1
3M ,

1
3M )

an(1
t )

= 0.

By Lemma 2.4, SP (T, n, 1
M ,

1
M ) ≤ SPL(T, n, 1

3M ,
1

3M ). Therefore, for T ∈ G,
the lower slow entropy is zero with respect to an(t). �

Corollary 3.4. In the weak topology, the generic transformation in M is
rigid, weak mixing, rank-one and has zero polynomial lower slow entropy.

4. Generic class with infinite upper slow entropy

The transformations in this section are constructed by including alternat-
ing stages of cutting and stacking. Suppose T is representated by a single
Rokhlin column C of height h.

4.1. Two approximately independent words. Cut column C into two
subcolumns C1 and C2 of equal width. Given k ∈ IN, cut C1 into k subcolumns
of equal width, stack from left to right, and place k spacers on top. Cut C2

into k subcolumns of equal width and place a single spacer on top of each
subcolumn, then stack from left to right. After this stage, there are two
columns of height k(h+ 1).

4.2. Independent cutting and stacking. Independent cutting and stack-
ing is defined similar to [18]. As opposed to [18], here it is not necessary
to use columns of different heights, since weak mixing is generic and we are
establishing a generic class of transformations. Also, in section 5, we include
a weak mixing stage which allows all columns to have the same height and
facilitates counting of codewords. Given two columns C1 and C2 of height h,
and s ∈ IN, independent cutting and stacking the columns s times produces
22s columns, each with height 2sh.

4.3. Infinite upper slow entropy. Let P = {p1, p2} be a nontrivial
measurable 2-set partition. We construct a dense Gδ for the case where
µ(p1) = 1

2 , although a similar procedure will handle the more general case
where 0 < µ(p1) < 1. Let an(t) be a sequence of real numbers with subex-

ponential growth. In particular, for every t, β > 1, limn→∞
an(t)
βn = 0. For

M,N, t ∈ IN, define

G(M,N, t, P ) =

{T ∈M : ∃n > N and δ >
1

M
such that SP (T, n, δ, δ) > an(t)}. (4.1)

Proposition 4.1. For M,N, t ∈ IN, the set G(M,N, t, P ) is open in the
weak topology on M.
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Proof. Let T0 ∈ G(M,N, t, P ) and n > N , δ0 >
1
M be such that

SP (T0, n, δ0, δ0) > an(t).

Let Pn =
∨n−1
i=0 T

−i
0 P . The elements of Pn of positive measure correspond to

the various P -names of length n. For almost every x, y ∈ X, x and y have
the same P -name under T0, if and only if x, y ∈ p for some p ∈ Pn. Choose
δ1 ∈ IR such that 1

M < δ1 < δ0. Let α =
(
δ0 − δ1

)
/2. In the weak topology,

choose an open set U containing T0 such that for T1 ∈ U , 0 ≤ i < n, and
p ∈ Pn,

µ(T1T
i
0p4T i+1

0 p) ≤
( α
n2

)
µ(p). (4.2)

We will prove inductively in j, for p ∈ Pn, that

µ(T j0 p4T
j
1 p) ≤

(jα
n2

)
µ(p). (4.3)

The case j = 1 follows directly from (4.2):

µ(T0p4T1p) ≤
( α
n2

)
µ(p).

Also, the case j = 0 is trivial. Suppose equation (4.3) holds for j = i. Below
shows it holds for j = i+ 1:

µ(T i+1
0 p4T i+1

1 p) ≤ µ(T i+1
0 p4T1T

i
0p) + µ(T1T

i
0p4T i+1

1 p)

= µ(T i+1
0 p4T1T

i
0p) + µ(T i0p4T i1p)

≤
( α
n2

)
µ(p) +

( iα
n2

)
µ(p)

=
((i+ 1)α

n2

)
µ(p).

For p ∈ Pn, let

Ep =
n−1⋂
i=0

T−i1 T i0p.

Thus,

µ
(
Ep
)
≥ µ(p)−

n−1∑
i=1

µ(p4T−i1 T i0p)

= µ(p)−
n−1∑
i=1

µ(T i1p4T i0p)

> (1− α)µ(p).

Hence, if E =
⋃
p∈Pn Ep, µ(E) > 1 − α. Each x ∈ E has the same P -name

under T1 and T0. Suppose V ⊆ 2{0,1}
n

is such that A1 =
⋃
v∈V B

T1
δ1

(v)
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satisfies µ(A1) ≥ 1 − δ1. Let A0 =
⋃
v∈V B

T0
δ0

(v) and A′0 =
⋃
v∈V B

T0
δ1

(v).

Since µ(A14A′0) ≤ µ(Ec) < α, then

µ(A0) ≥ µ(A′0) > 1− δ1 − α > 1− δ0.

Therefore, since µ(A0) ≥ 1− δ0, then card(V ) > an(t) and we are done. �

Our density result follows.

Proposition 4.2. For sufficiently large M , and all N, t ∈ IN, the set
G(M,N, t, P ) is dense in the weak topology on M.

Proof. It will be sufficient to consider M ≥ 1000. This will allow us to
choose δ < 1

900 . Also, d in Lemma 2.2 can be chosen d ≥ 1
100 . The value m

in Lemma 2.2 will equal 2r for some r. It will not be difficult to choose r
such that 2r > 100. Also, let 0 < η < 10−5. Thus,

H
(2(δ + η)

d
+ 2−r

)
< H

(2

9
+

1

500
+

1

100

)
< H

(1

4

)
<

7

8
.

Since rank-ones are dense inM, let T0 ∈M be a rank-one transformation.
Let ε > 0. We will show there exists T1 within ε of T0 in the weak topology.
It is sufficient to construct T1 such that µ({x : T1(x) 6= T0(x)}) < ε. We can
reset ε = min {ε, η}. Let N, t ∈ IN and p = p1. Since T0 is ergodic, we can
choose K ∈ IN such that for k ≥ K,∫

X
|1
k

k−1∑
i=0

Ip(T
i
0x)− µ(p)|dµ < η2

6
. (4.4)

Choose a rank-one column C = {I0, I1, . . . , Ih} for T0 such that

(1) µ(
⋃h−2
i=0 Ii) > 1− ε,

(2) h > N ,

(3) there exists a collection J such that µ(p4
⋃
j∈J Ij) <

η2

6 µ(p).

Let q =
⋃
j∈J Ij and Q = {q, qc}. Since µ(p) = 1/2, we can assume 1/3 <

µ(q) < 2/3. Thus,∫
X
|1
k

k−1∑
i=0

Iq(T
i
0x)− µ(q)|dµ ≤

∫
X
|1
k

k−1∑
i=0

(
Iq(T

i
0x)− Ip(T i0x)

)
|dµ

+

∫
X
|1
k

k−1∑
i=0

Ip(T
i
0x)− µ(p)|dµ+ |µ(p)− µ(q)|

< µ(q4p) +
η2

6
+
η2

6
<
η2

2
.

The transformation will apply independent cutting and stacking using
two words who have a significant distance. The words are pure with respect
to a subset of intervals Ij , j ∈ J . Since we are counting balls using the
partition P , we will apply Lemma 2.2 to covers of P -names.
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Now we show how to construct a transformation T1 ∈ G(M,N, t, P ) such
that dw(T0, T1) < ε. Cut column C1 = {I0, I1, . . . , Ih−1} into 2 subcolumns
of equal width, labeled as C1,0 and C1,1. For k = 2(K + 2) as above, cut
each subcolumn into k subcolumns of equal width. For C1,0, stack from left
to right, and then place k spacers on top. For C1,1, place a spacer on top,
and then stack from left to right. The auxillary level Ih may be used to add
these spacers. Call these columns C2,0 and C2,1 respectively.

Before proceeding with the construction, let us demonstrate the usefulness
of these two blocks. Suppose a copy of C2,0 is shifted by j and we measure
the overlap with two catenated unshifted copies of C2,1. The shifted copy of
C2,0 will have an overlap of at least (K + 2) copies of C1,0 with one of the
copies of C2,1. If j ≤ (K + 2)(h+ 1), then consider the overlap with the first
copy, otherwise consider the larger overlap with the second copy. Assume
j ≤ (K + 2)(h + 1). The other case is handled similarly. For h sufficiently
large, there will be an overlap of at least K full copies of C1,0 with a copy of
C1,1 which we call C′. Also, the copies will be distributed equally with shifts
j′, j′ + 1, j′ + 2, . . . , j′ +K − 1 for some j′. Since T1(x) = T0(x) for x ∈ C′,
if α = µ(q),

µ
(
T j1 q ∩ q

c ∩ C′
)
≥ µ(C′)

k

K−1∑
i=0

µ(T j+i1 q ∩ qc)

=
µ(C′)K
k

1

K

K−1∑
i=0

µ(T j+i1 q ∩ qc)

≥ µ(C′)
6

( 1

K

K−1∑
i=0

µ(T j+i1 q ∩ qc)
)

≥ µ(C′)
6

( 1

K

K−1∑
i=0

µ(T j+i1 q ∩ qc)− α(1− α)
)

+
µ(C′)α(1− α)

6

> µ(C′)
(α(1− α)

6
− η2

6

)
> µ(C′)

( 1

54
− η2

6

)
>
µ(C′)
100

.

Let ` = k(h + 1) and β = 2
1

8k(h+1) . Choose r ∈ IN such that for n =
2rk(h+ 1),

βn > 2an(t).

Choose s ∈ IN, s > r such that 2r−s < η2.
By inequality (4.4), distance between shifts of the P -word formed from

C1,1 and the P -word formed from C1,0 will be bounded away from 0. Both
columns have length k(h + 1). Remark: we cut into k, so that any two
shifted blocks will have at least K sub-blocks that overlap.

Apply independent cutting and stacking to both columns, s number of
times. This will cause the number of P -names of length k(h + 1) to grow
exponentially in s. (Note, a Chacon-2 similar stage could be inserted to
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guarantee weak mixing, but this is not needed, since weak mixing is generic.)
There will be 22s columns, each of height 2sk(h + 1). We will consider P -
names of length n where n is large compared to k(h+ 1), but small relative
to 2sk(h + 1). For most points y ∈ X, we get a P -name by taking x in

the base of a column and some j such that y = T j1x. We can get a P -

name for y by forming the vector v = 〈Ip(T j+ix)〉n−1
i=0 . Let b be the set

containing the bases of all columns of height 2sk(h + 1). Define bj = T j1 b

and ~bj = {〈Ip(T j+i1 x)〉n−1
i=0 |x ∈ b, 0 ≤ i < n}. Suppose S = SP (T1, n, δ, δ)

is the minimal number of δ-balls such that the union of measure is at least
1− δ. Let v1, v2, . . . , vS be codewords of length n such that BT1,P

δ (vi) cover

at least measure 1− δ. Let B =
⋃S
i=1B

T1,P
δ (vi). Thus,

µ
(
B ∩

( n−1⋃
i=0

2s−r−2⋃
j=0

bjn+i

))
> 1− δ − ε− 2r−s.

There exists i0 such that

µ
(
B ∩

( 2s−r−2⋃
j=0

bjn+i0

))
>

1

n

(
1− δ − ε− 2r−s

)
Let D =

⋃2s−r−2
j=0 bjn+i0 . Then

µ
(
B ∩D

)
>

µ(D)

nµ(D)

(
1− δ − ε− 2r−s

)
≥ (1− δ − ε− 2r−s)

(1− ε− 2r−s)
µ(D)

=
(
1− δ

1− ε− 2r−s
)
µ(D).

Hence,

µ(D \B) <
( δ

1− ε− 2r−s
)
µ(D).

Let

J1 = {j : 0 ≤ j ≤ 2s−r − 2, µ(bjn+i0 \B) <
2δ

1− ε− 2r−s
µ(bjn+i0)}.

Let b̂j =
⋃n−1
i=0 T

ibj . Note

2s−r−2∑
j=0

µ(q ∩ ∪2s−r−2
j=0 b̂jn+i04p ∩ ∪2s−r−2

j=0 b̂jn+i0) <
η2

6
.

Let

J2 = {j : 0 ≤ j ≤ 2s−r − 2, µ(q ∩ b̂jn+i04p ∩ b̂jn+i0) <
η2

3(2s−r − 1)
}.
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Both |J1| > 1
2

(
2s−r − 1

)
and |J2| > 1

2

(
2s−r − 1

)
. Thus, there exists j0 ∈

J1 ∩ J2.
Since µ(q ∩ b̂j0n+i04p ∩ b̂j0n+i0) < η2µ(b̂j0n+i0), by Lemma 2.3,

µ
(
{x ∈ bj0n+i0 : d( ~Qn(x), ~Pn(x)) < η}

)
>
(
1− η

)
µ(bj0n+i0).

Therefore, by Lemma 2.2, the number of Hamming balls S satisfies:

S ≥
(
1− 2δ

1− ε− 2r−s
− η
)
22r(1−H(

2(δ+η)
d

+2−r))

≥
(
1− 2δ

1− ε− 2r−s
− η
)
βn

>2
(
1− 2δ

1− ε− 2r−s
− η
)
an(t) > an(t).

Therefore, SP (T1, n, δ, δ) > an(t) and T1 ∈ G(M,N, t, P ). �

Remark: It is clear from the proof of Proposition 4.2 that given γ > 0,
there exists M(γ) such that G(M,N, t, P ) is dense for M ≥M(γ) and 2-set
partition P such that H(P ) ≥ γ.

Theorem 4.3. Suppose an(t) is such that for t, β > 1, limn→∞
an(t)
βn = 0.

There exists a dense Gδ subset G ⊂M such that for each T ∈ G, the upper
slow entropy of T is infinite with respect to an(t).

Proof. By Proposition 4.2, for M sufficiently large, G(M,N, t, P ) is dense
for all N, t ∈ IN. Also, G(M,N, t, P ) is open by Proposition 4.1. Thus,

G =
∞⋂
t=1

∞⋂
N=1

G(M,N, t, P )

is a dense Gδ. Fix t ∈ IN. For T ∈
⋂∞
N=1G(M,N, t, P ),

lim sup
n→∞

SP (T, n, 1
M ,

1
M )

an(t)
≥ 1.

Therefore, the upper slow entropy is ∞ with respect to an(t). �

Corollary 4.4. In the weak topology, the generic transformation in M is
rigid, weak mixing, rank-one and has infinite polynomial upper slow entropy.

The following corollary is a strengthening of Theorem 4.3.

Corollary 4.5. Given a rate function b = bn(t), let

Gb = {T ∈M : s-Hµb (T, P ) > 0 for every nontrivial finite measurable P}.
(4.5)

If bn(t) is subexponential, then Gb contains a dense Gδ class in M.
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Proof. It is sufficient to prove this corollary for 2-set partitions. Let PL be
a sequence of nontrivial measurable 2-set partitions such that the collection
{PL : L ∈ IN} is dense in the class of all measurable 2-set partitions. By the
proofs of Propositions 4.1 and 4.2, then for N, t, L ∈ IN and ML sufficiently
large, the set G(M,N, t, PL) is open and dense in the weak topology for
M ≥ML. Thus,

G =

∞⋂
L=1

∞⋂
M=ML

∞⋂
t=1

∞⋂
N=1

G(M,N, t, PL)

is a dense Gδ. Also, ML may be set equal to M(γ) where γ = H(PL).
Actually, choose M ≥M(γ2 ) such that if

D(P,Q) <
1

9M2
,

then H(Q) > H(P ) − γ
2 . Choose L0 ∈ IN such that D(P, PL0) < 1

9M2 . Let

t > 0. For T ∈
⋂∞
N=1G(M,N, t, PL0),

lim sup
n→∞

SPL0
(T, n, 1

M ,
1
M )

bn(t)
≥ 1.

By Lemma 2.4, SP (T, n, 1
3M ,

1
3M ) ≥ SPL0

(T, n, 1
M ,

1
M ). Therefore, for T ∈

G, s-Hµb (T, P ) > 0 which implies G ⊆ Gb. �

A transformation T ∈ Gb is said to have strictly positive upper slow entropy
with respect to b.

5. Infinite lower slow entropy rigid transformations

All transformations are constructed on [0, 1] with Lebesgue measure. The
transformations with infinite lower slow entropy will be infinite rank trans-
formations defined using three different types of stages. These stages will
be repeated in sequence ad infinitum. If all stages are labeled Si for i =
0, 1, 2, . . ., then the stages break down as follows:

(1) S3i will be an independent cutting and stacking stage;
(2) S3i+1 will be a weak mixing stage (similar to Chacon-2);
(3) S3i+2 will be a rigidity stage.

The transformation will be initialized with two columns C0,1 and C0,2 each
containing a single interval. Let P be the 2-set partition containing each of
C0,1 and C0,2. As the transformation is defined, we will add spacers infin-
itely often. Spacers will be unioned with the second set, so in general, the
partition P = {C0,1, X \ C0,1}.
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5.1. Independent cutting and stacking stage. To define the indepen-
dent cutting and stacking stage, we use a sequence sk ∈ IN for k = 0, 1, . . .
such that sk → ∞. For stage S0, independent cut and stack s0 times be-
ginning with columns C0,1 and C0,2. The number of columns is squared at
each cut and stack stage, so after s0 substages, there are 22s0 columns each
having height 2s0 .

For the general stage S3k, suppose there are ` columns each having height
h at the start of the stage. If we independent cut and stack sk times, then
there will be

22sk `

columns each having height 2skh.

5.2. Weak mixing stage. For the general weak mixing stage S3k+1, sup-
pose there are ` columns of height h. Cut each column into 2 subcolumns of
equal width, add a single spacer on the right subcolumn, and stack the right
subcolumn on top of the left subcolumn. Thus, there will be ` columns of
height 2h+ 1.

Suppose f is an eigenfunction with eigenvalue λ. Thus, f(Tx) = λf(x).
There will be a weak mixing stage with refined columns such that f is nearly
constant on most intervals. Let I be one such interval. Suppose x, y ∈ I
such that T hx ∈ I and T h+1y ∈ I and f is nearly constant on each of these
four values. Since the following stage is a rigidity stage, it is not difficult to
show points x and y exist with this property. Then

f(T hx) = λhf(x) ≈ f(T h+1y) = λh+1f(y).

Since f(x) ≈ f(y), then λh ≈ λh+1. Hence, λ ≈ 1. In the limit, this shows
that λ = 1 is the only eigenvalue, and since T will be ergodic, f is constant
and T is weak mixing. This is the same argument used in the original proof
of Chacon that the Chacon-2 transformation is weak mixing [4].

5.3. Rigidity stage. A sequence rk ∈ IN is used to control rigidity. Sup-
pose at stage S3k+2, there are ` columns of height h. Cut each column
into rk subcolumns of equal width, and stack from left to right to obtain `
columns of height rkh. Thus, for any set A that is a union of intervals from
the ` columms, then

µ(T hA ∩A) >
(rk − 1

rk

)
µ(A).

5.4. Infinite lower slow entropy. Our family F of transformations are
parameterized by sequences rk →∞ and sk ∈ IN. Initialize T ∈ F using two
columns of height 1. Independent cut and stack s0 times. This produces 22s0

columns of height 2s0 . Let h1 = 2s0 be the heights of these columns. Cut
each column into two subcolumns of equal width, add a single spacer on the
rightmost subcolumn and stack the right subcolumn on the left subcolumn.
Then cut each of these columns of height 2h1 + 1 into r1 subcolumns of
equal width and stack from left to right. Independent cut and stack these



410 TERRENCE ADAMS

22s0 columns of height r1(2h1 + 1) to form 22s0+s1 columns of height h2 =
2s1r1(2h1 + 1). In general, hk = 2sk−1rk−1(2hk−1 + 1). Also, let

σk =

k−1∑
i=0

si.

Remark: As long as sk > 0 infinitely often, the transformations are ergodic
due to the independent cutting and stacking stages. Thus, based on section
5.2, the transformations will be weak mixing. Rigidity will follow from a
given sequence rk →∞. The proof that the lower slow entropy is infinite is
given next.

Theorem 5.1. Given any subexponential rate an(t), there exists a rigid
weak mixing system T ∈ F such that T has infinite lower slow entropy with
respect to an(t).

Proof. Let ε ∈ IR such that 0 < ε < 1
100 . Suppose rk, tk ∈ IN such that

limk→∞ rk = limk→∞ tk =∞. Let h0 = 1 and h1 = 2s0 . Recall the formulas
for hk+1 and σk,

hk+1 = 2skrk
(
2hk + 1

)
and σk =

k−1∑
i=0

si.

We will specify the sequence sk inductively based on σk, rk, hk and rk+1. For
sufficiently large k,

22σkH(2ε+2−σk ) < 22σkH(3ε).

Let

αk =
2σk
(
1−H(3ε)

)
25rk+1rkhk

and βk = 2αk .

Choose sk ∈ IN such that for n ≥ 2sk ,

βnk > kan(tk).

Let 0 < δ < 1
100 . Suppose S ∈ IN and vi, 1 ≤ i ≤ S, are such that

µ
( S⋃
i=1

BT,P
ε (vi)

)
> 1− δ.

Suppose a large n ∈ IN is chosen. There exists k ∈ IN such that 2hk ≤ n <
2hk+1. We divide the proof into two cases:

(1) 2rk(2hk + 1) ≤ n < 2sk+1rk(2hk + 1)
(2) 2hk ≤ n < 2rk(2hk + 1) .

For case (1), there exist ρ ∈ IN such that 1 ≤ ρ ≤ sk and

2ρrk(2hk + 1) ≤ n < 2ρ+1rk(2hk + 1).

Our T is represented as a cutting and stacking construction with the number
of columns tending to infinity. Fix a height H much larger than n and set
of columns C. Pick H such that n

H < η
2 and the complement of columns in
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C is less that η
2 for small η. Let b be points in the bottom levels of C. Also,

let bj = T jb for 0 ≤ j < H − n.

Let B =
⋃S
i=1B

T,P
ε (vi). There exists j < H − n such that

µ(B ∩ bj) >
(1− δ − η

1− η
)
µ(bj) > (1− 2δ)µ(bj) for sufficiently small η.

If µ(BT,P
ε (vi)∩ bj) = 0 for some i, then remove that Hamming ball from the

list. Let R ≤ S be the number of remaining Hamming balls and rename

the vectors so that B =
⋃R
i=1B

T,P
ε (vi) satisfies µ(B ∩ bj) > (1 − 2δ)µ(bj).

Choose xi ∈ BT,P
ε (vi) ∩ bj such that µ({x ∈ B ∩ bj : ~Pn(x) = ~Pn(xi)}) > 0.

Let wi = ~Pn(xi). Thus, by the triangle inequality of the Hamming distance,
B2ε(wi) ⊇ Bε(vi) and hence,

BT,P
2ε (~Pn(xi)) ∩ bj ⊇ BT,P

ε (vi) ∩ bj .

This previous statement allows us to consider only balls with P -names as
centers by doubling the radius. For a.e. point x ∈ bj , the hk long blocks,
called Ck, will align. Also, lower level blocks hi for i < k will align as well.

Since all hk blocks and sub-blocks align for x ∈ bj , we can view this
problem as a standard estimate on hamming ball sizes for i.i.d. binary
sequences. The spacers added over time diminish and will have little effect on
the distributions and hamming distance. For repeating blocks to be within
2ε of a word wi, it is necessary the sub-blocks to be within approximately
2ε. Note,

n ≥ 2ρrk(2hk + 1) = 2ρrk

(
2
(
2sk−1rk−1(2hk−1 + 1)

))
> 2sk−1 .

Since we have approximated must but not all variables, we can make R at
least,

R ≥ 1

2

(
1− 2δ

)
22ρ2σk

(
1−H(3ε)

)
.

Hence,

22ρ2σk
(

1−H(3ε)
)

= 22ρ+sk−12σk−1
(

1−H(3ε)
)

=
(

2
(1−H(3ε))2

σk−1

32rkrk−1hk−1

)2ρ+sk−132rkrk−1hk−1

>
(

2αk−1

)2ρ8rkhk

>
(
2αk−1

)2ρ+1rk(2hk+1)

>
(
βk−1

)n
> (k − 1)an(tk−1).

This handles case (1). Case (2) can be handled in a similar fashion, with
focus on the blocks of length hk−1. �
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6. Slow entropy and the convergence rates of Blume

This section is devoted to comparing and contrasting the notion of slow
entropy with the study of entropy convergence rates of Blume [2, 3]. In [2],
Blume proves that the set of all transformations T satisfying the property
that for all nontrivial finite measurable partitions P , the entropyH(

∨n−1
i=0 T

−iP )

of the nth refinements converges in the limit superior faster to∞ than a given
sublinear rate an is residual with respect to the weak topology.

The entropy convergence rates studied by Blume are fundamentally differ-
ent from the slow entropy formulation introduced by Katok and Thouvenot.
In particular, given a sublinear rate an →∞ and subexponential rate bn(t),
we give an outline of a cutting and stacking construction which has zero up-
per slow entropy with respect to bn(t), but still satisfies for every nontrivial
finite measurable partition P :

lim sup
n→∞

1

an
H
( n−1∨
i=0

T−iP
)

=∞.

We say a = an is sublinear, if limn→∞ an = ∞ and limn→∞
an
n = 0. Previ-

ously introduced by Blume [2], the class ES(a) is defined as:

ES(a) = {T ∈M : lim sup
n→∞

1

an
H
( n−1∨
i=0

T−iP
)
> 0 for all nontrivial finite P}.

Also, we show for any sublinear rate a = an, then for the subexponential
rate b = bn(t) = 2tan , the following holds: 3

Gb ( ES(a).

This demonstrates that the slow entropy formulation provides a stricter
measure of complexity for a dynamical system than the entropy convergence
rate.

6.1. Infinite entropy convergence rate and zero lower slow entropy.
The following result distinguishes slow entropy from entropy convergence
rate.

Proposition 6.1. Given a sublinear rate an and any subexponential rate
b = bn(t), there exists an ergodic invertible measure preserving transforma-
tion T such that T has zero upper slow entropy with respect to bn(t), but
for any nontrivial finite measurable partition P ,

lim sup
n→∞

1

an
H
( n−1∨
i=0

T−iP
)
> 0.

Proof. It is sufficient to prove this for any nontrivial measurable 2-set par-
tition P = {p, pc}. First we describe the inductive step for constructing T .
Let C1 and C2 be columns of height hn. Cut C1 into 2(n + 2) subcolumns

3The set Gb is defined in (4.5).
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of equal width and cut C2 into 2 subcolumns of equal width. Swap the last
subcolumn of C1 with the second subcolumn of C2. For the modified C2, cut
into 2 subcolumns of equal width. Cut each of these subcolumns into kn sub-
columns of equal width and use spacers to build nearly independent words
as described in section 4.1. Then apply independent cutting and stacking as
described in section 4.2 to the two C2 subcolumns to create 22sn subcolumns
of equal width. Each of these subcolumns will have height 2snkn(hn + 1).
Stack these subcolumns to build a single column of height 22sn2snkn(hn+1).

For the modified C1 column, cut into kn subcolumns of equal width, stack
from left to right, and add kn spacers on top. Then cut this column into
2 subcolumns of equal width, stack the right subcolumn on top of the left
subcolumn. Repeat this procedure a total of 22sn+sn times. After this stage,
we have produced two subcolumns of equal height,

hn+1 = 22sn2snkn(hn + 1).

This process can be initialized by taking any rank-one transformation and
dividing a column of height h1 into 2 subcolumns of equal width. After the
first stage, there will be 2 subcolumns, one with width 2

3 and the other with

width 1
3 . After n − 1 stages, there will be 2 subcolumns of height hn, one

with width n
n+1 and the other with width 1

n+1 .
For rapidly growing sn, this transformation T will boost the entropy on

the right column for each stage. In particular, given sublinear an, it is
possible to choose sn such that the right portion appears to be a positive
entropy transformation, but scaled by a factor of 1

n+1 . More explicitly, if
Xn represents the left column at stage n, and Un ⊂ Xn is the portion that
is switched, then Ui will be approximately conditionally independent of Uj
on Xn. Thus, by the 2nd Borel-Cantelli lemma, a.e. point will fall in Ui for
infinitely many i. Moreover, for large sn, near pairwise independence of Ui
will lead to near pairwise independence between any set p and most Ui. In
particular, we can choose sn such that given γ > 0,

Γp = {i ∈ IN : |µ(p ∩ Ui)− µ(p)µ(Ui)| < γµ(Ui)},

satisfies ∑
i∈Γp

µ(Ui) <∞.

Since limn→∞ µ(Xn) = 1, T will be ergodic. This will enable the creation
of two nearly independent words similar to section 4.1. Thus, independent
cutting and stacking raises the slow entropy on this portion (right column)
of the space. However, using cut in half and stack on the left column lowers
the slow entropy on most of the space. Hence, given δ > 0, once the right
column mass 1

n+1 falls below δ, then it will be possible to use a sublinear
number of P -names to cover the names produced by the left column. The
scaled entropy calculation 1

an
H(
∨n−1
i=0 T

−iP ) will include the rising entropy

from the right column of mass 1
n+1 .
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If sublinear an is specified and b = bn(t) such that limn→∞ bn(t) = ∞
for all t > 0, then sn can be chosen to increase rapidly such that for every
nontrivial measurable 2-set partition P ,

s-Hµb (T, P ) = 0

and

lim sup
n→∞

1

an
H
( n−1∨
i=0

T−iP
)
> 0.

Therefore, T ∈ ES(a), but T has zero upper slow entropy with respect to
bn(t).
Remark: bn(t) may be chosen with slow growth and is not necessarily 2tan .

�

6.2. Strictly positive upper slow entropy implies positive entropy
convergence rate. It is straightforward to show that the rate function
bn(t) = 2tan is subexponential if and only if an is sublinear.

Proposition 6.2. Suppose an is sublinear and bn(t) = 2tan . If T ∈ Gb, then
for every nontrivial finite measurable partition P ,

lim sup
n→∞

1

an
H
( n−1∨
i=0

T−iP
)
> 0.

Thus, Gb ( ES(a).

Proof. We prove the contrapositive. Suppose P is a finite measurable par-
tition such that

lim
n→∞

1

an
H
( n−1∨
i=0

T−iP
)

= 0.

Let Pn =
∨n−1
i=0 T

−iP . Let Vn = {p ∈ Pn : 0 < µ(p) < 2−tan} and V ′n = {p ∈
Pn : µ(p) ≥ 2−tan}. Thus, for n sufficiently large,

H
(
Pn
)

=−
∑
p∈Vn

µ(p) logµ(p)−
∑
p∈V ′n

µ(p) logµ(p)

≥−
∑
p∈Vn

µ(p) log 2−tan −
∑
p∈V ′n

2−tan log 2−tan

= tanµ(Vn) + |V ′n|tan2−tan .

This implies

µ(Vn) ≤ 1

tan
H
(
Pn
)
→ 0, as n→∞.

Hence, for δ > 0 and n sufficiently large, µ(Vn) < δ, and

SP (T, n, δ, δ)

2tan
≤ |V

′
n|

2tan
≤ 1

tan
H(Pn)→ 0, as n→∞.
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Since this is true for all t > 0 and δ > 0, then s-Hµb (T, P ) = 0 and therefore
T /∈ Gb. �

The previous proposition combined with Corollary 4.5 gives an extension
of Blume’s Theorem 4.8 from [2]. Also, counterexamples from Proposition
6.1 demonstrate this is a nontrivial extension, since there exist T ∈ ES(a)
such that T /∈ Gb for corresponding bn(t) = 2tan . Using the technique
given in [1], given any rigidity sequence ρn for an ergodic invertible measure
preserving transformation, it is possible to construct an ergodic invertible
measure preserving transformation T ∈ ES(a) which is rigid on ρn. It
is an open question what families of rigidity sequences are realizable for
transformations with infinite or positive lower slow entropy with respect to
a given subexponential rate.
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